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Skula spaces 

A L A N D O W A N D S T E P H E N W A T S O N 

Dedicated to the memory of Zdeněk Frolík 

Abstract. A topological space (X,tr) is a Skula space if there is a topology r on X such 
that <r is the topology on X generated by r U {X — A : A € r } . In 1979 Brummer 
asked "Which compact Hausdorff spaces are Skula ?* In 1980, Bonnet began exploring 
the question "Which superatomic Boolean algebras are canonicaily good ?" • The purpose 
of this paper is to demonstrate that the questions of Brummer and Bonnet are identical, 
to give a simple and useful topological answer and to construct an example (obtained 
independently by Bonnet, Rubin and Si-Kaddour) related to a classic example of Stone. 

Keywords: Skula space, superatomic Boolean algebra 

Classification: Primary 54A10, S4D30 

Definition 1. A topological space (X,<r) is a Skula space if there is a topology r 
on X such that a is the topology on X generated by r U {X — A: A G r} . 

In 1979 Brummer asked "Which compact Hausdorff spaces are Skula ?w (the 
reader should reflect on the fact that the Sorgenfrey line is Skula). 

Definition 2. A Boolean algebra B is superatomic if every quotient of B with at 
least two elements is atomic (that is, has an atom, an element which is greater than 
no element other than O). 

Definition 3. Let B be a superatomic Boolean algebra. Define, by induction, a 
sequence {Ia^Da,Ta, ATa : a £ «} by: 

• Jo=0 
• J0-f i is the ideal generated by Ia U ATa 

• Ia == U{Ifi : p < a} when a is limit ordinal 
• Da = B/Ia 

• 7ra is the canonical homomorphism of B onto Da 

• ATa = (7r~1)(the set of atoms of Da) 

In this construction, each Da has an atom and so the procedure must eventually 
lead to a finite Da. Call the least such a, the rank of B. We say that G C B is a 
set of representatives for B if G = U{Ga : a < rank(B)} and, for each a, ira f Ga is 
a one-to-one function onto the set of atoms of Da. We say that a Boolean algebra 
B is canonicaily good if it has a set of representatives G which generates B as a 
Boolean algebra and which generates a well-founded sublattice of B as lattice. 

In 1980, Bonnet began exploring the question "Which Boolean algebras are canon­
icaily good ?w. The purpose of this paper is to demonstrate that the questions of 
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Brummer and Bonnet are identical, to give a simple and useful topological an­
swer and to construct an example (obtained independently by Bonnet, Rubin and 
Si-Kaddour) related to a classic example of Stone. We begin with a topological 
solution to Briimmer's problem: 

Theorem 1. Let (X,a) be a T0 topological space. If the space (X,a) is Skula then 
there is an function which assigns to each x € X a clopen set U(x) C X such that 
x £ U(x) and 

(1) (\tx,yeX)xiU(y)Vy<t:U(x) 

(2) x £ U(y) => U(x) C U(y) 

Furthermore, the converse is true for any compact Hausdorff space. 

PROOF : Suppose that (X, a) is Skula. This means that there is a topology r on 
X such that a is the topology an X generated by T U {X — A : A € T}. For each 
x £ X, let U(x) be the closure, in r,of the set {a;}. Clearly each U(x) is clopen and 
(Vx,y£ X)x £ U(y) => U(x) C U(y). 

We shall show that {U(x) : x £ X} satisfies (1) and (2). Suppose that {x,y} C 
U(x) n U(y) and thus that a: is in the closure of {y} in r and that y is in the closure 
o{{x} in r . Thus r does not distinguish between x and y and so since a is generated 
by the elements of r and their complements, a does not distinguish between x and 
y either. This contradicts the fact a is To-

Conversely, suppose that (X,a) has a clopen family {U(x) : x £ X} satisfying 
(1) and (2). Let r be the topology on X whose subbase is {X — U(x) : x £ X}. 
Let/? be the topology on X generated by the elements of r and their complements. 

First we need to observe that (W £ r)(Vx $ U)U(x) n U = 0. This is true for 
basic open U in r since any such U is of the form 0{X — U(xi) : i < n} and so 
x $ U implies x £ U(xi) for some i < n. The assumption x £ U(y) =>• U(x) C U(y) 
now implies that U(x) C U(x*) and thus that U(x) n U = 0. The observation is 
true for all open sets U since any such U is the union of basic open subsets, any 
a $ U is not an element of any of the basic open subsets and so U(x) is disjoint 
from each of the basic open subsets and so disjoint from U. 

Now we shall show that p = a. 
Suppose that V £ p and x £ V. Let W be a p basic open set such that x £ W C V. 

By definition of p, W = W\ C\ W*i where W\ is open in r end Wi is closed in r . Now 
by the observation above, since x £ W2,U(x) C W2- Thus there is p basic open 
set W* = W\ n U(x) such that x £ W* C W. We can assume, without loss of 
generality, that W\ is r basic open and so express W\ = f){X — U(xi) : i < n}. 
Now W* has been expressed as the finite intersection of a clopen sets and so we 
have shown that x is in the a interior of V. Since x an arbitrary element of V, we 
have shown that V £ a. 

We have shown that p C a. Meanwhile p is a Hausdorff topology since each U(x) 
is p clopen and {U(x) : x £ X} satisfies (1). Thus, since a is a compact Hausdorff 
topology, it has no smaller Hausdorff subtopologies and thus a = p and so (X,a) 
is Skula and the proof is complete. • 
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Theorem 2 (Briimmer, Kunzi, Fletcher [2]). Any compact Hausdorff Skula 
space X is scattered. 

We can use lemma 1 to prove this theorem or we can work directly with the 
topology r which generates a. We shall do both. 
PROOF (First): Suppose {U(x) : x € X} has been defined as in theorem 1. Define 
a relation < by letting x<y <-> x G U(y). This relation is antisymmetric by condition 
1 and is transitive by condition 2. This means that < is a partial order. We shall 
show that < is well-founded. Suppose that {xn : n € u>] were a decreasing sequence 
of points. Let X* = {x € X : (Vn € w)x < u n } a decreasing sequence of closed sets 
with empty intersection and that is a contradiction. • 

PROOF (Second): We need some simple but useful lemmas: 

Lemma 1. If(X,cr) is a Skula space and Y C X then (Y,a \ Y) is a Skula space. 

PROOF : Suppose r is a topology on X whose open sets together with the closed 
sets generate a. The open sets together with the closed sets of (F, r f Y) generate 
a \Y. m 

In the next lemma S denotes the Sierpiriski space {0, 1} with isolated point 1. 

Lemma 2. IfXcSK and X generates (by its open sets and its closed sets) a space 
without isolated points, then X is not closed in the sense of2K.. 

PROOF : Suppose X is closed in the sense of 2K. Take a maximal A C k such that 
(3x € X) : x""1(0) = A. It exist because X is closed. Now | D {{x € X : x(a) — 1} : 
a 6 A}\ = 1 and so there is a closed point x in X. The space generated by X has 
x as an isolated point. • 

Lemma 3 . If X C S* and X generates a compact space, then X is closed in the 
sense of2K. 

PROOF : Suppose not, that r € 2" is a limit point but that r ^ X. The family 
of closed sets {[r \ F] : F € M < w } is centered in the generated topology but has 
empty intersection with X. The lemma is proved. • 

Take the space which generates it and embed it into a power of the Sierpin'ski 
space. Using the Cantor-Bendixson theorem, X contains a maximal dense-in-itself 
subset Y which is also a compact Hausdorff space and, by lemma 1, Skula. Lemma 
2 and lemma 3 imply that Y must have an isolated point which means that Y — 0 
and so X is scattered. • 

Some simple consequences of theorem 1 are: 

Corollary 1. Any compact Hausdorff space of scattered height S is Skula. 

PROOF : Apply Hausdorff to separate the finitely many points at level 3 by means 
of clopen sets. Each point at level 2 lies, without loss of generality, in one of the 
clopen sets. Choose a clopen neighborhood of that point which contains only one 
element at level 2 and which lies inside that clopen set. Choose a singleton clopen 
neighborhood foe each point at level 1. • 
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Corollary 2. Any hereditarily paracompact scattered compact space is Skula. 

PROOF : Let 7 be the minimal scattered height of a counterexample X. If 7 is a 
limit ordinal then X is the free union hereditarily scattered paracompact spaces of 
smaller height which are thus Skula by hypothesis and so admit a clopen assignment 
as in theorem 1. The union of these assignments works. 

If 7 is a successor ordinal, then find a clopen partition of the space, each element 
of which intersects the top level in exactly one point. Each element of the clopen 
partition minus its top point is a hereditarily paracompact scattered space of smaller 
scattered height and so has a clopen assignment as in theorem 1. The union of these 
clopen assignments (using the partition elements for the points at the top level) 
satisfies theorem 1. 

We now describe the example (obtained independently by Bonnet, Rubin and 
Si-Kaddour) which is inspired by an example of Stone (counterexample 3 in [3]). 
The question of the existence of compact Hausdorff scattered space which is not 
Skula was first asked by Guillaume Brummer in 1979. • 

Examp le 1. There is a compact Hausdorff space X scattered height 4 which is not 
Skula. 
PROOF : Start with (w + l ) x w . We shall add a closed discrete set to this space 
so that the resulting space is locally compact and Hausdorff. List all functions 
f : UJ —• w as {/„ : Q 6 2W}. List a family of almost disjoint subsets of UJ by 
{Aa : a € 2"}. Let Ba = ({UJ} X Aa) U {(t,n) : t > / 0 (n ) , n € Aa} C (us + 1) x UJ 
for each a € 2W. Add the closed discrete set 2W to the space (UJ + 1) x UJ by 
defining a neighborhood of a to be of the form {a} U (Ba (1 (UJ + 1) x (UJ — n)) 
for n € UJ. The resulting space is locally compact and Hausdorff. Let X be the 
Alexandroff compactification. Suppose that this space were Skula, that is, that 
there were a clopen family {U(x) : x & X} satisfying (1) and (2). Let / : u> —• UJ 
be defined so that (Vt > / (n) ) ( t ,n) € U((u>,n)). Now let fa>fbe any function. 
Clearly U(a) D* ({UJ} X Att). Thus if A = {n € Aa : (w,n) € U(a)} then (Vn € 
A)U((u>,n)) C U(a). Now the set {(t,n) € UJ X UJ : i > f(n),n G Aa} has only two 
possible cluster points X outside (w + l ) x w and these are a and the Alexandroff 
infinity 00. Since a has a neighborhood whose complement in this set is non-
compact (since fa > / ) , we deduce that 00 is indeed a cluster point of this set and 
so, since Ua is closed, 00 € Ua. This is true, for any a such that fa> f and there 
are infinitely many of these. Since neighborhoods of 00 contain all but finitely many 
a and U(oo) is an open neighborhood of 00 there is an a such that a € U(oo). This 
contradicts (1). • 

To draw the equivalence between the two questions need a simple lemma from 

ii)-
Lemma 4 (Bonnet , Rubin, Si-Kaddour (Lemma 2.4.8)). Let B be a Boolean 
algebra and let X be its Stone space. If B is a canonically good algebra, then there is 
an function which assigns to each x € X a clopen set U(x) C X such that condition 
1 and 2 in theorem 1 hold true. Conversely, if there is such a function and X is 
scattered then B is canonically good. 
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A combination of theorem 1 and this lemma yields the main equivalence: 

Theorem 3. The clopen algebra of a compact Hausdorff Skula space is a canon-
ically good Boolean algebra. Conversely, the Stone space of a canonically good 
Boolean algebra is a compact Hausdorff Skula space. 

This theorem allows us to recognize some of the results of [1] as equivalent to our 
results above. Recall that if a Boolean algebra is superatomic then its Stone space 
is scattered and conversely the clopen algebra of a compact Hausdorff scattered 
space is superatomic. Their theorem 3.2.3 is thus our theorem 2 in the language 
of Boolean algebras. Similarly, their lemma 4.7.2 is thus our (or rather Stone's) 
example 1. We thank Guillaume Brummer and Petr Simon for bringing this problem 
to our attention. 
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