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Dugundji spaces and topological groups

DMITRII B. SHAKHMATOV

Dedicated to the memory of Zdenék Frolik

Absiract. We give new characterization of Dugundji compact spaces and x-metrizable com-
pact spaces in terms of special embeddings into topological groups. As a consequence we
obtain that a compact retract of a dense subspace of some topological group is Dugundji.
Keywords: Dugundji space, x-metrizable space, compact space, topological group, embed-
ding, retraction, extension of open sets, set-valued mapping, normal functor, probability
measure

Classification: primary 54D30, 54C25, 22A05; secondary 54C15, 54C20, 54C60, 22A10

1. Introduction. Let X be a subspace of Y. A topological space Z is said to
be injective with respect to the pair (X,Y) iff every continuous map f: X — Z
has a continuous extension f': Y — Z. For a compact space X the following
are equivalent [5]: (i) if ¥ is a zerodimensional compact space and Z is closed in
Y, then X is injective with respect to the pair (Z,Y); (ii) if X is a subspace of a
compact space Y, then every compact convex subset of a locally convex topological
vector space is injective with respect to the pair (X,Y). A compact space X is
called Dugundji [9] if one of these conditions holds.

Pelczynski [9], Scepin [10], Shirokov [14] and Dranishnikov [2] found different
characterizations of Dugundji spaces in terms of special embeddings into the “canon-
ical” Dugundji space, the Tychonoff cube I". The aim of this paper is to demon-
strate that in all these characterizations, I” can be replaced by a topological group.

Scepin [11], [12] introduced the notion of x-metrizable spaces and showed that
Dugundji spaces are x-metrizable [12, Corollary 1]. Shirokov [14] gave a character-
ization of k-metrizable compact spaces via special embeddings into the Tychonoff
cube I". In Section 4 we show that in Shikorov’s characterization I can also be
replaced by a topological group.

2. Notations, terminology and preliminaries. All topological spaces and
groups considered are assumed to be Tychonoff, and all maps are assumed to be
continuous if the converse is not stated explicitly. The bar denotes the topological
closure. If X is a topological space, then 7(X) stands for denoting the topology
of X. Symbol w(X) and nw(X) denote the weight and the network weight of a
space X respectively [3]. If for each @ € A a map fa: X — X, is fixed, then the
map f = A{fa:a € A}: X — II{X, : a € A} defined by f(2) = {fa(2)}aea for
z € X is called the diagonal product of the family {fo : @ € A}.
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2.1. Séepin’s theorem [10]. A compact space X is Dugundji if and only if there
ezist ¢ family {X, : @ € A} of compact metric spaces and a map fo : X — Xao
for each a € A so that:
(i) the diagonal product f = A{fs : @ € A}: X — MI{Xq : a € A} is homeo-
morphic embedding, and
(ii) for each subset B C A, the diagonal subproduct fp = A{fs : « € B}:
X — fg(X) Cc I{X,: a € B} is an open map onto its image.

2.2. Definition. Let X be a subspace of Y. A map e: T(X) — T(Y) is regular
provided that:
(i) e(U)N X = U whenever U € T(X),
(i) fU,VeET(X)and UNV =0, thene(U)Ne(V) =
(iii) e(X) =Y
This concept was considered first (without being named) by Kuratowski [7] and

van Douwen [1]. Lately the name was given by Shirokov [14]. Our next definition
is due to Shirokov [14].

2.3. Definition. Let X be a subspaceof Y. Amape: T(X) — T(Y) is d-regular
provided that:
(i) e(U)NX =U for each U € T(X),
(ii) e(UNV)=e(U)Ne(V) whenever U,V € T(X),
(iii) e(X)=Y.

It is clear that each d-regular map is regular.

2.4. Definition. Let X be a subspace of Y. A map e: T(X) — T(Y') preserves
inclusions (or is inclusion—-preserving) iff e(U) C (V') provided that U,V € T(X)
andU CV.

2.5. Lemma. Suppose that X is a subspace of Y and e: T(X) — T(Y) is a reg-
ular map. Definee’: T(X) — T(Y) bye'(U)=U{e(V): V€ T(X) and V C U}
for U € T(X). Then €' is regular and preserves inclusions. If e is d-regular then
soise.

For a topological group G we fix N(G) for denoting the family of all normal
subgroups of G and define M(G) = {N € N(G): nw(G/N) < w}. For each
N € N(G) the natural quotient map of G onto G/N will be denoted by 7. If
N,N' € N(G) and N' C N, then there exists the map =& : G/N' — G/N such
that 7y = wﬁ' omWNI.

2.6. Lemma [15, Lemma 2]. Suppose that G is a o-compact group. Then:

i) for evcry Gs-subset B of G there ezists an N € N(G) so that
B = x5! (xn(B)) (in particular, B is a Gs-subset of G),

(ii) if £ C M(G) is s0 that for any N € M(G) there ezists an N € £, NCN,
then the diagonal map 7¢ = A{xn: N€£}: G — [[{G/N: N€ €} isa
homeomorphic embedding.

(iii) f {N;: j € w} C M(G), then N = N{N;: j € w} € M(G).
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2.7. Lemma. Let G be a topological group, X its compact subspace which alge-
braically generates G. If B is a Gs-subset of G with X C B C G, then there ezists
a closed Gg-subset B' of G so that X C B' C B.

PROOF : Since X algebraically generates G, G is o-compact and hence normal.
If B = N{U;: i € w}, then by induction we can choose, using normality of G, a
sequence {V;: i € w} of open subsets of G so that X C V; C V; c U; N V;_, for all
i € w. Then B' = N{V;: i € w} is as required. [
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We fix symbols F(X) and A(X) for denoting the free topological group and the

free Abelian topological group of a space X respectively (8], [4].
3. Technical lemmas.

3.1. Notations and conventions. Throughout this section we fix a topological
group G and its compact subspace X that algebraically generates G. It is clear that
G is o-compact. Furthermore, we fix a closed set B with X C B C G, a regular
map e: T(X) — T(B) preserving inclusions and an N* € M(G) such that B =
rn(nN+(B)). Let N*(G) = {N € N(G): N C N*} and M*(G) = N*(G)NM(G).
For N € N*(G) define Xy = nn(X), Bn = nn(B), ¢n = 78 |x: X — XN
and Yy = ny | B: B — By. If NN' € N*(G) and N' C N, then we set
oN =78 |xy: Xnv — Xy and ¥} ==Y |p,,: B~ — Bn.

3.2. Lemma. For each N € N'*(G) the map v, is open. If N,N' € N*(G) and
N'C N, then the map 1/5%’ is open too.

PROOF : Since N € N*(G), B = n5'(nn(B)), and so ¥ is open as restriction
of the open map my to the full preimage. Furthermore, for N,N' € N*(G) with
N' C N we have Yy = vj)ﬁ' oynr. Since Y is open, we conclude that wﬁ’ is also
open. ) ]
3.3. Lemma. The set By is closed in G/N for each N € N*(G).

PROOF: Since NC N*,B= w,'\;l(BN). Since 7 is quotient and B is closed, By
is closed.. ]
3.4. Definition. For N € N*(G) we say that a set P € B is N-cylindrical
provided that P = 5 (¥n(P)) (note that P C B and yy(P) C By by the lemma
above).

3.5. Lemma. If N,N* € N*(G), N' C N and P is N-cylindrical, then P is also
N'-cylindrical.

PROOF : By Lemma 3.2 the map 1/:,’:," is open, so the result follows from the
equality ¥n = P o Y. L]
3.6. Lemma. If both sets P,Q C B are N-cylindrical for some N € N*(G), then
sots PNQ.

3.7. Lemma. If N € N*(G) and sets U,V € T(B) are N-cylindrical, then
Ya(U)NYN(V) =0 is equivalent to UNV = 0.



132

Dmitrii B.Shakhmatov

PROOF : Suppose that ¥N(U) N¥n(V) = W # 0. Since yy is open, W is open,
and hence so is Y5' (W). Since U and V are N-cylindrical, p3'(W) C v} (W) €
N @NO)NYn(V)) =T NV. Since 5 (W) is open, we have U NV # 0. ]

3.8. Definition. We will say that a subgroup N € N*(G) is e-admissible if there
exists a base By of the space X x such that:

(i) for all U € By the set e(¢y'(U)) is N-cylindrical,

(i) Xn N¢n(e(pn'(U))) C U for each U € By.

3.9. Lemma. If N € N*(G) is e-admissible, then Xn N pn(e(U)) C on(T) for
allU € T(X).

PROOF : Suppose the contrary, andlet U € T(X), z € e(U), ¥n(z) € Xn\en(D).
Since X is compact and U C X, U is compact. Thus @ n(T ) is closed in X . Smce
By is a base of X, there exists a W € By with yn(z) € W and W NN (U) =

In particular,

6 Uney' (W)=

Observe that Yn(z) € W C ¥n(e(py'(W))). Since W € By, it follows that
e(pRH(W)) is N-cyhndncal by Definition 3.8(i). So z € e(px' (W)). Now z € Ule)
implies that e(U) N e(p ' (W)) # 0, a contradiction with (1) and the regularity of
the map e. ]

3.10. Lemma. If N € N*(G) is e-admissible, then ¢ is an open map.

PROOF : Assume that V € T(X) and y € ¢on(V). Fix an z € V with on(z) = y.
Choose an U € T(X) so that z € U C V. The set W = n(e(U)) is open in By
(Lemma 3.2), and the previous lemma yields y € Xnv N W C on(T) C on(V).
Therefore pn(V) € T(XN). .

3.11. Lemma. Assume that N,N' € N*(G), N' C N and N is e-admissible.
Then the map v%’: Xn' — XN is open.

PROOF : Since oy = goﬁ’ o @ and @y is open (Lemma 3.10), we conclude that
tp%’ is open. n
3.12. Lemma. If N € N*(G) is e-admissible, then there ezists a regular map
en: T(Xn) — T(Bn)

PROOF : For every U € By define Wy = ¢n(e(¢3'(U))) € T(Bn). Since By
is a base of Xy, from Definition 3.8(ii) it follows that {Xy N Wy: U € Bn} is
also a base of Xn. Therefore, for every O € T(Xy) we would have en(0) =
U{Wy: U € BN, XN NWy C O} € T(By) and Xy Nen(0) = 0. From Definition
3.8(i) and Lemma 3.7 it follows that Wy N Wy = @ whenever U,V € By and
UNV =4. So 0,,0; € T(Xy) and 01 N0, = @ imply en(01) Nen(0z2) = 0, i.e.
en: T(XN) — T(Bn) is regular. N
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3.13. Lemma. For every N € N*(G) there ezists a e-admissible Ne N*(G) so
that N C N and w(X5) < w(Xnw).

PROOF : Let w(Xn) = 7. By induction we will define a decreasing sequence
{Ni: k € w} C N*(G) and a sequence {B;: k € w} such that for every k € w the
following properties will be satisfied:

(1) By is a base of Xy, with |Bg| < 7,

(2k) if U € B, then both sets e(¢x!(U)) and (X \ en.(U)) are N-cylindrical.

Define Ny = N and choose any base By of Xy of size 7 (it is possible because
w(Xn) = 7). Now we assume that N; and B; have already been defined for i < k
so that (1;), ..., (1) and (2;), ..., (2g—1) hold. Let us define Niy; and By4y
satisfying (1x4+1) and (2i). Set

7 = {elpm(V)): U € B} U {e(X \ @51 (U)): U € By}.

By (1&), |7l < |Bx| £ 7. Each W € ~; is open in the Gs-set B, so W is a
Gs-subset of G. Therefore there exists an Ny € M*(G) so that W is Ny-
cylindrical (Lemma 2.6(i)). Define & = {Nw: W € 14} U {Ny} and Niyy = N&;.
Clearly, Niy1 € N*(G) and Nxyy C Ni. Let jp = A{Yyn: N € &}: B —
[I{B~n: N € &} be the diagonal product. There exists the natural one-to-one
map ix: By,,, — jx(B) so that ji = i o ¢,,,. Since Xp,,, is compact, the
restriction of i to Xy,,, is a homeomorphism, and so Xn,,, is homeomorphic
to ji(X). For each W € v the set Xy, is a compact subspace of By, and
Nw € M*(G), so w(Xnw) = nw(Xny ) < nw(Bny, ) < nw(G/Nw) < w. Since
k(X)) € [I{XNw : W € 1} X Xn,, I7e| < 7 and w(Xy,) < 7, we conclude that
w(Xn,,,) = w(jr(X)) < 7. Now it suffices to choose any base Bry1 of Xy,
with |Biy1| < 7. Then (1x41) is trivial, and (2x) follows from Lemma 3.5 and the
inclusion Nx4+1 C Nw which holds fo{ each W € ;. B

Define N =N{Ni: k€ w}. Then N C No =N and N € N*(G). Foreach k € w
let px = {(pN,) " (U): U € By}. Let By = U{pe: k € w}.
3.14. Claim. Bﬁ is a base ofXﬁ

PROOF : Using compactness of X, one can easily see that X is homeomorphic

to the limit of the inverse spectrum S = {XN,,,sox’.", k,m € w,m > k} whose limit

projections coincide with spx. : Xz — XN and the result follows. ]
Claim 3.14 and (1;) for all k € w yield w(X5) < IBgl < T = w(Xn). Thus it

remains only to show that N is e-admissible.

.'1.15. Claim. For all W € By both sets e(tp%‘(W)) ond e(X \ ‘pﬁ.‘(W)) are

N -cylindrical.

PROOF : Each W € B is of the form W = (¢} )=}(U) for some k € w and

U € Bi. By (2i) sets

(R (V) = el (M) ' (O) = el (W)
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and

e(X \on(U) =X\ ‘P}—VI(W))
are Ni4i1-cylindrical. Since Nc Ni41, the same sets are also N -cylindrical by
Lemma 3.5. ]

Let us show that N is e-admissible and that B & Witnesses this. Item (i) of
Definition 3.8 follows from Claim 3.15. To check (i) fix an U € Bg. Since e is
regular, Claim 3.15 and Lemma 3.7 yield that

(@) S (e(pF U)) N¥3(e(X \ T D) = 0.

Since e preserves inclusions, X5 \Tc Yr(e(X \go—ﬁl(U))), and from (2) we obtain
that X3 N t/:ﬁ(e(wfﬁl(U))) cT. ]
3.16. Lemma. Let {No: a < 7} C N*(G) be decreasing chain of e-admissible
subgroups of G. Then N = (Y{{Nqy: a < 7} € N*(G) is also e-admissible.

PROOF : For all @ < 7 fix a base By, of Xn, witnessing that N, is e-admissible.
Since Xy is compact, it is homeomorphic to the limit of the natural inverse spectrum
S = {XN_,gox’,a < B <}, 50 By ={(pN,)'(U): @ < 7,U € By,} is a base
of Xn. We will show that B N witnesses that N is e-admissible. Pick a W € By.
Then W = (p}N_)~!(U) for some a < 7 and U € By,. Since By, witnesses that
XN, is e-admissible,the set

e(oy' (W) = el (¥X.) ' (V))) = e(px (V)
is Ng-cylindrical, and so it is also N-cylindrical because N C N, (Lemma 3.5).
Furthermore, applying item (ii) of Definition 3.8 to Xy, and By, we obtain
XN N ¢n(e(pn' (W) = Xn Nyn(e(erl (U))) C
XN N ($N,) 7 ($na (s (U)) € Xn N (¥R,)7(T) = (o},) ' (O) = W.
Observe that the last equality holds because (pﬁ- is open by Lemma 3.11. n

3.17. Lemma. Let {N,: a € A} C N*(G) be a family consisting of e-admissible
subgroups of G. If we additionally assume that the map e: T(X) — T(B) is
d-regular, then N = (\{Nq: a € A} € N*(G) would be e-admissible too.

PROOF : For any a € A fix base By, of Xy, in accordance with Definition 3.8,
and define 7, = {(¢N,)~}(U): U € Bn, }. Let

By ={Va, N+ -NVay: aryeee,ah € A, Viy € Yari =1,..., 5, k €w).

Since Xy is compact, By is a base of Xy. We will show that By witnesses that
N is e-admissible. Pick an U € Bn. Choose k € w, ay,...,a; € A and V,, € 74i,
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i= 1,...,k such that W = V,, N---N V,,. For every i < k fix an Ua, € Bw,, With
= (¢N,,) 7 (Uay)-
(1) By Definition 3. 8(i) each set (. (Ua) = e(¢N' (V) is Na,-cylindrical,
and so it is also N-cylindrical because N C Na; (Lemma 3.5). Now Lemma 3.6
yields that the set

(PN (Var)) N -+ N ooy (Ve ) = el (Ve ) N NN (Ve )) =
e(o§ (Vay N+ -N Vo)) = ey (W) '

is N-cylindrical too. (In the first equality we applied our assumption that e is
d-regular.)

(i) Fix an i < k. Since By,, witnesses that Xn,, is e-admissible, Xn,, N
YN, (3(4/’;:‘((/.:‘))) C U, by Definition 3.8(ii) applied to X, and By,,. There-

fore,
X~ Nyn(e(eq,,(Ua)) C XN N (t/’ﬁ,‘)"('/)m,(e(ﬁvi.-(lfm )) C
XN n('/’N,;) l(Um) = (‘PN.‘)-l(Ua.) =Va-

(The last equality holds, since qu is open by Lemma 3.11.) Now d-reguhmty of
e yields

XN N (e(pn' (W))) = Xn Ndn(e(en' (Vas) N N (Veu ) =
Xy Nn(e(ey (V)N oo e(so '(Va))) €
(X~ N §n(e(er, (Ua, )))) N---N(Xn N¥n(e(@n,, Ua))) C

Var NNV, =V, NNV, =W. [

ax

4. x-metrizable compact spaces and extending of open sets. x-metrizable
spaces were defined by Séepin [11], [12]. Each Dugundji space is x-metrizable, but
not vice versa [12]. Shirokov [14] proved that a compact space X is x-metrizable
if and only if for some (equivalently, for any) embedding of X into the Tychonoff
cube IT there exists a regular map e: 7(X) — T(I7). It turns out that in this
characterization I” can be replaced by a topological group.
4.1. Theorem. For any compact space X the following are equivalent:
(i) X is x-metrizable,
(ii) there ezist a topological group G which contains X as a subspace and a regular
map e: T(X) — T(G),
(iii) there ezists a regular map e: T(X) — T(F(X)),
(iv) there ezists a regular map e: T(X) — T(A(X)),
(v) for any embedding of X into a topological group G there ezists a regular map
e: T(X) — T(G),
(vi) there exist a topological group G, its G5-subset B containing X as a subspace
and a regular map e: T(X) — T(B).
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PROOF : (i) = (v). Assume that X is a subspace of a topological group G. By
the Tychonoff embedding theorem, G <« I” for some cardinal . By Shirokov’s
theorem [14] there is a regular map e': T(X) — T(I7). Thene: T(X) — T(G)
defined by e(U) = €'(U) NG for U € T(X) is a regular map.

(v) = (iv) is trivial.

(iv) = (iii) Let g: F(X) — A(X) be the continuous homomorphism extending
the identity map of X and ¢’: T(X) — 7(A(X)) be a regular map. Then the map
e: T(X) — T(F(X)) defined by e(U) = g~(e'(U)) for U € T(X) is regular.

(iii) => (ii) and (ii) = (vi) are trivial.

Now let us check the implication (vi) = (i) using transfinite induction on the
weight of X. If w(X) = w, then X is metrizable and so k-metrizable. Suppose
that 7 > w and that the implication (vi) = (i) have been checked for any compact
space X of weight < r. Fix a compact subspace X of a Gs-subset B of a topological
group G so that w(X) = 7, and a regular map e: 7(X) — T(B). Without loss of
generality we may assume that X algebraically generates G, so G is o-compact. In
view of Lemma 2.7 we can suppose that B is closed. By Lemma 2.6(i) there is an
N* € M(G) so that B = ny}(mn+(B)). Moreover, by Lemma 2.5 the map ¢ can
be chosen to be inclusion-preserving. Now all assumptions of 3.1 are satisfied, and
in what follows notations from 3.1 will be used. Since X algebraically generates G,
nw(G) < nw(X) < w(X) = 7, so one can fix a family {Us: « < 7} C T(G) with
{eg} = N{U,: a < 7}, where eg is the neutral element of G. By Lemma 2.6(ii),
for every a < 7 there exists an H, € M(G) with H, C U,.

By transfinite recursion for each @ < 7 we will choose an N, € N‘(G) such that:

(a) Ny CHyforalla<,

(b) w(Xn,)<|a|-w<rforeverya<r,
(c) Na is e-admissible for all a < 7,

(d) Ns C N, provided that a < f < 7.

To start with, use Lemma 2.6(ii),(iii) to find e-admissible Ny € A"*(G) so that
No ¢ HoN N* and w(Xn,) £ w(Xpenne) = w < 7. If {Na:a < B} C
N*(G) satisfying (a) — (d) have already been defined, then let Ng € N'*(G) be the
e-admissible subgroup of G such that Ny ¢ Hp = Hsy N (\{Na: a < B} and
w(XN,) S w(Xg,) < 16| - sup{w(Xn,): @ < B} + w(Xn,) < |B]-w < 77 (this
subgroup exists in view of Lemma 3.13). Since (\{{No: a <7} C({Ha: a <7} =
{ec}, X is homeomorphic to the limit of continious well-ordered transfinite spec-
trum S = {XN,,px:,a < B < 7}. By (c) and Lemma 3.12, for each a < 7 there
exists a regular map ey, : T(Xn,) — T(Bn,). Since N, € N*, B = x5} (Bn,),
and so By, is a Gs-subset of the topological group G/N,. Since w(Xn,) < 7
by (b), our inductive assumption yields that each Xy,_ is x-metrizable, and hence,
by [12, Lattice theorem], Xy, is openly generated in the terminology of Stepin
[10, Definition 4). From (c) and Lemma 3.10 it follows that all limit projections
¢N.: X — XnN, of the spectrum S are open, so X is openly generated by [10,
Theorem 16)]. Therefore, X is x-metrizable by Ivanov’s theorem [6]. ]
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5. Dugundji spaces and extending of open sets. Shirokov [14] showed
that a compact space X is Dugundji if and only if for some (or equivalently, for
any) embedding of X into the Tychonoff cube I” there exists a d-regular map
e: T(X) — T(I"). Our next result shows that in this characterization I" can be
replaced by a topological group.
5.1. Theorem. For every compact space X the following conditions are equivalent:
(1) X is a Dugundji space,
(ii) there ezist a topological group G which contains X as a subspace and a
d-regular map e: T(X) — T(G),
(i) there ezists a d-regular map e: T(X) — T(F(X)),
(iv) there ezists a d-regular map e: T(X) — T(A(X)),
(v) for every embedding of X into a topological group G there is a d-regular map
e: T(X) — T(G),
(vi) there exist a topological group G, its Gs-subset B that contains X as o sub-
space and a d-regular map e: T(X) — T(B).

PROOF : All implications except (vi) = (i) can be proved in the same way as in
the proof of Theorem 4.1. Let us verify (vi) = (i). Asin the proof of Theorem 4.1
we will assume that G is o-compact, B is closed, B = 7y (7n+(B)) for some N*
from M(G), and e preserves inclusions. Let A = {N € M*(G): N is e-admissible}.
The diagonal map ¢ = A{pn: N € A}: X — [[{Xn: N € A} is, by Lemmas
3.13 and 2.6(ii), a homeomorphic embedding of X into the product of compact
metric spaces. Lemma 3.17 yields that for every C C A the set (\C € N*(G) is
e-admissible, and so A{pn: N € C} is an open map (Lemma 3.10). By Theo-
rem 2.1, X is Dugundji. ]
5.2. Corollary. Assume that X is a compact subspace of a topological group G,
B is a Gs-subset of G, and there ezists a sequence X = Xo C X; C---C X, =B
so that for all i < n, X; is either a retract or ¢ dense subset of X;4;. Then X is
Dugundji.

PROOF : If r: Z — Y is a retraction, then the map e: T(Y) — 7(Z) defined
by e(U) = r~}(U) for U € T(Y) is d-regular. Similarly, if Y is a dense subspace of
Z, then the map e: T(Y) — T(Z) defined by e(U) = | {V € T(Z): VNY C U}
for U € T(Y) is d-regular. Therefore, under assumption of our lemma there exists
a d-regular map e: T(X) — T(B), and the result follows from Theorem 5.1. =

5.3. Corollary. If a compact space X is a retract of a dense subspace of some
topological group, then X is Dugundji.

6. Dugundji spaces as set—valued retracts of topological groups. Let X
be a subspace of Y. A set-valued map r: Y — X which sends each point y € Y
to a subset r(y) of X is said to be a set-valued retraction iff r(z) = {z} for each
z € X. A set-valued retraction r: Y — X is upper semicontinuous (briefly, u.s.
retraction) iff r}(U) ={y € Y: r(y) U} € T(Y) for any U € T(X).

Dranishnikov [2] characterized Dugundji spaces as compact u.s. retracts of the
Tychonoff cube I™. In this characterization I™ can also be replaced by a topological
group.
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6.1. Theorem. For each compact space X these are equivalent:
-(1) X is Dugundyi,
(ii) there ezists a u.s. retractionr: G — X of some topological group G onto X,
(iii) there ezists a u.s. retraction r: F(X) — X,
(iv) there ezisis @ u.s. retraction r: A(X) — X,
(v) X is o u.s. retract of every topological group G that contains X as a subspace,
(vi) there ezist a topological group G, its Gs-subset B and a u.s. retraction
r:B— X.

PROOF : Combine Theorem 5.1 and the following lemma which was xmphcxtly
proved (but not stated explicitly) in [17].

6.2. Lemma. Let X be a compact subspace of Y.
() If r: Y — X is o u.s. reitraction, then the map e: T(X) — T(Y) so that
e(U) =r=Y(U) for U € T(X), is d-regular.
(ii) Ife: T(X) — T(Y) is a d-regulor map, thenr: Y — X defined by r(y) =
M{U: U € T(X),y € e(U)} is a u.s. retraction.

Observe that the retraction r from items (iii)—(v) of Theorem 6.1 cannot be chosen
to be single—valued as the following result shows.

6.3. Corollary. Forn ¢ {0,1,3,7)} the n-dimensional sphere S™ is not a (single-
valued) retract of a topological group, but S™ is a u.s. (set-valued) retract of any
topological group G which contains S™ as a subspace.

The first part of this corollary is due to Uspenskii [16, Proposition 16), and the
second part follows from Theorem 6.1.

7. Dugundji spaces as compact P-valued retracts of topological groups.
Let Comp denotes the category of compact spaces and their (continuous) maps. Let
F: Comp — Comp be arbitrary normal functor [10, Definition 14]. Recall that
for each compact space X there is a homeomorphic embedding ix: X — F(X),
[10, Proposition 3.10]. If X is a compact subspace of Y, then amapr: ¥ — F(X)
is said to be an F-velued retraction of Y onto X provided that r [x=1ix.

Let C(X) be the Banach space of all real-valued continuous functions defined on a
compact space X with the norm || f|| = sup |f(z)], and let (C(X))* be the set of all

E 4

linear functionals on C(X) equipped with the topology inherited by (C(X))* from
RCEX), For f € C(X) we write f > 0 iff f(z) > 0 for all z € X. Define 1x € C(X)
by 1x(z) = 1 for each z € X. Let P(X) = {\ € (C(X))*: M(1x) =1 andif f 20,
then A(f) 2 0}. If X is compact, then s0is P(X). I X and Y are compact spaces,
then each map ¢: X — Y induces the map P(p): P(X) — P(Y), defined by
P(e)AXS) = A(fop) for A € P(X) and f € C(Y). This defines the functor
P: Comp — Comp, the so—called functor of probability measures. The name is
justified by the fact that each A € P(X) can be interpreted as a regular probability
measure on X.’

Séepin proved that for every normal functor F: Comp — Comp compact
F-valued retracts of the Tychonoff cube I” are Dugundji [10, Theorem 4.2] and
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characterized Dugundji compact spaces as compact P-valued retracts of I™ (see
Introduction of [10]). We will show that in these results I can also be replaced by
a topological group.

7.1. Theorem. Assume that ¥: Comp — Comp is a normal functor, G is
topological group, B its Gs-subset and X a compact subspace of B. If there ezists
an F-valued retraction r of B onto X then X is Dugundji.

7.2. Theorem. For each compact space X the following conditions are equivalent:
(i) X is Dugundji,
(ii) there ezists a P-valued retraction of some topological group onto X,
(iii) X is a P-valued retract of F(X),
(iv) X is a P-valued retract of A(X),
(v) X is o P-velued retract of every topological group G that contains X as a
subspace.

From Theorem 7.2 and Corollary 6.3 we immediately obtain

7.3. Corollary. If n ¢ {0,1,3,7}, then the n-dimensional sphere S™ is not a
(single-valued) retract of a topological group, while S™ is a P-valued retract of any
topological group which contains S™ as a subspace.

7.4. Definition [10, Definition 18]. Let F: Comp — Comp be a normal func-
tor. For a compact space X define a set-valued map suppx: F(X) — X by
suppx(2) = ({{® C X: & = & and z € F(®)} for z € F(X) (here we identify
F(®) with the image F(j&)(F(®)) of F(®) under the map F(js): F(®) — F(X)
extending the inclusion map js: ® C X).

7.5. Lemma. If F: Comp — Comp is a normal functor, X and Z are compact
spaces and f: X — Z is a map, then f(suppx(z)) = suppsx)(F(f)z)) for each
z € F(X).

PROOF : Since F is normal, F preserves intersections and preimages (see [10
definition 14]), and the result follows.

7.6. Lemma. Let X be a compact subspace of Y and r: Y — F(X) be an
F-valued retraction of Y onto X. Suppose f: Y — Z is an open map so that
(F(F 1x)or)(w) = (iy0x) 0 ) for ally € F1(F(X). Then the map f [x: X —
F(X) is open (note that we consider f |x as a map onto its image).

PROOF : Under additional assumption that Y is compact this lemma was proved
by Séepin [10, Proposition 3,14]. Considering, if necessary, Y’ = f~1(f(X)) and
f' = f |y, we can assume that f(X) = Z. Recall that if o: X — Y and
¥:Y — Z are set-valued maps, then their composition ) 0 p: X — Z is the
set-valued map defined by (¥ o p)(z) = N{¥(y): ¥ € ¢(z)} for z € X. Define a
set-valued map p: Z — F(X) by ¢(z) = {r(y): y € f~1(2)} for z € Z, and let
© = suppx 0 p.
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7.7. Claim. 6(z) = (f |x)~(z) for each z € Z.

PROOF : Since r is an F-valued retraction, (f |x)™*(z) C ©(z) for all z € Z. On
the other hand, if z € ©(z), then z € suppx(r(y)) for some y € f~!(z). Now, by
Lemma 7.5,

£ Ix (=) € f |x (suppxr(y)) = suppz(F(f |x)(r(y))) = suppz((iz o f)(¥)) =
suppz(iz(2)) = {2},

and so z € (f |x)~(z). Therefore O(z) C (f |x)™*(2). .
Since f is open and r is continuous, ¢ is lower semicontinuous. The map suppx
is lower semicontinuous by [10, Proposition 3.11]. Thus © is lower semicontinuous
as a composition of lower semicontinuous set-valued maps. In view of Claim 7.7
this yields that f |x is open. -
From now on we will adopt notations and conventions of 3.1 with the only excep-
tion that instead of map e we fix an F-valued retraction r: B — F(X).

7.8. Definition. A set N € N*(G) is r-admissible provided that

(3) (F(en)or)(z) = (ixy o ¥n)(z) for every z € Y3 (Xn)
7.9. Lemma. The condition (3) is equivalent to
4) @n(suppx(r(z))) = {¥n(2)} for all z € Y5 (XN).

PROOF : K z € y'(Xn) and (3) holds, then Lemma 7.5 implies

e N(suppx(r(z))) = suppxy (F(pn)(r(z))) = suppxy ((F(en) o 7)(z)) =
Suppxy ((iXN ° 'I’N)(z)) = {\bn(-'t)} .

On the other hand, suppose that z € Y5 (Xn) and pn(suppx(r(z))) = {¥n(z)}.
Since F preserves preimages,

Flon' (9n(2))) = (Flon)) ™ (ixn (¥n(2)))-

Since suppx(r(z)) C ¢x'(¥n(2)) an’d F is normal, r(z) € F(suppx(r(z))) C
Flon' (¥n(2)) = (F(on)) (ixn(¥n(2))), and so F(pn) o r)(z) € {(ixy ©
¥~)(z)}. Since {(ix, o ¥~ )(z)} is the one-point set, (3) follows. ]
7.10. Lemma. Let {Ny: a € A} C N*(G) be o family consisting of r-admissible
sets. Then N = (Y{Na: a € A} € N*(G) is r-admissible too.

PROOF : Let i: Bv — J[{Bn.: @ € A} be the natural one-to—one continuous
map, ¢ = Af{pn,: a € A}: X — [[{XNo: a € A} and ¢ = A{yn,: a € A}:
B — [I{Bna: a € A} be the diagonal maps. Fix an z € $5'(Xn). Then z €
¥RL(XN,) for each a € 4, and 50 g, (suppx(r(2))) = {¥w, (2)} by Lemma 7.9.
This implies that @(suppx(r(z))) = {(z)}. Now from ¥ =ioy and p =i |x,
opy it follows that pn(suppx(r(z))) = {¢n(z)}. Therefore N is r-admissible
(Lemma 7.9). =
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7.11. Lemma. For any N € M*(G) there ezists an r-admissible N € M*(G) so
that NC N.

PROOF : By induction we will define a decreasing sequence {N}: k € w} C M*(G)
so that if k € w, 7,y € B and ¥, ,,(z) = ¥n,,,(v), then (F(on,)or)(z) =
(F(en) or)(y). Set No = N and assume that Ny € M*(G) have already been
defined for k < j. Since N; € M*(G) and Xy; is compact, w(Xy;) = nw(Xy;) <
nw(By;) < nw(G/N;) < w. Since F preserves the weight, F(Xx;) has a count-
able base Bj. For each U € B; use Lemma 2.6(i) to choose an Ny € M(G) so
that (F(en;) o r)"}(U) is Ny-cylindrical. Set Nj1a = (\{Nv:U € B;} N N;.
Lemma 2.6(iii) implies that Nj;; € M*(G). Now suppose that z; € B and
z} = (F(pn;) o r)(zi) for i = 1,2 and z} # zj. Then there are U{ € B; with
¢! € U! and U] NU} = 0. Therefore z; € U; = (F(pn,)or)"}(U}) and U, NT, = 0.
In view of Lemma 3.5 both U; are Nj4;-cylindrical, so ¥n;,,(21) # ¥n;,,(22).

Since {Ni: k € w} C M*(G), N = ({{Ni: k € w} € M*(G) (Lemma 2.6(iii)).
Now observe that N is r-admissible. ]
PROOF of Theorem 7.1: As in the proof of Theorem 4.1 we can suppose that X
algebraically generates G, B is closed and B = 75} (7n+(B)) for some N* € M(G).
So we will use notations and conventions of 3.1 together with that which was adopted
before Definition 7.8. Let R = {N € M*(G): N is r-admissible }. By Lemmas
7.11 and 2.6(ii) the diagonal map ¢ = A{pn: N € R}: X — [[{Xn: N € R}
is a homeomorphic embedding of X into the product of compact metric spaces.
Lemma 7.10 implies that for every C C R the set (JC € N*(G) is r-admissible, and
so the map A{pn: N € C} is open (Lemma 7.6). By Theorem 2.1, X is Dugundji.

| ]
PROOF of Theorem 7.2: (i) = (v). Assume that X is a subspace of a topological
group G. Embed G homeomorphically into I". By Haydon’s theorem [5] exists a
P-valued retraction r: I” — P(X), and its restriction to G would be as required.

(v) = (iv) and (iii) = (ii) are trivial.

(iv) = (iii). Let f: F(X) — A(X) be the homomorphism whose restriction to
X coincides with the identity map of X, and let r4:"A(X) — P(X) be a P-valued
retraction. Then rp: F(X) — P(X) defined by rr(y) = (ra o f)(y) for y € F(X)
is a P-valued retraction of F(X) onto X.

Since functor P is normal, implication (ii) = (i) follows from Theorem 7.1. =

8. Dugundji spaces and extending of functions. Denote by C(X) the linear
space of all real-valued (continuous) functions defined on a space X. Let 1x € C(X)
be the function defined by 1x(z) = 1 for each z € X. Let X be a subspace of Y.
Following Pelczy1iski [9], we say that a linear operator u: C(X) — C(Y') is regular
if the following conditions hold:
(i) for every f € C(X) the restriction of u(f) to X coincides with f,

(ii) if f > 0, then u(f) >0,

(iil) u(1x) = ly.

In 1968, Pelczyriski (9] defined Dugundji spaces as those compact spaces X for
which there exists a homeomorphic embedding of X into the Tychonoff cube I7
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admitting a regular operator u: C(X) — C(I”). Our last result shows that in this
definition I” can be replaced by a topological group.
8.1. Theorem. For every compact space X the following are equivalent
(i) X s Dugundss,
(ii) there ezists @ homeomorphic embedding af X into a topological group G ad-
mitting a regular operator u: C(X) — C(G),
(iii) there ezists a regular operator u: C(X) — C(F(X)),
(iv) there ezists a regular operator u: C(X) — C(A(X)),
(v) for every embedding of X into a topological group G there ezists a regular
operator u: C(X) — C(G),
(vi) there ezist a topological group G, its Gs-subset B which contains X as a
subspace and a regular operator u: C(X) — C(B).

This theorem immediately follows from Theorem 7.1, 7.2 and the following folk-
lore

8.2. Lemma. Suppose that X is a subspace of Y.
(i) Ifu: C(X) — C(Y) is a regular operator, then the mapr: Y — P(X) de-
fined by r(y)(f) = u(f)(y) fory €Y and f € C(X), is a P-valued retraction
of Y onto X,
(i) If r: Y — P(X) is a P-valued retraction of Y onto X, then the map
u: C(X) — C(Y), defined by u(f)(y) = r(y)(f) for f€ C(X) and y € Y,

is a regular operator.

Historical remark. In 1986 V. V. Uspenskii obtained a series of results concerning
Dugundji spaces. In particular, he proved Theorems 1 and 4 of [16] and also the
following statement: a compact retract of a dense subspace of some Lindel6f X-group
G is Dugundji. He asked whether the requirement that G is a Lindelof T-space can
be dropped in the statement above. The author showed that this requirement
is superfluous there (Corollary 5.3). To prove that, the author introduced the
machinery of extending of open sets into the context of topological groups (Sections
3-5). All results of this paper were obtained in July 1987 and were announced in
[13]. At the same time the author communicated them to V.V. Uspenskii. After
that, attempting to generalize the results of the author, V. V. Uspenskii proved
Theorems 5, 7 and Propositions 10, 11 of [16].

Acknowledgement. The author would like to thank Dr. V. M. Valov for helpful
discussions concerning Dugundji spaces.
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