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On dimension of locally pseudocompact groups
and their quotients

M.G.TKACENKO

Dedicated to the memory of Zdenék Frolik

Abstract. It is shown that dimB = ind B = indg B for every quotient space G/K of
a closed subgroup K in a locally pseudocompact group G, and the equality dimG =
dimK + dim G/K is established. We a question of A.V.Arhangel'skil by lhowmg
that an ext lly di ted quoti spaceoflclosed bgroup in a pseud
group is finite.
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By theorem of B.A.Pasynkov [10] , if G is a locally compact group and K is
a closed subgroup of G, then the equalities dimG/K = ind G/K = IndG/K and
dimG = dim K + dim G/K hold. Here we prove similar equalities in case when
G is a locally pseudocompact group. When passing from (locally) compact groupe
to (locally) psendocompact groups, two circumstances would be mentioned. First,
neither pseudocompact group G nor its quotient space G/K have to be normal
spaces. Second, a closed subgroup of a pseudocompact group need not be pseu-
docompact [5, Theorem 2.4]. An absence of normality obliges us to define the
dimension dim in terms of finite functionally open covers (see [6, p.472]). The large
inductive dimension function Ind would be replaced by Indy which was introduced
by V.V.Filippov and studied in [9]. The function Ind, is defined in the following
way: Indp X = +1iff X is empty, and Indg X < n+ 1 iff for every disjoint zero—sets
Fy, Fy of X there exist disjoint open sets Oy, O, and a zero-set C of X such that
F; € 0;(i =0,1),X\C = 0gU O, and IndyC £ n. (Note that Oy and O,
are cozero—sets of X by Lemma 7.2.12 of [6]). It is known that Indg X = Ind X
for every normal space X, each closed Gs-subset of which is perfectly k-normal (7,
Proposition 1).

A useful equality dim B = dim B, where B = G/K is the quotient space with
respect to a closed subgroup K of a locally pseudocompact group G and B= @/R
is the completion of B, was established in [3]. If, in addition, the underlying space
of G is normal, then dim G = dim B + dim K (3, Theorem 4]. Thus our Theorems
1 and 2 complete the work begun in [3], and the condition "G is normal” is deleted
(obviously, a normal locally pseudocompact group is locally countably compact,
and closed subgroups inherits the latter property).
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In fact, Theorem 1 states a bit more: dim F' = ind F = Ind, F for each zero-set
F in B. An analogous equality does not hold even for closed subsets of pseudocom-
pact groups, for every Tychonoff space embeds as a closed subset into a suitable
pseudocompact group.

Theorem 2 implies that the dimension of a quotient space of a closed subgroup in
a locally pseudocompact group G does not exceed the dimension of G (Corollary 2).
A question of A.V.Arhangel’skii is answered by showing that any extremally discon-
nected quotient space of a closed subgroup in a pseudocompact group is necessarily
finite (Theorem 3).

In what follows all topological groups are assumed to be Hausdorff and spaces
to be Tychonoff. A subset Y of a space X is said to be Ry-dense in X provided
Y meets all non-empty Gs-subsets of X. It is important to mention that a dense
C-embedded subset Y of a space X is necessarily Ro-dense in X [8].

By FrxU we denote the boundary of a set U in a space X.

Let f: X - Y and g : X — Z be continuous mappings onto.The symbol f < ¢
means that there exists a continuous mapping 2 : Y — Z such that g : ho f.
Obviously < is a partial order relation on the family MAP(X) of all continuous
mappings with the domain X. Given a family F C MAP(X), we say that F is a
o-lattice for X if the following conditions are fulfilled:

(L1) for any f1, f2 € F there exists f € F such that f < f; and f < fz;

(L2) if f; € F and f;41 < f; for each i € N, then the diagonal product A2, f; of
fi’s belongs to F;

(L3) the diagonal product j = AF of all mappings belonging to F is a homeo-
morphism of X onto the subspace j(X) of Agerf(X).

Note that if F is a o-lattice for X, then F is Ro-directed by <, i.e., for every
countable subfamily Z C F there exists f* € F such that f* < f whenever f € Z.
We say that F has the factorization property provided the following holds:

(L4) for every continuous real-valued function g on X there exists f € F such
that f < g.

It is clear that if a o-lattice F for X has the factorization property and g : X — Z
is continuous, w(Z) < Ry, then one can find f € F with f < g.

The main results. Let K be a closed subgroup of a topological group G. We
denote by G and K the group completions of G and K respectively, K= cgK.
Identify G with the corresponding subgroup of @, and consider the natural quotxent
mappings p: G — G/ K andp: G- G / K. A simple verification shows that AG)
is a subspace of B = G/K which is homeomorphic to B = G/K. Therefore, we
may identify p and p|g. The following theorem is the main result of the paper.

Theorem 1. Let & be a zero-set in a quotient space G/K of a locally pseudocom-
pact group G Eith respect to a closed subgroup K. Then dim® =ind® =Indy ® =
dim @, where ® = clg®.

Remark 1. One can assume that group G under consideration is generated by a
pseudocompact neighborhood Vj of the identity. Indeed, let H be the subgroup of G
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generated by Vp. Then H is open in G and the quotient space G/K is a topological
sum of spaces, each of which is homeomorphic to a quotient space of H NaKa™?
in H for some a € G (see [12, Lemma 1]). From now to the end of the proof of
Theorem 1 this assumption is supposed to be fulfilled.

To prove Theorem 1 we need four auxiliary lemmas. In the sequel the above
notations are used without reservation. -

Lemma 1. Suppose that a space X has a o-lattice F consisting of apen mappings
onto second-countable spaces, Y is Ro-dense in X and ® is a zero-set in' Y. Then

(a) X is perfectly k-normal;

(b) Y is C-embedded in X;

(c) ® is perfectly k-normal;

(d) & is C-embedded in Y and in X;

(e) & =clx ® is a zero-subset of X;

(f) every zero-set in ® is a zero-set in Y.

PROOF : (a) Recall that a space is said to be perfectly k-normal provided the
closure of each open subset is a zero—set in this space. The space X has the Souslin
property by virtue of [2, Theorem 1]. (A slight modification must be done to trans-
form the proof of Theorem 1 of [2] to that of the above statement, for A.Blaszczyk
dealt with inverse spectra in [2]). Since F has properties (L1) and (L2), the sets
of the form f~}(U) constitute a base B of X, where f € F and U is open in f(X).
For a given open subset O of X one can find a countable subfamily ¥ C B so that
V = {7 is dense in O. Using the fact that F is Ro-directed by <, we can pick
f € F and an open subset U C f(X) so that V = f~!}(U). Since f is an open map-
ping, the equality c10 = c1V = f~1(c1U) holds. Obviously, c1U is a zero-subset
of the second-countable space f(X). Therefore c10 is a zero-subset of X, i.e., X
is perfectly k-normal.

(b) Being Ro-dense in X, the set Y is C-embedded in X by [13, Theorem 2].

(c) Since the space f(X) is second—countable for each f € F, an Ro-density of
Y in X implies that f(Y') = f(X). This equality enables us to conclude that the
restriction of every mapping f € F toY is open as well. Define F* = {f|y : f € F}.
Since Y is Ry-dense in X, F* is a o-lattice of open mappings for Y. Hence Theorem 1
of [15] implies that F* has the factorization property. Taking into account that
® is a zero-set in Y, we can find a continuous function ¢ : ¥ — R such that
® = g~1(0). There exists fo € F such that fo < g. Clearly ® = f;!fo(®). Put

s ={f € F*: f < fo}. Then F} is a o-lattice of open mappings for @ ; therefore
& is perfectly k-normal by (a).

(d) Let ¢ be a continuous real-valued function defined on ®. Since F3 has the
factorization property, there exist g € F3 and ¢ : g($) — R such that ¢ = - g. By
the definition of F§ one can find f € F* so that f < f; (see the above item (c)) and
g = fla. Then & = =1 (%), and this in turn implies that f(®) is closed in f(Y)
(we use the fact that f is open and hence quotient). Since f( Y) is second~-countable,
% extends to a continuous function ¥ : f(¥') — R. Obviously, ¢ - f is a continuous
function extending ¢ over Y, so & is C-embedded in Y. But Y is C-embedded in
X by (b), and so is ®.
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(e) Let fo € F* and ® = f; 7 fo(®). There exists f € F such that fo = fly.

The set F = fo(®) is closed in the second-countable space fo(Y) = f(X); hence
f)(F) is a zero-set in X. Now the Rj-density of ¥ in X implies the equality
f~YF)=clx®, ie., clx® is a zero-set in X.

(f) Assume that C is a zero-set in & and f is a continuous real-valued function
defined on @ such that C = f~1(0). Extend f to a continuous function f:YoR
and put h = |f| + |g|, where g : Y — R is a continuous function with ® = g~1(0).
Clearly, C = h~(0). n

Lemma 2. If X,Y,® and & are as in Lemma 1, then mdQ ind® and Indy & =
IndoQ Furthermore, if X is normal, then IndoQ Ind®.

PROOF : We begin with the equality Indo® = Indo 8. First, the inequality
Indg® S Indo & will be verified. Apply an induction on n = Ind, &. Assume
that &g “and ®, are disjoint zero—sets in ®. There exists a continuous real-valued
function f on @ such that ®; = f~!(i),i = 0,1. Extend f to a continuous function
g over X (use Lemma 1(d)) and define F; = ¢g~'(i),i = 0,1. Since Y is Ro-dense
in X, we have F; = clx®; for each i = 0,1. The equality Indg & = n implies that
t.here exist a zero-set C of ® with IndoC <Sn-1 and d:sjomt open sets Oy, Oy
of & such that F CO; (i =0,1) a.ndOoUO; —@\C Then C =CN&isa
zero—set in @ an, a fortiori, of Y, so € = dxC. The inductive hypothesis yields
IndoC<IndoC<n-—1 Furthermore, ®; C U; and & \ C = Uy U U,, where
U;=0in&,i=0,1. Consequently Indo® < n.

The reverse inequality Indg 3 < Indy @ will be proved by induction on n = Ind, &.
Let Fy and F} be disjoint zero-sets in &. Put &; = F;n®,i = 0,1. SinceIndy ® = n,
there exist a zero—set C in ® with Indg C £ n — 1 and open disjoint sets Uy, Uy of
& such that ®; CU; (i =0,1) and Uy U U, = @\ C. By Lemma 1(e), 6=cGC is
a zero—set in :I;, so the inductive hypothesis implies Indg ¢ < n— 1. Obviously, Uy
and U, are cozero—sets in ® (apply Lemma 7.2.12 of [6]), and hence one can find a
continuous real-valued function f on @ such that C = f~1(0), Up = f~*(R-) and

= f~}(R4), where R_ = {r e R:r < 0} and Ry = {r € R: r > 0}. Extend
f to a continuous function g over & (Lemma 1(d)) and define Vo = ¢g7'(R-),
Vi=g l(l'i.q.) The Ro-density of Y in X implies that € = g1(0). It is clear
that Q\C’ VoUVl and F; C V; (i = 0,1), 80 Indg @ < n. Thus, the equality
Indg & = Indy & is proved.

The proof of the equality ind® = ind ® is almost identical to that just carried
out. We should mention only that one can use the following easy observation. If
U is an open subset of ®, then the set Uy = InteclaU satisfies the conditions
U C Up and FraUy © FI'QU (so ind FreUp £ ind FrgU). Moreover, FraU, =
claUp Ncla(® \ clelp) is a zero-set in & and in Y (Lemma 1(c)).The same is true
for open subsets of &.

Let X be normal. Since each zero-subset of X is perfectly k-normal (apply
Lemma 1(c) with Y = X)), the space X is hereditarily perfectly k-normal in the
sense of V.V.Fedortuk [7]. Now, Indy & = Ind @ follows from (7, Proposition 1]. ®
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Let P be the family of all normal closed subgroups of G, which have the type
G; in G and are contained in the compact neighborhood cl5Vy of the identity. The
following lemma has well-known spectral analogues [11,12].

Lemma 3. The quotient space 6/I? has a o-lattice M consisting of open mappings
onto second-countable spaces.

PROOF : By Remark 1, the locally compact group Gis generated by compact set
clzVo; hence G has Souslin property [14, Corollary 2] For every N € P let AN be
the quotient mapping of Gonto G / RN. The group KN is closed in G consequently
there exists a natural mapping ¥ : 6/1? — 6/1? N such that Ay = iy o p. The
loca.l compactness and the Souslin property of G together imply that the family
M= {@Wn : N € P} is as required. n

By Theorem 6 in [2], the space B = G/K is C*-embedded in B, i.e., 8B = §B.
Using local pseudocompactness of B, we can conclude that B is C-embedded in B.
Consequently, Bisa subspace of the Hewitt realcompactification vB of B; hence B
is Ro-dense in B [8). For each N € Plet wy = dnjpand M = {wy : N € P}. Then
the o-lattice M for B has the factorization property (see Lemma 3 and Theorem 1
in [15]).

Lemma 4. Suppose there erists a zero-set ® in B which has a finste dimension
(in the sense of dim, ind or Indy). Then one can find N € P so that ind (N) =

PROOF : Since M has the factorization property, there exist Ny € P and a closed
subset F' of wn,(B) such that @ = w,'v: (F). All fibers of the mapping wo = wp,
are homeomorphic to the set P = {No) N B. Hence wy’(z) & P C & for each
z € F. The fact that & is C-embedded in & = cl5® (Lemmas 3 and 1(d)) implies
dim® = dim ® and Lemma 2 yields Indo & = Indy & = Ind 8. Here Theorem 7.1.8
of [6] and the normality of B are used.

Assume that dim® < oco. Since B is normal and H{No) C &, the inequality
dimH(No) < dim® holds [6, Theorem 7.1.8]. Clearly H(Ny) is homeomorphic to
the quotient space K No / R of a closed subgroup K in locally compact group K Ny;
hence there exists a compact normal subgroup R of type G5 in KNy such that
R C Ny and ii(R) is zero-dimensional [12, Theorem 1. Let x be the quotient
mapping of G onto G/No The obvious equality RNy = x~ 1x(K) implies that
RNy is a closed G;-subgroup of G (note that 7 is a perfect mapping onto second-
countable space G/No) Therefore R is of type Gs in G. There exists N € P such
that N C No N R. 1t is clear that B{N) C H(R); hence dimp(N) = 0.

Now assume that ind ® < co. One can find N* € P so that ind (B(N*) N B) =
Indeed, if ind® = 0, then the inequality ind P £ ind ® (see [6, Theorem 7.1.1])
implies the above assertion. Otherwise we can apply induction on ind @ together
with Lemmas 3 and 1(c). It remains to show that 1fN € P, P=pN)NB and
xndP = 0, then ind {N) = 0. Obviously P = wy /\N(e), where e is the identity
of G. Consequently, P is a zero-set in B and P is C-embedded in P = H{(N) by
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Lemma 1(d). Let B be a base of P at the point p(e) consisting of clopen subsets
of P. Then the closures in P of elements of B are also clopen and constitute a base
of Pat p(e) Hence ind (p(e), P) 0. However, being a quotient space of the group
RN, Pis homogeneous. Thus, ind P = 0.

The case Indg® < oo is trivial: an easy induction with the help of Lemmas
1 and 3 gives the inequality ind® < Indy ® and the fact just proved implies an
existence of N € P as required. ]

PROOF of Theorem 1: By Lemma 3, the space B = G/K has a o-lattice of open
mappinge onto second-countable spaces. Therefore Lemmas 2 and 1 together imply
the equalities ind ® = ind® a.nd Indo @ Ind, & for each zero—set & i in B, where

= cl5®. The quotient space B=G / K is normal because the group Gis 1ocally
compa.ct (see [12]) Hence Lemma 2 implies Indg & = Ind ®. Since & is dense and
C-embedded in & (Lemma 1(b)), Corollary 7.1.18 in [6] implies that dim & = dim &.
It rema.ms to note that & is a zero-set in B (Lemma 1(e)), and to apply the equality
dim® = ind® = Ind &, which be proved below (informally, it is contained in [12]).

Assume that one of the numbers dim 3, ind & is finite. Since dim® = dim & and
ind® = ind 3, Lemma 4 implies that there exists a closed normal subgroup N* € P
of G such that indp(N*) = 0, where p : G- G/K is the quotient mapping. One
can assume that G is a projective-Lie group in the sense of 9], because every
locally compact group contains an open projective-Lie subgroup (see [16]). By
Theorem 1 of [12] the space B = G/K is the limit of a well-ordered spectrum
S = {ﬁ,,,(pp,,, : @ < B < r}, where mappings ¢g.'s are open and “onto”, a
mMapping @q41,q is a locally trivial fibering with a fiber M1, a compact manifold
(a < 7), and By is a second—countable manifold. An existence of an N* € P with
ind (N*) = 0 implies that the spectrum S can be chosen so that all fibers Ma41's
are zero—dimensional, 1 e., ﬁmte The proof of Theorem 2 of [12] implies that the
limit projection ¢y : B Byi is a locally trivial fibering with fibers homeomorphic
to the Cantor cube D". Since 8 is a zero—set in B, the same is true for $o = 1(<I>)

_in G. Consequently there exists Ny € P such that No C N* and & = 7, wo((I’o),

where 7 : G- G'/No One can start a ”decomposition of B into the specttum S”
with quotient space Bo = G/NoK Then the limit projection ¢y : G/K — G/NoK
has the property 3= Po gpo((b) Thus, the restriction of g to Bisa locally
trivial fibering over a locally compact second—countable space F = <po(¢>) with
fibers homeomorphic to D”. Now the equality dim® = ind® = Ind ® follows from
Lemma 6 of [12]. [ ]

Corollary 1. dimG = indG = IndoG = dxm@' for each locally pseudocompact
group G. '

Remark 2. The conclusion of Corollary 1 cannot be extended to all closed subsets
of G even if G is pseudocompact. Indeed, every Tychonoff space embeds in a pseu-

docompact topological group as a closed subspace. It is also useful to remember that
every precompact group embeds into a pseudocompact group as a closed subgroup
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(apply the construction given in the proof of Theorem 2.4 of [5]). Consequently,
a closed subgroup of a pseudocompact group need not be pseudocompact.

Theorem 2. Let K be a closed subgroup of a locally pseudocompact group G. Then
dimG = dim K + dim G/ K, where K is the completion of the group K.

Proor : The cgmpletioa G of thf group G is locally compact, whence follows
the equality dim G = dim K + dim G/K (see [10,17]). Theorem 1 and Corollary 1
together imply dim G = dim G and dim G/K = dimG/K, so we are done. ]

Corollary 2. The dimension of a quotient space of a locally pseudocompact group
G does not exceed the dimension of G. Furthermore, if K,H are closed subgroups
of G and K C H, then dimG/H £ dimG/K.

Corollary 3. A gquotient space of a zero-dimensional pseudocompact group is zero-
dimensional.

Let K be a closed subgroup of a pseudocompact group G. By Theorem 6 in [3]
the Cech-Stone compactification of the quotient space G/K is homeomorphic to
the quotient homogeneous space G/K, where G and K are the completions of G

and K resp., K = clzK. On the other hand, no infinite extremally disconnected
compact space is homogeneous (see [1] or [4,p.69]). Since extremal disconnectedness
is preserved when passing to the Cech-Stone compactification, we have proved the
following.

Theorem 3. An eztremally disconnected quotient space of a pseudocompact group
is finite.

The author wishes to thank Professor A.V.Arhangel’skii for putting questions
and helpful comments. ’
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