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Representation of the Hausdorff measure 
of noncompactness in special Banach spaces 

SABINA SCHMIDT 

Abstract. In this paper we give a representation for the Hausdorff measure of noncompact­
ness in separable Banach spaces. 

Keywords: Hausdorff measure of noncompactness, Gelfand-Phillips property 

Classification: 46B20 

It is known (Bourgain-Diestel [1]) that separable and (more generally) wcg spaces 
have the Gelfand-Phillips property, i.e., any limited set in E is relatively compact. 
(We recall that a bounded set A in a Banach space E is said to be limited if, for 
any ( .r*)n€N C E* converging weak* to zero, we have lim sup |xn(a) | = 0.) 

n-+ooaeA 

We will deduce this result from a representation for the Hausdorff measure of 
noncompactness /3 [3] in separable Banach spaces; cf. Theorem 1. 

For the proof of our representation theorem we use the following result. 

Proposition 1. Let E be a (separable) Banach space and ( E n ) n € N an increasing 
sequence of finite-dimensional subspaces dense in E. Then for any bounded set 
ACE 

/3(A) = lim supdist(a, En). 
n~*°°a€A 

Theorem 1. Let E be a separable Banach space. Then for every bounded set AC E 

p(A) = max{Tim~sup \xn(a)\ : (*„ ) n € N C 5(0,1) C E* 
(*) n ^ ° ° a € A 

converges weak* to zero}. 

PROOF : Let e > 0 be fixed. Then, by definition of /3(A), there is some finite set 
of centers {y» : 1 < iI < r} with 

r 

Ac\JS(yi,l3(A) + e). 
t=-l 

For (a;* ) n g N C S(0,1) C E* converging weak* to zero we obtain 

sup |x n (a) | < m raxsup{|<(a ~yi)\ + K ( y , ) | : a £ S(yil/3(A) + e)} 
»=i 

<J9(A) + - + I M K | - ; ( W ) I -
t = l 
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Since the limit of the right-hand side is /3(A) -f e and € is chosen arbitrarily, we 
arrive at 

lim sup |x n (a ) |< 0(A). 
n-+ooaeA 

To prove equality in (•) , choose an increasing sequence of finite-dimensional sub-
spaces (En)neN with (J En dense in E. Then by Proposition 1 (3(A) = 

n€N 
lim supdist(a, En). 

n-+°°a£A 
Defining 0n = sup dist(a, En) for each n € N we can find an an € A such that 

a€A 

0n~- < d i s t ( a n , E n ) . 
n 

The theorem of Hahn-Banach gives a sequence (x*)ngN C E* with the properties 
IKII = M „ ( * ) = 0 for x € En and xn(an) - d is t (a n ,E n ) . 

Therefore 

0(A) = lim ( !3n - i ) < lim"sup \xn(a)\. 

To prove that (a:n)neN converges weak* to zero, fix x € E and let e > 0. The 
density of (J En in E implies the existence of N € N and y 6 E/v such that 

n€N 

\\x — y\\ < e. From the properties of (xn)n€N we obtain 

| < ( x ) | = | < ( z - y ) | < e for n > N. 

The first part of the proof gives now 

/3(A) = Tim"sup | < ( a ) | . . 

As an application, formula (*) immediately implies Darbo's theorem for separable 
spaces, i.e, 0(A) = 0(convA). 

A Banach space E is called a wcg (weakly compactly generated) space, if there 
exist some weakly compact subsets K whose linear hull is dense in E. The following 
property of wcg spaces leads for countable bounded subsets to the same result as 
in Theorem 1. 

Proposition 2 ([2]). Let X be a separable subspace of some wcg space E. Then 
there exist a closed separable subspace Y with X C Y and a continuous linear 
projection P : E -+Y with \\P\\ = 1. 

fbr a subspace Y of E with A C Y bounded, /3y(A) denotes the HausdorfF 
measure of noncompactness of A in Y, i.e., 

n(e) 

fiy(A) »in£{e > 0 : A C (J S(y?,e), tf € Y}. 
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Theorem 2. Let E be a wcg space. Then for any bounded separable set AC E 

/3(A) = max{ lim sup |s*(a) | C S(9,l) C E*converges weak* to zero). 
n—oo a£A 

PROOF : The first part of the proof of Theorem 1 shows that it suffices to find a 
sequence (a;n)„eN Q S(0,1) C E* converging weak* to zero such that 

/3(A) = Tim" sup \x*n(a)\. 
n—°°o€A 

For a separable set A, Proposition 2 gives a separable subspace Y with A C Y and 
a linear projection P : E —> Y with | |P | | = 1. From the definition of /? and 0Y it is 
easily seen that 0(A) = /3y(A). Therefore, by Theorem 1, there exists a sequence 
(yn)n€N C Y* converging weak* to zero and | | j / n | | < 1 such that 

/3(A) = TmT sup \y*n(a)\. 
n-+ooaeA 

Defining x n = y* o P for n € N,(xn)neisj C E* is the desired sequence. • 

Now let A be a limited subset of a wcg space E. Then from [Theorem 2 we obtain 
/3(B) = 0 for every separable subset B of A, i.e., every separable subset of A is 
relatively compact. This is equivalent to the relative compactness of A, and so E 
has the Gelfand-Phillips property. 
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