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On a problem of J. Nagata 

YUN ZlQIU 

Dedicated to the m e m o r y of Zdeněk Frolík 

Abstract. In this paper, we give a negative answer to a problem about metrization which 
was posed by J. Nagata in [5], and we discuss several related problems. 
Keywords: gf-function, decreasing ^-function, metrizable spaces 
Classification: 54E35 

A function g : N x JY —* 2X is called a g-function if g(n, x) is an open neighborhood 
of x for all n € N and x € -Y. A a-function g is said to be decreasing if g(n -f 1, a:) C 
g(n,x) for all n € N amt x 6 X. Let g1^^) = g(n,x) and let a , + 1 (n ,x ) = 

UW^y) • y $ ^,'(n»*)}for *£ N-
The following problem was posed by J. Nagata ([5], problem after Theorem 9) : 
Is a T\ space X metrizable if X has a g-function which satisfies the following 

conditions: 
(1) Ex € <?2(n, xn) for each n € N , then xn —• x; 
(2) ForallnEN and F C JY, C1Y C [J{g2(n,y) :yeY}? 

In the following, we answer this problem negatively and discuss some related 
problems. 

Example 1. A non-metrizable Moore space X with a g-fanction which satisfies 
conditions (1) and (2). 

Let JY = R x ({1/n : n € N } U {0}), and topologize X with the following 
modification of the tangent disc topology (see [6] pages 101-103): all the points 
of R x {1/n : n € N } are isolated. For a point of the form (r,0) , let Dn(r,0) = 
{(a, 6) € JY : d((a,6), ( r , l /n ) ) < 1/n} and let {D«(r,0) U {(r,0)} : n € N } be a 
neighborhood base of (r,0); here d denotes the Euclidean distance of R2. It is easy 
to see that X is a non-normal Moore space. 

We define a o-function on X as follows: 

o(n,(a,6)) : 

f {(a,6)}UD2 n(a,6) Іf6 = 0; 

{(a,0)}UD„(a,0) if6 = l/n; 

{(a,6)} І f 6 > l / n ; 

{(of.ř/) Є X : d((a',6'),(a,6)) < 1/n and V > 0} if 0 < 6 < 1/n. 

The author would like to thank Dr. H. Junnila for his help and useful suggestions. Actually, 
Example 2 of this paper is due to him. 
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The proof that g is a g-function which satisfies conditions (1) and (2) is not difficult 
and we leave it for the reader. • 

The following example shows that a non-metrizable space can even have a de
creasing g-function satisfying conditions (1) and (2). 

Example 2. A non-metrizable Moore space X with a decreasing g-function which 
satisfies conditions (1) and (2). 

Let X = R2. We give a topology on X as follows: All the points which belong 
to X \ (R x {0}) are isolated; for (r,0) G R x {0}, set B„(r,0) = {(a, 6) G X : 
b » \r - a\ < 1/n} U {(r,6) : - 1 / n < 6 < 0} and let {B„(r,0) : n € N } be a 
neighborhood base of (r,0). It is trivial to check that X is a Moore space. Since the 
closed subspace X' = {(a, 6) € X : b > 0} is R. W. Heath's V-space ([3] Example 
1) which is not normal, X is not a metrizable space. 

We define a g-function pn X as follows: 

g(n,(a,6)) = 

B„(a,6) 

{ ( a , 6 ) , ( a - 6 , -

B„(a,0) 

-6),(a + 6,-6)} 

if 6 = 0; 

if |6| > 1/n; 

if 0 < 6 < 1/n; 

if - 1/n < 6 < 0. 

Then it is easy to check that g is a decreasing g-function which satisfies conditions 
(1) and (2). • 

A space with a g-function which satisfies condition (1) is a a-space ([4]) and it 
is not difficult to show that a space with a g-function satisfying conditions (1) and 
(2) is a first countable space. Since a Moore space is a first countable cr-space, one 
could ask whether a regular space with a g-function which satisfies conditions (1) 
and (2) is a Moore space. By virtue of the following example, the answer to this 
question is also negative. 

Example 3 , A stratifiable space X with a decreasing g-function which satisfies 
conditions (1) and (2) such that X is not a Moore space. 

Let X = R2. We give a topology on X as follows: All the points of X \ (R x {0}) 
are isolated. For (r,0) € R x {0}, let B„(r,0) = {(a,6) € X : \a - r\ < 1/n, 
|6| < 1/n} \ {(r,6) : 0 < 6 < 1/n} and let {B„(r,0) : n € N } be a neighborhood 
base of (r, 0). 

It is easy to show that X is a stratifiable space. The subspace X' = {(a, 6) £ X : 
6 > 0} of X is not metrizable ([1] Example 9.1) and hence not developable, so X is 
not developable. We define a g-function on X as follows: 

g(n,(a,6)) = 

( Bn(a,b) if 6 = 0; 

{(a,t)} i f | 6 | > l / n ; 

{(a,fc),(a,-6)} i f 0 < 6 < l / n ; 

l 5 „ ( a , 0 ) \ { ( a , 0 ) } if - 1/n < b < 0. 

It is not difficult to show that g is a decreasing g-function which satisfies conditions 
(1) and (2). • 
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Remark 1. Assume that X has a ^-function which satisfies the following condition: 

(3) For each YCX, C1Y C U W " , y) - V € Y}. 

We can always find a decreasing ^-function g' on X such that g' also satisfies 
condition (3) and g'(n,x) C g(n,x) for all n € N and x G X. For example, we 
can take g'(n,x) = f){g(i,x) : 1 < i! < n} . Hence, in many results which involve 
a ^-function satisfying condition (3) and certain other conditions, whether this g-
function is decreasing is not important. Examples 4 and 5 show that for a ^function 
which satisfies condition (2), the situation is quite different. 

Example 4. A Moore space X with a g-function which satisfies conditions (1) and 
(2) such that X has no decreasing g-function which satisfies the same conditions. 

We prove that the space X of Example 1 has no decreasing ^-function satisfying 
(1) and (2). 

Assume that X has such a ^-function. We first prove that for all r € R and 
m,n € N , we have that (r,0) 6 [){g(n, (a, b)) : (a, b) G Dm(r,0)}. Otherwise, there 
exist r G R and m,n G N such that (r,0) £ \J{g(n,(a,b)) : («,£) 6 Dm(r,0)}. 
By condition (1), there exists k G N such that (r,0) i \J{g(k,(a,b)) : (a,b) £ 
Dm(r,0)U {(r,0)}}. Let j =max{n,fc}. Then (r,0) g UfaO' .vM)) : ( M ) € 
K ^ {(r>0)}}> and hence (r,0) g (j{g2(j,(a, b)) :(a,b)€X\ {(r,0)}}. By condition 
(2), C1(K \ {(r,0)}) C (J{g2(j,(a,b)) : (a,b) G X \ {(r,0)}}. As a consequence, 
(r,0) $C1(K \ {(r,0)}), which is a contradiction. 

For all n,k G N, let Rn(fc = {r G R : D*(r,0) C g(n,(r,0))}. Note that, for 
each n G N, we have that Un-eN Rn,k = R- Since every interval of' R is of the 
second category, we can find inductively, for n G N , a closed interval [cn, dn\ and a 
k(n) G N, such that Rn,jt(n) is dense in [cn,drt] and [cn+i,dn+i] C [cn,dn]- Pick a 
ro € flneN lcn,dn}. Note that, for n G N , r0 GCl(Rn,fc(n) \ {r0}). It follows that 

I>*(n)(ro,0)C 

-- U ^ * < » > ( r ' ° ) : r € R»Mn), r ? r0} C U{sr(n,(r,0)) : r G Rn,k(nh r * ro}-

Choose (an,bn) G Ab(n)(ro,0) such that (r0 ,0) G g(n,(an,bn)) and choose rn G 
Rn,k(n)> r » ^ ro, such that (a n ,6 n ) G g(n,(rn,0)) for each n G N . Then by 
condition (1) we have that ( r n ,0) —> (ro,0), a contradiction. • 

Remark 2. Theorem 7 of [5] states that a Ti -space X is metrizable if and only if 
X has a g-function which satisfies condition (2) and the following condition: 

(4) For each x G X and each neighborhood U of x, there exists n G N such that 

x<tCl(\J{9(n,y):-yeXsU}). 

In the proof of this theorem, it was assumed that the ^-function appearing in 
the theorem is decreasing. The following example shows that the assumption of 
"decreasing" should be included in the statement of theorem. 



814 Yun Ziqiu 

Examp le 5. A non-metrizable stratifiable space with a g-function satisfying con
ditions (2) and (4). 

The space is X' of Example 3. We define a ^-function on X' as follows: 

( B'n(a,b) if 6 = 0; 

j (n ,(a ,6)) = I {(a,*)} if 6 > 1/n; 

[ { ( a , i ) } U B > - J , 0 ) U B i ( a + f , O ) i f O < K l / n , 

where B'n(a, b) denotes the intersection of X' and Bn(a, b) of Example 3. 
It is easy to see that g satisfies condition (2). Note that if B'4n(r, 0)Dg(4n, (a, b)) ^ 

0, then (a, b) G Bn(r, 0); it follows from this that g satisfies condition (4). • 

Remark 3 . In [5], the proof of Theorem 8 is based on Theorem 7. But Theorem 8 
holds without the assumption that the ^-function involved is decreasing. This is be
cause if a ^-function g satisfies condition (1) of Theorem 2 of [5], then the ^-function 
g2 satisfies the same condition and Theorem 8 of [5] follows from Proposition 1 of 
[8] or Theorem 3 of [2]. 

Even though Nagata's problem has negative solution, the following result holds: 

Proposition. A T% space X is metrizable if and only if X has a decreasing g-
function which satisfies, for some k G N, the following conditions: 

(5) ff x 6 0 f c + 1 ( n ' x n) for each n G N , then xn —• x; 
(6) For each Y C X, ClY C \J{gk(n, y) : y € Y) for each n G N . 

PROOF : The "'only if" part is obvious. We prove the uif" part. 
Assume that X has a decreasing ^-function which satisfies (5) and (6). We first 

prove that g satisfies the following condition: 

(*) If x n —* x and xn G g(n, yn) for each n G N , then yn —> x. 

Assume that xn —> x and xn G g(n,yn) for each n € N . Then x 6Cl{xn : n G 
N } C \J{gk(m,xn) : n € N } for each m € N. Since g is decreasing, we can choose 
a subsequence {xnm : m 6 N} of {xn : n £ N } such that x € gk(m,xn$n) for each 
m G N, and hence x G 5,fc41(m»iVnm) for each m G N. By condition (5), y«m —> x. 
Note that conditions (5) and (6) imply that X is first countable; by [8] Lemma 4, 
g satisfies condition (*). 

Let g'(n, x) = gk(n, k) for all n G N and x G X. Since g satisfies condition (*), g* 
also satisfies (*). By condition (6), we obtain that CIK C \J{g'(n,y) : y G Y) for 
all Y C X and n G N . By virtue of Proposition 1 of [8] or Theorem 3 of [2], X is 
metrizable. • 

For ib =-= 1, the result above coincides with Theorem 9 of [5]. 
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