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Dugimdji spaces and topological groups 

D M I T R I I B. SHAKHMATOV 

Dedicated t o t h e m e m o r y of Zdeněk Frolík 

Abstract We give new characterization of Dugundji compact spaces and K-metrizable com­
pact spaces in terms of special embeddings into topological groups. As a consequence we 
obtain that a compact retract of a dense subspace of some topological group is Dugundji. 

Keywords: Dugundji space, «;-metrizable space, compact space, topological group, embed­
ding, retraction, extension of open sets, set-valued mapping, normal functor, probability 
measure 

Classification: primary 54D30, 54C25, 22A05; secondary 54C15, 54C20, 54C60, 22A10 

1. I n t r o d u c t i o n . Let X be a subspace of Y. A topological space Z is said to 
be injective with respect to the pair (X, Y) iff every continuous map / : X —• Z 
has a continuous extension / ' : Y —• Z. For a compact space X the following 
are equivalent [5]: (i) if Y is a zerodimensional compact space and Z is closed in 
y , then X is injective with respect to the pair (z , y ) ; (ii) if X is a subspace of a 
compact space Y, then every compact convex subset of a locally convex topological 
vector space is injective with respect to the pair ( X , y ) . A compact space X is 
called Dugundji [9] if one of these conditions holds. 

Pelczyriski [9], Scepin [10], Shirokov [14] and Dranishnikov [2] found different 
characterizations of Dugundji spaces in terms of special embeddings into the "canon­
ical" Dugundji space, the TychonofF cube Ir. The aim of this paper is to demon­
strate that in all these characterizations, Ir can be replaced by a topological group. 

Scepin [11], [12] introduced the notion of /c-metrizable spaces and showed that 
Dugundji spaces are /c-metrizable [12, Corollary 1]. Shirokov [14] gave a character­
ization of /c-metrizable compact spaces via special embeddings into the TychonofF 
cube Ir. In Section 4 we show that in Shikorov's characterization V can also be 
replaced by a topological group. 

2. Notat ions, terminology and preliminaries. All topological spaces and 
groups considered are assumed to be TychonofF, and aU maps are assumed to be 
continuous if the converse is not stated explicitly. The bar denotes the topological 
closure. If X is a topological space, then T(X) stands for denoting the topology 
of X . Symbol t*y(X) and nw(X) denote the weight and the network weight of a 
space X respectively [3]. If for each a £ A a, map /<*•' K — • Xa is fixed, then the 
map / = A{fa : a € A}: X — • II{X0 : a € A} defined by f(x) = {fa(x)}aeA for 
x 6 X is called the diagonal product of the family {fa : a € A}. 
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2.1. Scepin 's t heorem [10]. A compact space X is Dugundji if and only if there 
exist a family {Xa : a £ A} of compact metric spaces and a map fa : X —• Xa 

for each a £ A so that: 

(i) the diagonal product f = A { / a : a £ A}: X —• II{K0 : a £ A} is homeo-
morphic embedding, and 

(ii) for each subset B C A, the diagonal subproduct fs = A { / a : a £ B}: 
X —• / s ( K ) C H{Xa: a € B} is an open map onto its image. 

2.2. Definition. Let X be a subspace of Y. A map e: T(X) —• T(Y) is regular 
provided that: 

(i) e(U) HX = U whenever U £ T (X) , 
(ii) if £/, V € T(X) and U n V = 0, then e(U) f) e(V) = 0, 

(hi) e(X) = Y. 

This concept was considered first (without being named) by Kuratowski [7] and 
van Douwen [1]. Lately the name was given by Shirokov [14]. Our next definition 
is due to Shirokov [14]. 

2.3. Definition. Let X be a subspace of Y. A map e: T(X) —• T(Y) is d-regular 
provided that: 

(i) e(U) n X = U for each U € T (X) , 
(ii) e(U n V) = e(U) H e( V) whenever (7, V 6 T(K ) , 

( i i i )e(K) = K. 

It is clear that each d-regular map is regular. 

2.4. Definition. Let X be a subspace of Y. A map e: T(X) —• T(Y) preserves 
inclusions (or is inclusion-preserving) iff e(U) C e(V) provided that (7, V € T(X) 
and 17 C V. 

2.5. Lemma. Suppose that X is a subspace ofY and e: T(X) —• T(Y) is a reg­
ular map. Define e': T(X) —• T(Y) by e'(U) = U{e(V): V € T(X) and V C U} 
for U £ T(X). Then e' is regular and preserves inclusions. If e is d-regular then 
so is e'. 

For a topological group G we fix Af(G) for denoting the family of all normal 
subgroups of G and define M(G) = {N € Af(G): nw(G/N) < u}. For each 
N £ N((?) the natural quotient map of G onto G/N will be denoted by TCN- If 
N,N' € M(G) and N' C N, then there exists the map * # ' : G/N1 —• G/N such 
t h a t 7CN = 7Tjj O 7TJV'. 

2.8. Lemma [15, Lemma 2]. Suppose that G is a a-compact group. Then: 

(i) for every G^-subset B of G there exists an N € N(G) so that 
B -ss flrjj1 (*•#(£)) (in particular, S u a Gs-subsct ofG), 

(ii) if £C M(G) is so that for any N 6 M(G) there exists an N £ S, N C N, 
then the diagonal map we - A{wN: N £ B}:G —• II{^/N : N £ B} is a 
homeomorphic embedding. 

(iii) if {N,-: j £ a?) C M(G), then N = n{Nj :j£u>}£ M(G). 
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2.7. L e m m a . Let G be a topological group, X its compact subspace which alge­
braically generates G. If B is a Gs-subset of G with X C B C G, then there exists 
a closed Gs-subset B' of G so that X C B' C B. 

PROOF : Since X algebraically generates G, G is a-compact and hence normal. 
K B = n{0*: * G u>}, then by induction we can choose, using normality of G, a 
sequence {VJ: i G u>} of open subsets of G so that X C V{ C VJ C Ui 0 Vi~i for all 
i € u). Then B1 = n{VJ: i G (*>} is as required. • 

We fix symbols F(X) and A(X) for denoting the free topological group and the 
free Abelian topological group of a space X respectively [8], [4]. 

3 . Technical lemmas. 

3 .1 . Notations and conventions. Throughout this section we fix a topological 
group G and its compact subspace X that algebraically generates G. It is clear that 
G is er-compact. furthermore, we fix a closed set B with X C B C G, a regular 
map e: T(X) —• T(B) preserving inclusions and an N* € M(G) such that B = 
* N . ( * N * ( - B ) ) . LetN*(G) = {N € M(G): N C N*} andM*(G) = M*(G)f)M(G). 
For N G N*(G) define XN = *rjv(K), -BN = TTN(B), <pN = nN \x' X —• XN 
and VN = *JV | B: B —• £ * . If N,N' G N*(G) and N' C N, then we set 
¥ # = < \xN,: * * ' — XN and ^jjf = < | B J V , : BN, — B N . 

3.2. Lemma. For each N G M*(G) the map t/>n w open. I/N,N' G .Al**(G) an i 
N' C N, t&en t/ie map /̂>$ is open too. 

P R O O F : Since N G N"*(G), £ = Trjy1 (*-#(£)), and so ipN is open as restriction 
of the open map 7rjv to the full preimage. Furthermore, for N, N' G Af*(G) with 
N' C N we have ^JV = *I>N o tj)N>. Since ipN is open, we conclude that \j>$ is also 
open. • 

3 .3 . L e m m a . The set BN is closed in G/N for each N G N*(G). 

P R O O F : Since N C N*, B = ^ ^ ( B J V ) . Since 7rjv is quotient and B is closed, BN 

is closed. • 

3.4. Definition. For N G Af*(G) we say that a set P G B is N-cylindrical 
provided that P = ^I>N

1(^N(P)) (note that P C B and ^iv(P) C BN by the lemma 
above). 

3.5. Lemma. I/N,N* G JV*(G), N' C N and P is N-cylindrical, then P is also 
N'-cylindrical. 

P R O O F : By Lemma 3.2 the map i/fN is open, so the result follows from the 
equality %I>N = $$ o $&. • 

3.6. Lemma. If both sets P,Q C B are N-cylindrical for some N G Af*(G), then 
so isPHQ. 

3.7. Lemma. If N G Af*(G) and sets U, V G T(B) are N-cylindrical, then 
t/>N(U) n tl>N(V) = 0 is equivalent to U C\ V = 0. 
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PROOF : Suppose that *I>N(U) n ^N(V) = W ^ 0. Since i/>N is open, W is open, 
and hence so is il>N

l(W). Since U and V are N-cylindrical, ^N
l(W) C ^N

X(W) C 
4>Nl(*I>N(U) n ^ N ( V ) ) = U n F . Since ^ ( W ) is open, we have U f) V ^ 0. • 

3.8. Definition. We will say that a subgroup N € M*(G) is e-admissible if there 
exists a base HINT of the space XN such that: 

(i) for all U € BN the set e(^*((7)) is N-cylindrical, 
(ii) XN n IPN^NHU))) C U for each U € BJV. 

3.9. Lemma. If N € JV*(G) w e-aaVnujiWe, *&en K/v n t/>N(e((7)) C <PN(U) for 
all U € T(X). 

PROOF : Suppose the contrary, and let U € T(X), x € e(U), i/>N(x) € XN\<PN(U). 
Since X is compact and U C K, U is compact. Thus <PN(U) is closed in K^. Since 
Bjv is a base of Kjv, there exists a W € B;v with I/>N(X) € W and W n <PN(U) = 0. 
In particular, 

(l) un<p]*(W) = 9. 

Observe that t/>N(x) € W C ^N(e(<pN
l(W))). Since W 6 BN, it follows that 

e(y>N
l(W)) is N-cylindrical by Definition 3.8(i). So a: € e(ipN

1(W)). Now x 6 El(e) 
implies that e(U) C\ tfajfiW)) ^ 0, a contradiction with (1) and the regularity of 
the map e. • 

3.10. Lemma. If N € M*(G) is e-admissible, then <pN is an open map. 

PROOF : Assume that V € T(X) and y € <PN(V). Fix an x G V with <pN(x) = y. 
Choose an 17 € T(K) so that x £ U C V. The set W = ipN(e(U)) is_open in B^ 
(Lemma 3.2), and the previous lemma yields y € KN n W C <PN(U) C <PN(V). 
Therefore <PN(V) € T(XN). • 

3.11. Lemma. Assume that N,N' € Af*(G), N' C N and N is e-admissible. 
Then the map <pN : XNt —• XN is open. 

PROOF : Since <pN = <pN o tpNi and <pN is open (Lemma 3.10), we conclude that 
<pN is open. • 

3.12. Lemma. If N € Af*(G) is e-admissible, then there exists a regular map 
eN:T(XN)—+T(BN) 

PROOF : For every U € BN define W\j = VwWv'NW)) € T ( B N ) . Since Bjy 
is a base of XN, from Definition 3.8(ii) it follows that {XN n TVt/: r/ € BN} is 
also a base of XN. Therefore, for every O € T(XN) we would have eN(0) = 
U{WV: £/ 6 B/v, KN n Wv C 0} € T(B/sr) and XN n eN(0) = O. From Definition 
3.8(i) and Lemma 3.7 it follows that Wv n Wv = 0 whenever 17, V 6 BN and 
U n V = 0. So Oi ,0 2 € T(X/v) and Oi n 0 2 = 0 imply eN(Oi)(\ eN(02) = 0> i.e. 
eN: T(XN) —• T(BN) is regular. • 
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3.13. Lemma. For every N € M*(G) there exists a e-admissible N € M*(G) so 
that N C N and w(X%) < w(XN). 

PROOF : Let w(XN) = r. By induction we will define a decreasing sequence 
{Njb: k £ w} C Af*(G) and a sequence {Bjb: k € u>} such that for every k 6 u> the 
following properties will be satisfied: 

(ljb) Bjb is a base of XNk with |Bjb| < r, 

(2jb) if U € Bjb, then both sets e(<pN\(U)) and e(X \ <pN\(U)) are N-cylindrical. 
Define No = N and choose any base Bo of XN of size r (it is possible because 

w(XN) = r) . Now we assume that Ni and Bt- have already been defined for i < k 
so that ( l i ) , . . . , (ljb) and (2i), . . . , (2jb_i) hold. Let us define Njb+i and Bjb+i 
satisfying (ljb+i) and (2jb). Set 

7k = {e(9N\(U)):U€Bk}U{e(X\^Nl(U)):UeBk}. 

% (*k), |7Jb| < |Bjb| < r. Each W € 7Jb is open in the Gs-set B, so W is a 
Gj-subset of G. Therefore there exists an Nw € M*(G) so that W is N-­
cylindrical (Lemma 2.6(i)). Define ek = {Nw: W € 7Jb} U {Njb} and Njb+i = nek. 
Clearly, Njb+i € M*(G) and Njb+! C Njb. Let jjb = A{tpN: N € ek}: B —• 
H{Biv: N € £*} be the diagonal product. There exists the natural one-to-one 
map ik: BNk+l —• jk(B) s o that j k = t* o i/>Nk+l. Since KNfc+1 is compact, the 
restriction of t* to XNk+l is a homeomorphism, and so Xjvfc+1 is homeomorphic 
to jk(X). For each W E yk the set XNw is a compact subspace of BNw and 
Nw € M*(G), so w(XNw) = nw(XNw) < nw(BNw) < nw(G/Nw) < u. Since 
h(X) C Y[{XNw :W €jk}x XNh, |7jb| < r and w(XNk) < r , we conclude that 
w(XNk+t) = w(jk(X)) < r. Now it suffices to choose any base Bjb+i of XNk+l 

with |Bjb+i| < r . Then (ljb+i) is trivial, and (2jb) follows from Lemma 3.5 and the 
inclusion Njb+i C Nw which holds for each W € yk. 

Define N =* n{Njb: k € w}. Then N C No = N and N.€ Af*(G). For each k € u> 

let /i* = {(<p%k)~
l(U): U e Bjb}. Let B# = \J{ftk: k € w}. 

3.14. Cla im. B^ is a base of X%. 

PROOF : Using compactness of X, one can easily see that Xfj is homeomorphic 

to the limit of the inverse spectrum S = {XNk, <pN^, fc, m € u>, m > fc} whose limit 

projections coincide with <pNh: X~ —• XNk, and the result follows. • 

Claim 3.14 and (lfc) for all k € <*> yield w(X~) < \B%\ < r = w(XN). Thus it 

remains only to show that N is e-admissible. 

3.15. C laim. For all W € B# Mfc sets e(<pZ}(W)) and e(X \ <pZ\W)) are 

N'Cylindrical. 

P R O O F : Each W € B# is of the form W = (<*>$„ )•"*(£/) for some ib € w and 
C7€Bjfc. By(2jb)sets 

*Wfc(tf)) = e(<p~J((<pirHU))) = e(^(Hr)) 
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and 
e(X\<pN

i
i(U) = e(X\rs

1(W)) 

are N*+i-cylindrical. Since N C N*+i, the same sets are also N-cylindrical by 
Lemma 3.5. • 

Let us show that N is e-admissible and that B^ witnesses this. Item (i) of 
Definition 3.8 follows from Claim 3.15. To check (ii) fix an U £ B^. Since e is 
regular, Claim 3.15 and Lemma 3.7 yield that 

(2) V>íf (e(v~(t>))) n *S(e(X \ <p~J(U))) = I 

Since e preserves inclusions, Xjx \U C %^^(e(X \ip~(U))), and from (2) we obtain 

th*txsnj,s(e(9-J(U)))cU. " • 
3.16. Lemma. Let {Na: a < T} C Af*(G) be decreasing chain of e-admissible 
subgroups of G. Then N = fl{Na: « < T} € N*(G) is also e-admissible. 

PROOF : For all a < r fix a base BNa of XNa witnessing that Na is e-admissible. 
Since XN is compact, it is homeomorphic to the limit of the natural inverse spectrum 
S = {XNm,<p%'a < fi < r} , so BN = {(^^(U): « < T,U £ BNJ is a base 
of XN. We wifl show that BN witnesses that N is e-admissible. Pick a W £ BN. 
Then W = (v?jv«)~1(^) for some a < r and U £ BNa. Since BNa witnesses that 
XNa is e-admis8ible,the set 

<*?(*)) = <VN1((VN.)-lm)) = tto„\(U)) 

is Na-cylindrical, and so it is also N-cylindrical because N C Na (Lemma 3.5). 
J\irthermore, applying item (ii) of Definition 3.8 to XNa and BNa we obtain 

Xs nrl>N(e(V-N\W))) = XNn ->w(eto£(l7))) C 

xN n &%mr1(+Hm(<vs\Vn))) cxNn Mj-^u) = (^.r'tfO = w. 

Observe that the last equality holds because <pNt)t is open by Lemma 3.11. • 

3.17. Lemma. Let {Na: a € A} C M*(G) be a family consisting of e-admissible 
subgroups of G. If we additionally assume that the map e: T(X) —• T(B) is 
d-regular, then N = n{N<*: <* £ A} £ Af*(G) would be e-admissible too. 

PROOF : For any a € A fix base BNa of XNa in accordance with Definition 3.8, 
and define 7« - {(<dlm)~l(V)'- U € BNJ. Let 

BN « {Vat n • • • n Vak: at,..., a * £ -4, Vai € 7<*., * = 1, . . . , fc, k £ u>}. 

Since XN is compact, BN is a base of XN. We will show that BN witnesses that 
N is e-admissible. Pick an U € BN. Choose k £ u>, au..., a* € A and V0. 6 7m, 
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t = l,...,jfcsuchthat W = Vaxn ...nV0fc. For every t < k fix an Uai € BNm. with 

Wat=(9%mt)-
l<P*i)-

(i) By Definition 3.8(i) each set efo>j£ (0*,)) = e((pN
l(Vat)) is N„.-cylindrical, 

and so it is also N-cylindrical because N C Nai (Lemma 3.5). Now Lemma 3.6 
yields that the set 

<<PN1(VI )) n • • • n €toal(Vak)) = e(rN
l(Va%) n • • • n ^(V**))» 

eW(Vttl n • • • n V„j) = W(**0) 
is N-cylindrical too. (In the first equality we applied our assumption that e is 
d-regular.) 

(ii) Fix an t < k. Since BNm. witnesses that XNa. is e-admissible, XNa, n 
^ W V N I , (#*))) C I!*, by Definition 3.8(ii) appHed to XNai and BN<Ki. There­
fore, 

KN n Me(v>Nit.(tfa,)X) c Kiv n ( ^ r H ^ N . ^ ^ ^ ^ - . ) ) ) ) c 

(The last equality holds, since y>jja. is open by Lemma 3.11.) Now d-regularity of 
e yields 

xN n *N(<<PN1(W))) = XN n ̂ ( W ^ ) n • • • n ̂ (V**))) = 
xN n *N«VN W.J) n • • • n e(^(V«J)) c 
(X/sr n il>N(e(<pN

lJuai)))) n • •. n (XN n V>*(e(^(tf«J))) c 
Va1n. . .nF0 4=vo tn-nvQ f c =W\ • 

4. K-metrizable compact spaces and extending of open sets, /c-metrizable 
spaces were defined by Scepin [11], [12]. Each Dugundji space is K-metrizable, but 
not vice versa [12]. Shirokov [14] proved that a compact space X is /c-metrizable 
if and only if for some (equivalently, for any) embedding of X into the Tychonoff 
cube Ir there exists a regular m*p e: T(X) —• T(Ir). It turns out that in this 
characterization V can be replaced by a topological group. 

4.1. Theorem. For any compact space X the following are equivalent: 
(i) X is K-mctrizablc, 
(ii) there exist a topological group G which contains X as a subspace and a regular 

mape:T(X)—+T(G), 
(Hi) there exisU a regular map e: T(X) —• T(F(X)), 
(iv) there exisU a regular map e: T(X) —• T(A(X))f 

(v) for any embedding of X into a topological group G there exisU a regular map 
etT(X)—>T(G), 

(vi) there exist a topological group G, iU Gs-subset B containing X as a subspace 
and a regular map e: T(X) —• T(B). 
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PROOF : (i) ==> (v). Assume that X is a subspace of a topological group G. By 
the Tychonoff embedding theorem, G «-* Ir for some cardinal r. By Shirokov's 
theorem [14] there is a regular map e': T(X) —• T(Ir). Then e: T(X) —• T(G) 
definefd by e(U) = e'(U) D G for U € T(X) is a regular map. 

(v) ==> (iv) is trivial. 

(iv) = > (iii) Let g: F(X) —• A(X) be the continuous homomorphism extending 
the identity map of X and e': T(X) —• T(A(X)) be a regular map. Then the map 
e : T(X) —• T(F(X)) defined by e(U) = g~l(e'(U)) for U £ T(X) is regular. 

(iii) ==-> (ii) and (ii) = > (vi) are trivial. 

Now let us check the implication (vi) = > (i) using transfinite induction on the 
weight of X. II w(X) = u>, then X is metrizable and so /c-metrizable. Suppose 
that T > UJ and that the implication (vi) = > (i) have been checked for any compact 
space X of weight < r. Fix a compact subspace X of a G$-subset J? of a topological 
group G so that w(X) = r, and a regular map e: T(X) —• T(B). Without loss of 
generahty we may assume that X algebraically generates G, so G is cr-compaet. In 
view of Lemma 2.7 we can suppose that B is closed. By Lemma 2.6(i) there is an 
N* € M(G) so that B = Wffl(wN*(B)). Moreover, by Lemma 2.5 the map e can 
be chosen to be inclusion-preserving. Now aU assumptions of 3.1 are satisfied, and 
in what foUows notations from 3.1 will be used. Since X algebraicaUy generates G, 
nw(G) < nw(X) < w(X) = r, so one can fix a family {Ua: a < r} C T(G) with 
{e<j} = C\{Ua: a < r } , where ea is the neutral element of G. By Lemma 2.6(H), 
for every a < r there exists an Ha € M(G) with HacUa. 

By transfinite recursion for each a < r we wiU choose an Na € Af*(G) such that: 

(a) Na C Ha for aU a < r, 
(b) w(XNa) < \a\ - w < T for every a < r, 
(c) No is e-admissible for aU a < r, 
(d) Np C N« provided that a<& <T. 

To start with, use Lemma 2.6(ii),(iii) to find e-admissible N0 € M*(G) so that 
"* No C Ho n N* and w(XNo) < W(XH0C\N*) = o> < r. If {Ntt: a < £ } C 

N*(G) satisfying (a) - (d) have already been defined, then let Np € M*(G) be the 
e-admissible subgroup of G such that Np C Hp = Hp f\ fKNo- <* < P} ^ 
*>(XNfi) < w(X%p) < \0\ • sup {^ (X N J: a < 0} + w(XH$) < \P\ • * < r* (this 
subgroup exists in view of Lemma 3.13). Since f){Na: a < r} C C\{Ha: a<T} = 
{e^}, X is homeomorphic to the Hmit of continuous weU-ordered transfinite spec­
trum S ss {XNm,<pN

fi
nia < p < T}. By (c) and Lemma 3.12, for each a < r there 

exists a regular map ejva: T(XNa) —• T(BNa). Since N« € N*, B = *>*(£#„), 
and so BNa is a G^-subset of the topological group G/Na. Since u>(X;0 < r 
by (b), our inductive assumption yields that each XNa is K-metrizable, and hence, 
by [12, Lattice theorem], XNa is openly generated in the terminology of Scepin 
[10, Definition 4]. From (c) and Lemma 3.10 it follows that all limit projections 
(fiNa: X -—* XNa of the spectrum S are open, so X is openly generated by [10, 
Theorem 16]. Therefore, X is /c-metrizable by Ivanov's theorem [0]. • 
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5. Dugundji spaces and extending of open sets. Shirokov [14] showed 
that a compact space X is Dugundji if and only if for some (or equivalently, for 
any) embedding of X into the TVchonoff cube Ir there exists a d-regular map 
e: T(X) —• T(Ir). Our next result shows that in this characterization Ir can be 
replaced by a topological group. 

5.1. Theorem. For every compact space X the following conditions are equivalent: 
(i) X is a Dugundji space, 
(ii) there exist a topological group G which contains X as a subspace and a 

d-regular map e: T(X) —• T(G), 
(iii) there exists a d-regular map e: T(X) —• T(F(X)), 
(iv) there exists a d-regular map e: T(X) —• T(A(X)), 
(v) for every embedding of X into a topological group G there is a d-regular map 

e:T{X)—*T{G), 
(vi) there exist a topological group G, its G&-subset B that contains X as a sub-

space and a d-regular map e: T(X) —• T(B). 

PROOF : All implications except (vi) = > (i) can be proved in the same way as in 
the proof of Theorem 4.1. Let us verify (vi) -=-=> (i). As in the proof of Theorem 4.1 
we will assume that G is o*-compact, B is closed, B = n^l(.r;v*(B)) for some N* 
from -M(G), and e preserves inclusions. Let -4 = {N € M*(G): N is e-admissible}. 
The diagonal map <p = &{(pN'. N £ A}: X —• n(-^N : N € -4} is, by Lemmas 
3.13 and 2.6(h), a homeomorphic embedding of X into the product of compact 
metric spaces. Lemma 3,17 yields that for every C C A the set f)C € M*(G) is 
e-admissible, and so A{<p#: N € C} is an open map (Lemma 3.10). By Theo­
rem 2.1, X is Dugundji. • 

5.2. Corollary. Assume that X is a compact subspace of a topological group G, 
B is a G$ -subset of G, and there exists a sequence X = Xo C X\ C • • • C Xn = B 
so that for all i < n, Xi is either a retract or a dense subset of X%+\. Then X is 
Dugundji. 

PROOF : If r : Z —• Y is a retraction, then the map e: T(Y) —• T(Z) defined 
by e(U) = r~~l(U) for U € T(Y) is d-regular. Similarly, if Y is a dense subspace of 
z, then the map e: T(Y) —• T(Z) defined by e(U) = IJ{V € T(Z): V 0 Y C U} 
for U € T(Y) is d-regular. Therefore, under assumption of our lemma there exists 
a d-regular map e: T(X) —• T(£), and the result follows from Theorem 5.1. • 

5.3. Corollary. If a compact space X is a retract of a dense subspace of some 
topological group, then X is Dugundji. 

6. Dugundji spaces as set-valued retracts of topological groups. Let X 
be a subspace of Y. A set-valued map r: Y —• X which sends each point y € Y 
to a subset r(y) of X is said to be a set-valued retraction iff r(x) = {x} for each 
x € X. A set-valued retraction r: Y —• X is upper semicontinuous (briefly, u.s. 
retraction) iff ^(U) = {y G Y: r(y) C U} € T(Y) for any U € T(X). 

Dranishnikov [2] characterized Dugundji spaces as compact u.s. retracts of the 
Tychonoff cube Ir. In this characterization Ir can also be replaced by a topological 
group. 
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6.1. Theorem. For each compact space X these are equivalent: 
.(i) X is Dugundji, 
(u) there exisU a u.s. retraction r: G —• X of some topological group G onto X, 
(in) there exisU a u.s. retraction r: F(X) —* X, 
(iv) there exisU a u.s. retraction r : A(X) —• Xt 

(v) X is a u.s. retract of every topological group G that contains X as a subspace, 
(vi) there exist a topological group G, iU Gs-subset B and a u.s. retraction 

r:B—>X. 

PROOF : Combine Theorem 5.1 and the following lemma which was implicitly 
proved (but not stated explicitly) in [17]. • 

6.2. Lemma. Let X be a compact subspace of Y. 
(i)Ifr:Y —• X is a u.s. retraction, then the map e: T(X) —• T(Y) so that 

e(U) = r^(U) for U € T(X), is d-rcgular. 
(ii) If e±T(X) —• T(Y) is a d-regular map, then r:Y —• X defined by r(y) = 

f]{U: U € T(X),y € e(U)} is a u.s. retraction. 

Observe that the retraction r from items (iii)-(v) of Theorem 6.1 cannot be chosen 
to be single-valued as the following result shows. 

6.3. Corollary. For n ^ {0,1,3,7} the n-dimensional sphere Sn is not a (single-
valued) retract of a topological group, but Sn is a u.s. (set-valued) retract of any 
topological group G which contains S* as a subspace. 

The first part of this corollary is due to Uspenskii [16, Proposition 16], and the 
second part follows from Theorem 6.1. 

7. Dugundji spaces as compact P-valued retracts of topological groups. 
Let Comp denotes the category of compact spaces and their (continuous) maps. Let 
f: Comp —• Comp be arbitrary normal functor [10, Definition 14]. Recall that 
for each compact space X there is a homeomorphic embedding ix - X —• T(X), 
[10, Proposition 3.10]. If X is a compact subspace of Y, then a map r: Y —• F(X) 
is said to be an P-valued retraction of Y onto X provided that r |x= %x> 

Let C(X) be the Banach space of all real-valued continuous functions defined on a 
compact space X with the norm ||/|| =- sup |/(x)|, and let (C(X))* be the set of all 

»€X 
linear functionals on C(X) equipped with the topology inherited by (C(X))* from 
R C W . Jbr / € C(X) we write / > 0 iff f(x) > 0 for all x € X. Define lx 6 C(X) 
by lX(x) « 1 for each x € X. Let P(X) = {X € (C(X)f: X(lx) = 1 and if / > 0, 
then X(f) > 0}. H X is compact, then so is P(X). If X and Y are compact spaces, 

then each map (pi X —>Y induces the map P((p): P(X) —• P(Y)t defined by 
P(<p)W(f) » Kf * ̂ ) -Sw ^ € P{X) and / 6 C(Y). This defines the functor 
P: Comp —• Comp, the so-called functor of probability measures. The name is 
justified by the fact that each A € P(X) can be interpreted as a regular probability 
measure on X.' 

Scepin proved that for every normal functor J*: Comp —• Comp compact 
J^-valued retracts of the Tychonoff cube J* are Dugundji [10, Theorem 4.2] and 
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characterized Dugundji compact spaces as compact P-valued retracts of Ir (see 
Introduction of [10]). We will show that in these results Ir can also be replaced by 
a topological group. 

7.1. Theorem. Assume that T: Comp —• Comp is a normal functor, G is 
topological group, B its G$-subsct and X a compact subspace of B. If there exists 
an T-valued retraction r of B onto X then X is Dugundji. 

7.2. Theorem. For each compact space X the following conditions are equivalent: 

(i) X is Dugundji, 
(ii) there exists a P-valued retraction of some topological group onto X, 

(iii) X is a P-valued retract of F(X), 
(iv) X is a P-valued retract of A(X), 
(v) X is a P-valued retract of every topological group G that contains X as a 

subspace. 

.From Theorem 7.2 and Corollary 6.3 we immediately obtain 

7.3. Corollary. If n $ {0,1,3,7}, then the n-dimensional sphere Sn is not a 
(single-valued) retract of a topological group, while Sn is a P-valued retract of any 
topological group which contains Sn as a subspace. 

7.4. Definition [10, Definition 18]. Let T: Comp —• Comp be a normal func­
tor. For a compact space X define a set-valued map suppx: T(X) —• X by 
suppx(*) = H { * C K : * = - ¥ a n d - ? € T($)} for z € T(X) (here we identify 
T($) with the image T(j*)(T($)) of T($) under the map T(j*): T($) —• T(X) 
extending the inclusion map i*: $ C X ) . 

7.5. Lemma. If T: Comp —• Comp is a normal functor, X and Z art compact 
spaces and f: X —• Z is a map, then /(suppx(-e)) =- 8upp/(x)(^r(/)(*)) fw each 
x € T(X). 

PROOF : Since T is normal, T preserves intersections and preimages (see [10, 
definition 14]), and the result follows. • 

7.6. Lemma. Let X be a compact subspace of Y and r: Y —• T(X) be an 
T-valued retraction of Y onto X. Suppose f: Y —• Z is an open map so that 
(Hf lx)or)(j,) = (if(X)of)(V) for ally 6 f-*(f(X)). Then ike map f \x: X — 
f(X) is open (note that we consider f \x as a map onto its image). 

PROOF : Under additional assumption that Y is compact this lemma was proved 
by Scepin [10, Proposition 3,14]. Considering, if necessary, Y1 = f~l(f(X)) and 
/ ' s-s / |y#, we can assume that f(X) -= Z. Recall that if <p: X —• Y and 
i/>: Y —• Z are set-valued maps, then their composition ^ o ip: X —• Z is the 
set-valued map defined by (if> o ¥>)(*) = f | W f O : V e w M } for « 6 K. Define a 
set-valued map <p: Z —• T(X) by <p(z) = {r(y): y € f~l(z)} for z € Z, and let 
6 =2 suppx ° tP' 



140 Dmitrii B.Shakhmatov 

7.7. Claim. B(z) = (/ (x)""1^) for «** z € Z. 

PROOF : Since r is an ^"-valued retraction, (/ Ix)"1^) C 6(*) for all z € Z. On 
the other hand, if a- 6 ©(*). then x £ suppx(Ky)) &>-* some y € /""H*)- Now, by 
Lemma 7.5, 

/ |x (*) € / |x (suppxr(y)) = m^z(Hf \x)(r(y))) = supP2,((*z o f)(y)) = 
suppz(t^(z)) = {z}, 

and so x € (/ Ix)""1^)- Therefore 8(*) C (/ Ix)"1^)- • 
Since / is open and r is continuous, <p is lower semi continuous. The map suppx 

is lower semicontinuous by [10, Proposition 3.11]. Thus 6 is lower semicontinuous 
as a composition of lower semicontinuous set-valued maps. In view of Claim 7.7 
this yields that / |x is open. • 

Rrom now on we will adopt notations and conventions of 3.1 with the only excep­
tion that instead of map e we fix an ./"-valued retraction r: B —• f(X). 

7.8. Definition. A set N £ M*(G) is r-admissible provided that 

(3) (H<PN) O r)(x) = (ixN o I/>N)(X) for every a; £ ^ ( K / v ) 

7.9. Lemma. The condition (8) is equivalent to 

(4) y>iv(8uppx(r(a,))) = {tf>N(x)} for all x £ VvHKN) • 

PROOF : If x £ ^^(XJV ) and (3) holds, then Lemma 7.5 implies 

<.0jv(suppx(r(x))) = 8\ippxN(f(<pN)(r(x))) = suppxw((Jr(^iV) o r)(x)) = 
snppxN((ixN oII>N)(X)) = HN(X)}. 

On the other hand, suppose that x £ ^^(Kjy) and ^/v(suppx(r(a:))) = {i/>N(x)}. 
Since T preserves preimages, 

?(<PN
1(*N(X))) » (?(*N)Y\ixN(*N(x))) . 

Since suppx(r(x)) C ^ ( i M * ) ) and f is normal, r(x) £ ^*(suppx(r(a:))) C 
% N ( ^ N ( X ) ) ) = (?(VN))-I(*XA1>N(*))), ^ d so % ) o r ) ( « ) € {(ixN ° 

I/>N)(X)}. Since {(ixN ° $N)(X)} -» the one-point set, (3) follows. • 

7.10. Lemma. Let {Na: a £ A} C M*(G) be a family consisting of r-admissible 
sets. Then N = f]{NQ: a 6 A} € M*(G) is r-admissible too. 

PROOF : Let t: BN —• H{&Nm - <* 6 A} be the natural one-to-one continuous 
map, <p = A{<pN« ta £ A}: X —• H{XNa: a £ A} and ̂  = A{^jva: a € A}: 
£ —• H{Bsa' a € -4} be the diagonal maps. Fix an a? € *l>N

l(XN). Then x £ 
if>Nl(XNa) for each a € A, and so 9Na(Bnppx(r(x))) = {t/>Na(x)} by Lemma 7.9. 
This implies that ^(suppx (r(x))) =- {i/>(x)}. Now from ̂  = t o ^ and y> = i [x* 
o(pN it follows that <pN(suppx(r(x))) = {*I>N(X)}> Therefore N is r-admissible 
(Lemma 7.9). • 
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7.11. Lemma. For any N € M*(G) thtrt exists an r-admissible N € M*(G) so 
that N C N. 

PROOF : By induction we wiU define a decreasing sequence {N*: k € (*>} C M*(G) 
so that if k € a/, ar,y € B and ^Nfc+1(x) = 0N*+1(y), then (F(<PNk) o r)(x) = 
(T(<pNk) °

 r)(y)- Set No = N and assume that N* € M*(G) have already been 
defined for k < j . Since N, € M*(G) and X^. is compact, W(XNS ) = ^-^(K/v)) < 
nw(BNj) < nw(G/Nj) < u>. Since T preserves the weight, T(XNi) has a count­
able base Bj. For each U € Bj use Lemma 2.6(i) to choose an Nu € M(G) so 
that (.%>*,) o r ) - 1 ^ ) is Ny-cyHndrical. Set Ni+1 = C\{NV: U € Bj} 0 Nj. 
Lemma 2.6(iii) impHes that Ny+i € M*(G). Now suppose that x, € B and 
x\ = (T(<pNi) ° **)(**) for * = !»2 ^ x i ^ *2- Then *kere are ^ ' € #j with 
*{ € Ul and U[f)Ui = 0. Therefore a:,- € U< = ( ^ N ^ o r ) - " 1 ^ ) and Ux nU2 = 0. 
In view of Lemma 3.5 both U{ are Nj+i-cyHndrical, so 0Ni+1(a-i) i1 *l>Nj+1(22)* 

Since { i V t : H « } C «M*(G). N = fKN*: * € u>} € M*(G) (Lemma 2.6(iii)). 
Now observe that N is r-admissible. • 
PROOF of Theorem 7.1: As in the proof of Theorem 4.1 we can suppose that X 
algebraicaUy generates G, B is closed and B = IT^I(WN*(B)) for some N* 6 M(G). 
So we wiU use notations and conventions of 3.1 together with that which was adopted 
before Definition 7.8. Let H = {N € M*(G): N is r-admissible }. By Lemmas 
7.11 and 2.6(H) the diagonal map tp = A{y>jv: N € U}: X —• U{XN: N € U} 
is a homeomorphic embedding of X into the product of compact metric spaces. 
Lemma 7.10 implies that for every C Cft the set f)C € Af*(G) is r-admissible, and 
so the map A{<pN' N € C} is open (Lemma 7.6). By Theorem 2.1, X is Dugundji. 

• 
PROOF of Theorem 7.2: (i) ==-=> (v). Assume that X is a subspace of a topological 
group G. Embed G homeomorphically into Ir. By Haydon's theorem [5] exists a 
P-valued retraction r: Ir —• P(X), and its restriction to G would be as required. 

(v) => (iv) and (iii) ===-==> (ii) are trivial. 
(iv) ==-=> (iii). Let / : F(X) —• A(X) be the homomorphism whose restriction to 

X coincides with the identity map of K, and let rA: A(X) —• P(K) be a P-valued 
retraction. Then rF: F(X) —• P(X) defined by rF(y) = (rAof)(y) for y € F(X) 
is a P-valued retraction of F(X) onto X. 

Since functor P is normal, implication (ii) ===> (i) foUows from Theorem 7.L • 

8. Dugunc^ji spaces and extending of functions. Denote by C(X) the linear 
space of aU real-valued (continuous) functions defined on a space X. Let lx € C(X) 
be the function defined by 1x0-0 = 1 for each x € X. Let X be a subspace of Y. 
FoUowing Pelczynski [9], we say that a Hnear operator u: C(X) —• C(Y) is rtgular 
if the foUowing conditions hold: 

(i) for every / € C(X) the restriction of u(f) to X coincides with / , 
(ii) if / > 0, thenu( / )>0 , 

(iii) u(lx) = ly-
In 1968, Pelczynski [9] defined Dugundji spaces as those compact spaces X for 

which there exists a homeomorphic embedding of X into the lychonoff cube Ir 
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admitting a regular operator u: C(X) —• C(Ir). Our last result shows that in this 
definition Ir can be replaced by a topological group. 

8.1. Theorem. For every compact space X the following are equivalent 

(i) X is Dugundji, 
(ii) there exists a homeomorphic embedding of X into a topological group G ad­

mitting a regular operator u: C(X) —• C(G), 
(Hi) there exists a regular operator u: C(X) —• C(F(X)), 
(iv) there exists a regular operator u: C(X) —• C(A(X)), 
(v) for every embedding of X into a topological group G there exists a regular 

operator u: C(X) —• C(G), 
(vi) there exist a topological group G, its Gs-subset B which contains X as a 

subspace and a regular operator u: C(X) —• C(B). 

This theorem immediately follows from Theorem 7.1, 7.2 and the following folk­
lore 

8.2. Lemma. Suppose that X is a subspace of Y. 

(i) Ifui C(X) —• C(Y) is a regular operator, then the mapr: Y —• P(X) de­
fined by r(y)(f) == u(f)(y) fory£Y and f 6 C(X), is a P-valued retraction 
of Y onto X, 

(ii) If r: Y —-• P(X) is a P-valued retraction of Y onto X, then the map 
u: C(X) —• C(Y), defined by u(f)(y) = r(y)(f) for f € C(X) and yeY, 
is a regular operator. 

Historical remark. In 1986 V. V. Uspenskii obtained a series of results concerning 
Dugundji spaces. In particular, he proved Theorems 1 and 4 of [16] and also the 
following statement: a compact retract of a dense subspace of some Lindelof E-group 
G is Dugundji. He asked whether the requirement that G is a Lindelof E-space can 
be dropped in the statement above. The author showed that this requirement 
is superfluous there (Corollary 5.3). To prove that, the author introduced the 
machinery of extending of open sets into the context of topological groups (Sections 
3-5). All results of this paper were obtained in July 1987 and were announced in 
[13]. At the same time the author communicated them to V.V. Uspenskii. After 
that, attempting to generalize the results of the author, V. V. Uspenskii proved 
Theorems 5, 7 and Propositions 10,11 of [16]. 

Acknowledgement. The author would like to thank f)r. V. M. Valov for helpful 
discussions concerning Dugundji spaces. 
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