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How to make many-sorted algebras one-sorted 

B. J. GARDNER 

Abstract. An equivalence is established between any category of algebras based on finite 
collections of sets (as exemplified by the category of modules over variable rings) and a 
category of single-set algebras. 

Keywords: Many-sorted algebra, diagonal algebra, rectangular band. 

Classification: 08A99 

Introduction. 
There are. many algebraic contexts in which the natural objects of study are built 

up not on individual sets but on collections of sets, e.g. graded rings and algebras, 
modules over variable rings [2], [11], group representations [9], [10] [12]; for other 
examples, see [3]. Higgins ([4], p. 115) and Plotkin ([8], pp. 53-54) make the point 
that such structures are more general than (universal) algebras. Nevertheless the 
two theories run pretty well parallel. In [4], for instance, notions of identity and 
variety are introduced for multi-set structures, with the same relationship between 
these concepts as one finds in orthodox algebra. Barr [1] makes oblique reference 
to a widespread supposition that multi-set algebras are in some sense special cases 
of ordinary algebras. We shall provide a rather strong justification for such a sup­
position by proving that categories of multi-set algebras of a given type where the 
number of underlying sets is finite are equivalent to varieties of ordinary algebras, 
showing, moreover, how to obtain a set of equations defining these latter varieties. 
The special case of sets acte'd on by variable monoids was treated in the M.Sc. thesis 
of Richard Wood [13 ] . The phrase "of a given type" needs some explanation; for 
this we give a rudimentary account of the language and approach of Higgins [4]. 

For a set I equipped with a set Q, of partial operations, Higgins calls by the name 
(1,0)-algebra a collection {5, : i £ 1} of sets such that for every UJ 6 0 , whenever 
u(t-.,. . . t„) = j there is an associated function / : Sit x 5,2 x • •• x 5,n —» Sj. 
Clearly an (I, ft)-algebra is a kind of graded structure, the grading being supplied 
by I, though the sets of elements of different "degrees" may be quite dissimilar. 

More precisely, (I, n)-algebras are externally graded. Now as is well known, 
graded rings, modules etc. come in two versions, external and internal. In show­
ing that these two kinds of graded structure are effectively the same one makes 
essential use of the zero element. Nothing analogous is available in the general case. 
Nonetheless, as we shall shortly demonstrate, it is possible to replace (I, Q)-algebra8 

I am very grateful to Richard Wood for drawing my attention to the possibilities explored in this 
paper while I was visiting Dalhousie University and for helpful correspondence subsequently, and 
also for telling me about reference [6). 
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by "internally graded" structures defined on cartesian product indexed by I. Being 
possible for arbitrary I, this is of some independent interest. In the case of finite I, 
however, we can do better, passing from structures of cartesian products to struc­
tures on sets. We do this by making use of the diagonal algebras of Plonka [7]. 
These algebras have a single n-ary fundamental operation and any such is isomor­
phic to an algebra defined on a cartesian product, with the product structure and 
the algebra structure defining each other. (Diagonal algebras whose operation is 
binary have a somewhat longer history as rectangular bands.) 

We thus end up with a category equivalence between the category of (I,£-)-
algebras for finite I and a variety of universal algebras whose fundamental operations 
are obtained from the partial operations in Q and the diagonal algebra operation. 
As a further refinement varieties (in the sense of [4]) of (1,0)-algebras are equivalent 
to varieties of algebras. 

Kelly and Pultr [6] investigated the problem of "algebraically recognizing prod­
ucts" in categories and in the course of their study they independently introduced 
diagonal algebras. Thus there are connections between [6] and the present paper. 
However, we are concerned with the synthesis of an algebra from a collection of 
possibly quite disparate algebras rather than with the decomposition of an alge­
bra with subalgebras of the same type. As well, our discussion is presented in 
quite elementary terms and should be of use to a fairly wide audience of working 
algebraists. 

Results . 
Let I be a non-empty set, {«,,. . .in>J} a finite subset. It is not assumed that 

i, »2, . . . j are distinct. We introduce two categories which we srjiall shortly prove to be 
isomorphic, thereby demonstrating the equivalence of "internally" and "externally" 
graded algebras. 

Our first category, which we shall call SUMj is defined as follows. Objects are 
sets {Si : i £ 1} of non-empty sets equipped in each case with a function / : 
Sit X ••• x Sin —> Sj. A morphism from one object {Si : i £ 1} to another 
{Ti : t 6 T } , is a set {<?» : i € I} where for each i,^, : 5, —• T, is a function, such 
that 

9j(f(*ii > • • • > 5 * J ) = f(9ix (*ii )>•••> 0*„ (*.« ))• 

The objects of the category PROD/ are cartesian products Yli St of non-empty 

sets equipped with an n-ary operation t*> such that the i'th component of u^(s\ ) / , 

(42>)l» • • • »(*5"))'/) ^ 4n) i e - t h e Vth component of ( 4 n ) ) / , for all i ^ j , and such 

that u ^ ) / , {s\%, . . . , ( ^ n ) ) / ) and u((t\%, (*(
t
2))/, . . . , ( t f ° ) / ) have the same 

j'th component whenever s^ = t\\\ s{2) = t\2J . . . , s?J = * j n ) . Morphisms from 

11/ &i t o 11/ Ti are families (#,)/, the gi: Si —• Tj being functions, such that 

«-((t».(-.,)))/.(t..(»ia)))/.-(».(-i")))/) 
= (9,(v.))/, where („,)/ = aK(*, , ))/ ,(- , '>)/ , • • . ,(«." )) /) . 

Note that giving u((s^)j, (a}**)/,..., (*jB))j) and (s\n))j the same "irrelevant" 
components is a bit arbitrary: there are other equally good ways of getting the 



How to make many-sorted algebras one-sorted 629 

effect we want, which is an operation defined on all of f [ / 5, but with its activities 
essentially confined to S t l , . . . , S,n and Sj. 

Proposition. The categories SUMj and PRODj are isomorphic. 

P R O O F : Define $ : SUM{ -+ PROD? by setting 

^ ( { S t : i G I } , / ) = ( n ^ n ^ with 
/ 

where Vi = s\n) for i ? j and Vj = / ( * £ \ . i g \ • • -,s\n)); <->({<?. : i € I}) = (<?,)/. 

Define #: PROD? -> SUMf by setting ¥ ( I I J $ , W ) = ({Si : i € I}, / ) with 
/ : S t l X • • • x S»n —• S ; given by the condition 

f(sit, î2> • • • s*'n) *s ^ne J'*-1 component of any 

^ ( t ^ ) / , ^ ) / , . . . , ^ ) / ) inwhich 

• ( { f t : i € / } ) = (j,)/-
It is clear that $ and # take objects to objects. Let {</; : i € I} be a morphism 

in SUMf from {Si : i € I} to {T, : i € I}. Then in PROD? we have 

^((^(^ 1 ))) />(^(^ 2 ))) Jf , . , ( ^ ( ^ ' l > ) ) / ) = = ( ^ ) / 

where t/t r= <ft(«| ) for i ^ j and 

^=/(^(^))^..(42))>---^(4:))). 
If we let u ; ( (^ 1 ) ) / , (^ 2 ) ) / , . . . , (^ n ) ) j ) = (*<)/, then we have 

v» =<7i(^n)) = 0*(wt) for * ¥" i a*"* 

^=/(^(^)),^(*g)),...,y.'.(«i:))) 
—^ J Fcy r c*^ > . -g > » - - -

Thus &({gi : i € I}) is a PROD? - morphism. Conversely, if (#,)/ is a PROD?-
tnorphism, then in SUMj we have 

« ( / ( - . „ - . . , — , - . . ) ) = ff,0''th component of any «((tf>)i, ( t ^ ) , , . . . . («<•>)/)) 

w w . «£> = ,,,, .£> = *., ..., . , : > - - , ; 
=[ j'th component of «((,.(«<»>))/, fo^)),,... (t..(«,">))/)] 

= /(Si, (*.,), ?..(«., ),•••,?.» (*.. ))-
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so that $((9i)i) is a SUM^-morphism. 
In <&$({& ' * € I}) we have 

/ ( $ i l > 5 i 8 . . . . S j n ) : 

/) 
=[j'th component of any u;((t<l))j, (*<*>), (tin) 

in which tV = «, ,t<2> =.3. *<"> J \ ' 
*1 * - > " » 2 — « , , , . . . l> |n =-= S | n J 

= /(*ii > *i2 »• • •, *£]) as defined in { 5 . : j G j } 

= /(5»i }
 5i*>• • • >«i„) as defined in {Sj : i £ n . 

hence V$({Si: t € I}) = {Si: t G I}. 
In $# (11 / ft)> we have 

^ h , I«<2h, r.(~)^\ - t„ x. . L ^ ... _ / ^ i f * ^ i " ( ( ^ M * * ) ) / , . . . ,(.s(,n))/) -= („,)/, where t>, 
/(-í?,...,,!;>)*.=.,• 

Thus the j'th component VJ is the j'th component in ( f ] / ft) of any 

w ( « i 1 ) ) / - ( ' ! 2 ) ) / , - , ( * ! n ) ) / ) m which t<-> = .,<;>,.<» = *.?, . . . , .<;> = ,<;>. I„ 

particular it is the j'th component of w((^(
i
1))/, (5<2 ))/ , . . . , (s<n))/) in f ] / Si. Since 

i'th components for t ^ j are the same when computed in both ^(flj Si) and 
Hj Siy we conclude that $V(lli ft) = 11/ ft-

The functors $ and $ are therefore mutually inverse on objects. It is clear that 
they are on morphism too. • 

If instead of a single / we have collection of operations of arity > 1 defined by 
functions from finite cartesian subproducts to individual sets Si, it is clear from the 
proof just given that we can define operations on the corresponding J\j Si to get 
a more general equivalence. Nullary operations are not automatically covered, but 
we can take account of them quite straightforwardly. 

If in the SUM-type category there is a nullary with value ej in Sj we define an 
associated unary operation # in the PROD-t^pe category by setting (si)f = (t»)/ 
where tj =- ej and ti = st for i =/ j . Thus we require in the PROD-type category a 
unary operation which always has the same effect on the j'th component. 

The following theorem covers these observations. 

Theorem 1, For every (I ,H) . the category of {1,0.)-algebras is isomorphic to a 
category of structures with a forgetful functor to cartesian products indexed by I. 

We wish to obtain a category equivalence between (1,0)-algebras and a variety of 
genuinely one-set algebras. This can be done if the category of cartesian products 
can be so represented. At least in the case of finite I this is possible: the diagonal 
algebras of Plonka [7] are a sort of one-set version of cartesian products. Puller de­
tails can be found in [7], but in the interest of a more-or-less self-contained account, 
we shall present a few of the salient features of these algebras. 

A diagonal algebra is an algebra with a single fundamental operation 6 of arity 
ro > 2 satisfying the conditions 
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8(x,x>... ,x) = x and 

^(*<M^. . . , * (
m

) ) ,% . 2 ) , 4 2 ) «2>),...,«(«(r\--.m) *(
m

m>)) 
= «(x. ,),«.2) «ir>). 

As an example , we have an arbitrary cartesian product Si x S2 x • • • x Sm of 
non-empty sets with 

8((x(1) T(1)
 rW\ (x(2) x(2) x(2h (x(m) x(m) . . r ( m ) V l -

°U X 1 ,*2 '" ' * »*m /» \xl ix2 »• • • »xm /»• • ">\xl » x 2 , • • • » x m jj — 
- (XW x ( 2 ) -.(m)x 
— \xl , x 2 i — ">xm )' 

In this case, for two elements a = (01,02, . . . , am) and 6 = (61,61, . . . , 6m) we 
have 0,-j = 6,x, a-:2 = 6i2 , . . . and aik = bik if and only if 

a = £(a, a , . . . , a) = % ( 1 ) , c ( 2 ) , . . . , c ( m )) , 

( 0 f 6 if i = t"i,i2,... or ik 
where cK' = < 

t a otherwise. 

Now it turns out [7] that every diagonal algebra is isomorphic to one of the kind 
just described: for elements a and b of a general m-ary diagonal algebra D we 
write a =i b (i = 1 ,2, . . . , m) if a = 8( a, . . . , a, 6, a, . . . , a). Then each =; is a 

4— t ~ l — • • 
congruence and the correspondence 

a H + ( a = i , a = 2 , . . . , a = m ) 

(the a =i being congruence classes) defines an isomorphism from D to the "cartesian 
product diagonal algebra" 

( . 0 / = 1 ) x ( D / - = , ) x . - . x ( . 0 / - = m ) . 

Now let us re-consider the category PROD/ with I = { l , 2 , . . . , m } . The condi­
tion 

"the i'th component of o;((5
(1))/, (* ( 2 )) / , . . . , (s(-n))/) is s(

i
n) for i ^ j " 

translates as the equation 

^ - i 0 ) / . (-?>)/.-.(-i"))/) = 
*((a.n))/. (^n))/. • • •. (-."^.--a-.0)/, (42 ))/, . . . . («i">)/), (^n))/,.... (^n))/)-

4 j__1 • 

For two elements (5,-)/, (**)/, we have s^ = Ut if and only if 

(U)i = *((*<)/. • • • > (*••)/. (*.')/, (t<)/, • • -, (*.•)/). 
< t i - 1 > 
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Thus the condition 

M(-!,))/.(-i2))/,....(-."))/)«-dW((t<,>)/,(t<
2>)/ (.<">)/) 

have the same j'th component whenever 

translates as the equation 

<T = <5(<T, <T, . . . , <7, r , < T , . . . , < T ) , 
— j - l _ > 

where <r = w((*, I > ) / , («i 2 ) ) / , . . . , (^n )) /) and 

r = u,[«((tl1)
);,...,(4

1))/,(,!
1))/,(t[

1))/,...,(t(
1))/), 

< e ' l — 1 • 

^ ( 2 ) ) / , . . . , (*S2 ) ) / . (42 ) ) / ,c!2 ) ) / , . . . , (^ ) ) / ) , . - , 
< . — 2 * 2 — 1 • 

^ n ) ) / , . . . , ( t ( n ) ) / ,^ ( n ) ) / , ( ' ( n ) ) / , . - - , (* ! n ) ) / ) ] . 
4 j n _ l , 

As before, there is no essential difference when the single operation / is replaced 
by a set of operations. Thus (for finite I) the category of all {I, Q)-algebras is 
equivalent to a category of algebras. In both these categories there is a notion of 
variety - as defined by Higgins [4] in the former and in the classical sense in the latter. 
These types of variety correspond to each other in a quite transparent manner; 
moreover, an identity g -.= h of (I, Q)-algebras corresponds to a condition in diagonal 
algebras that (terms corresponding to) g and h agree in certain components. Use 
of the operation 6 then enables us to turn this condition into an identity. 

We summarize all this as 

Theorem 2. For finite I, every variety of (I, ft)-algebras is equivalent to a variety 
of algebras. 

A diagonal algebra with a binary operation is a type of semigroup known as a 
rectangular band. Rectangular bands are also characterized by the identity xyx = x. 
For further details, see, e.g., [5] pp. 96 et seqq. 

Let a and 6 be elements of a rectangular band which have the "same first com­
ponent". Then 6 = 6(a, b). On the other hand, for any c we have 

6(6(a,c),a) = 6(6(a, c), 6(a, a)) = <5(a,a) = a, 

i.e. 6(atc) and a have the "same first component". Analogously, a and b have the 
"same second component" if and only if b = £(c, a) for some c. There are similar 
results in diagonal algebras of greater arity, including the cases where elements are 
required to "agree in several components". See [7] §1 and Lemma 1. 

We now consider some examples. 
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Example 1. The category of (left) M-sets for (variable ) monoids M is equivalent 
to the variety of all algebras (A, . ,*, ' , o) of type (2,2,1,2) satisfying the identities 

(i) (xoy)oz = xo(yoz), 
(ii) x oy o x = z, 

(iii) (xy) ay = xy, 
(iv) (x o z)(y o w) = xy, 
(v) (xy)z = [x(yz)] o [(xy)z), 

(vi) y o (x * y) = x * y, 
(vii) x * y = (x * y) o[(x o w) * (z o y)), 

(viii) (xy) *z = [(xy) * z] o [x * (y * z)], 
(ix) y' ox' = x', 
(x) x' * y = (x' * y) o y. 

Here we are using a standard binary symbol o for the rectangular band operation. 
Equations (i) and (ii) say that A is a regular band (binary diagonal algebra). 
Equation (iii) says that xy has the same "second component" as y, i.e. . is active in 
the first component only, and (iv) says that if x, y are replaced by elements with the 
"same first components", 1 0 2 , y o u ; respectively, the product is unchanged. The 
operation . is thus effectively a binary operation on the first component of A, which 
will be the monoid of scalars. By (v) this product is associative. The operation * is 
going to be scalar multiplication (of elements of the "second component" by those 
of the "first") so (vi) says that x*y has the same "first component" as y, i.e. only 
the "second component" is really relevant. By (vii), scalar product is unchanged 
(i.e. has the same "second component") if the first (second) factor is replaced by 
something with the same "first (second) component". Equation (viii) takes care of 
multiplication by a product of scalars. Equations (ix) and (x) refer to the identity 
element of the monoid: by (ix) all elements x' have the same "first component" and 
by (x) x' * y always has the same "second component" as y. 

It should be noted that the equational description of A just given is not the 
simplest possible, but rather the one that our general discussion has established. 
Various shortcuts and simplifications will suggest themselves in specific examples. 

We illustrate this with our second example, modules over arbitrary rings. 
Let M be a left unital module over a ring R with identity. Let +1 , +2 denote the 

addition on R, M respectively. Going back to our original procedure, we extend 
these operations (keeping the same names) to R x M as follows 

(r,m)+1(r',m') = (r+1r',m'); 

(r, m) +2 (r1, m') = (r', m + 2 m'). 

Let us replace +2 by a new operation +2 defined by 

(r, m)+2(r', m') = (r, m + 2 m'). 

Then +2 -» as good as + 2 for representing in Rx M the internal addition of M. 
Next we define + on R x M by 

(r, m) + (r', m') = ( r h r ' , m + 2 m'). 
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Introducing the standard rectangular band (binary diagonal algebra) operation o 
on R x M, we get 

(r,m) + (r',m') = (r +j r',m + 2 m!) 

= (r +1 r', m!) o (r, m + 2 m') 

= l(r,m) + 1 (r',m')] o [(r,m)+2(r>>')] ; 

[(r,m) + (r',m')] o (r',m') = (r +j r',m + 2 m') o (r',m')i 

- - ( r + j r ^ m ^ ^ m j ^ ^ m ' ) ; 
(r,m) o [(r,m) + (r\ m')] = (r,m) o ( r + i r ' , m + 2 m!) 

= (r,m + 2 m') = (r,m)+2(r' ,m'). 

Passing to "abstract" diagonal algebras, we therefore have the equations 

x + y = (x + ! y) o (-e+2y); (x + y) o y = x +1 y; # o (x + y) = x+2y, 

so the two additions can be replaced by a single one. The same goes for the two 
unary operations of taking additive inverses and the two unary operations develop­
ing from the nullaries (zeros) of R and M. We now make use of this. 

Example 2. The category of (left unital) modules over variable rings with identity 
is equivalent to the variety of algebras (A , +, —, 0,., *,', o) of type (2,1 ,0 ,2,2 ,1 ,2) 
satisfying the following conditions 

(a) (A, +, — ,0)is an abelian group, 
(b) x(y +z) = (xy + yz) o [x(y + z% 
(c) (x + y)z = (xz + yz) o \(x + y)z], 
(d) x * (y + z) = [x * (y + z)] o ((x * y) + (x * *)), 
(e) (* + y) * z = \(x + y) * z] o ((x *z)-r(y* z))f 

(f) (i) - (x) of Example 1. 
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