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Two-point boundary value problems for nonlinear
perturbations of some singular
linear differential equations at resonance

JEAN MAWHIN, WALO OMANA

Dedicated to the memory of Svatopluk Fuéfk

Abstract. We extend to some second order nonlinear two-point boundary value probl
with a singular resonant linear part some existence results known for the regular case. The
proof uses degree arg; ts and sharp for an iated Green’s function.

Keywords: Boundary value problems, singular equations, coi degree.
Classification: 34B15

1. Introduction. ’
This paper is devoted to the existence of solutions for some nonlinear boundary

value problems at resonance of the form

o) OO () = fu®), el
and either

(21) u(0) = u(1) =0

) .

(@) Jim PO = u(1) =0,

where f : I x R — R is a Caratheodory function, I = [0,1},p € C(I)n C*(]0,1)]),
p0) = 0, p(t) > 0 on ]0,1], and 1/p € L}(I), ), is the first eigenvalue of
-p~ (£)(p£) with boundary conditions (2;) or (2;).

Our results extend to some class of functions p a technique introduced in [ Maw, |
when the linear part does not contain singularities. For example, our Theorem
2 will apply to the nonlinear perturbation of a Lommel equation (whose regular
counterpart corresponding to a = 0 was considered in [Maw,])

®) 2w ()’ — Mu(t) = Aexpult) - h(})
u(0)=u(1)=0
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provided 0 < a < 1, t*h € L!(I), and will imply the existence of a solution if and
only if

(4) A / RO+ T oAty dt > 0
I

where J(3-q)/2 i8 the Bessel function of the first kind of order (1 — )/2 and A, is
‘the square of its first positive zero. Condition (4) is a Landesman-Lazer condition
which is thus extended here to equations with a singular linear part and some
nonlinearities having not necessarily a linear growth. A similar result holds for the
other boundary condition.

Another example, which, in the regular case a = 0, corresponds to a question by
Fuéfk [Fuc] (see [Maw,]), is

=7t (1)) — Mu(t) = g(u(t)) — h(t),
u(0) = u(1) =0,

where 0 € a < 1, g(u) = 0 for u > 0 and u~'g(u) — § > 0 when u — —oo. In this
case, Theorem 1 will imply that a solution exists if

/ RO+ oy /Rt dt < 0
I

Moreover, if g is nondecreasing, the condition above with non strict inequality will
be a necessary and sufficient condition for solvability, as shown by Theorem 2.
Again, a similar result holds for the other boundary condition.

The method uses coincidence degree arguments (see [Maw,] or [Maws]) and the
required a priori bounds rely on sharp estimates for the Green function associated
to the singular differential linear operator. Those estimates rely very much upon
the fact that 1/p is integrable over I and hence the interesting question of extending
the results in the examples to the case where a > 1 remains open. In another paper,
we shall show that extension is possible for a restricted class of nonlinearities.

2.Some results on the linear problem.

Let I =[0,1), p € C(I)NCX(]0, 1]) such that p(0) = 0 and p(t) > 0 on J0,1). We
denote by Ly(I) the space of measurable functions u on I such that |ulp € L'(I),
with the norm

I = [ luColote)
I

We shall impose to p the condition used in [DuK]
(P) 1/p € L'(I),

which will be assumed throughout the paper.
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We define the operators L, : D(L;) C C(I) — Li(I), (i = 1,2) by
D(Ly) = {u € C(I) : u(0) = (1) = 0, u and pu' are absolutely continuous on I
and (') € LX(T)}
D(L2) = {u € C(I): u and pu' are absolutely continuous on I,(pu')’ € L'p(I) and
lim; 04 p(t)u'(t) = u(l) = 0}
and Liu = —(1/p)(pu')', (i = 1,2).

It is easy to check that ker L; = {0} and that, for each h € L}(I), the problem

Liu=h
has a unique solution u given by
1
ut)= [ Gilt, M(s)pte) ds,
0
where G; is the Green function defined by

p-1 fl(llp(r)) dr f(l/p(r))dr if 0<s<t<1
t 0

Galtys) = 1 ¢ .
P [(1/p(r))dr f(1/p(r))dr if 0<s<t<1
s 0
and .
J@/p(r))dr, if 0<s<t<1
Gat,s) =4
JQ/p(r))dr, if 0<t<s<1
with

P= [a/pryar
I

(see e. g. [DuK]). Notice that each G; is continuous on I x I and, with |. |o denoting
the uniform norm in C(I),

L7 Li(I) —» D(L;) c C(I)

exists avﬂd’ as
L7 ulo < max Gullbl

L7 : L*p(I) = C(I) is continuous. Now, by the compactness of G;, we can find,
for each € > 0, some § > 0 such that

(LT A)(t1) = (LT B)(t)] < ellhlla,p

539
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whenever |t; —t2| < 8, which shows, by Ascoli-Arzela theorem, that L] is compact
(i =1,2). Using the results of [CoL] on Sturm-Liouville problems (see Ch.8 and
the remarks ending Section 1 of Ch. 9), we know that L; has an infinite number of
real eigenvalues A} (j =1,2,...) forming an increasing sequence with A} — +oc0
as j — 0o. Moreover, the eigenfunction v}, associated to )Y, has exactly (n —1) zeros
on ]0,1[. Now, to simplify the notation, let us denote by A; the smallest eigenvalue
and by v; a corresponding eigenfunction positive on ]J0,1[ (i =1,2). Notice that
va(t) > 0 for all ¢ € [0,1]. From the equality
vi(Livi)p = Aivip

we get, by integration by parts and use of the boundary conditions, for each
0<ex<]l,

1
X / v} (t)p(t) dt =

1

Ao + [P0 OE, (=1,

c

But, for each u € D(L;), we have

PEn"(t) < (1/p(t) (' (1))?
and hence pu” € L!(I). Hence, letting c — 0, we get

= ( / YL d)/( ,/ EwR(t)dt) 2 0

and therefore A; > 0 as L; is invertible.
Lemma 1. If condition (P) holds, the function T; defined by
(6) Ii:]0,1[x]0,1[ = R, (,8) — Gi(t,s)/vi(s)
belongs to L*°(]0,1] x ]0,1{).
PROOF : We have, for (¢,3) € [0,1] x ]0,1(
Gi(t,8) _ Gi(s,s)
0 — 2L 22
T ou(s) T w(s)

and hence

)< Gilts) _ JOINE

T oul) T wn(s)




Two-point boundary value problems for nonli perturbations . . . 541

By L’Hospital’s rule,
 Jamener
b v1(s) =3‘3«‘rp(a)vx(a)'

Now, from the identity
() = [ Gi(s,rim(p(r)dr,
1

we deduce, for s € ]0,1],
pa)oi(s) = Ay / P(8)D,Gi (s, 2)on (2)p(z) dz =
7
= '\1{[/.?“1?(3)(—1/19(3)) ](1/p(r))dr]v1(z)p(z)dz-F
: :
+][P_1P(8)(1/P(-9)) ](I/P(S))d"]vl(z)l’(z)dz} =
=,\1p-1{— / ( / 1/p(s) dr)vy (2)p(z) da+
s 8

+ ] ( / U/ptr) dryn(Ipte) s

so that

11
timp(0)%(s) = P~ [( [(1/ptr) drpor(aIpla) ds > 0
[ 4

is finite. Thus ,
_ J (1/p(r)) dr
P—% vy(8)
exists and G (t,3)/v(s) is bounded for s close to 0. Similarly

1

Gty SO

~ owu(s) T v1(s)
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and one shows that

fau/piey) dr .
lim *

=1 vy(s) = P—lﬁ " p(s)i(s)
exists, so that Gy(t, s)/v1(s) is bounded for s close to 1. As Gy(t, s)/v1(s) is clearly
bounded for s € [6,1 — 6] for any § > 0, and G;, continuous on ]0,1{ x ]0,1] is

measurable on this set, the result is proved for G;. For i = 2, we first notice that
for each 0 < § < 1 there exists M such that

0 _<_ Gz(t, a)/vg(a) < M
on [0,1] x [0,1 — §]. By definition of G2, we have

Ga(t,8) < Gafs, 9)
for all (t,s) € I x I, and hence
0 < T3(t,8) < Ga(s,s)/va(s)
for all (¢,s) € I x [0,1]. Now, from the equation
—(p(s)v3(s))" = Aap(s)va(s)

and the boundary condition, we deduce
L]
Po3(s) = —ha [ Bryentr)dr
0
and hence
1
.Ligl-p(s)v;(s) = -\ /p(r)vg(r) dr <0.
[
Then, using L'Hospital’s rule, we obtain
Jim Ga(s,8)/va(s) = lim (~1/p(s)vals))

where the right-hand member exists, and hence G;(8, 3)/v2(s) is bounded above on
I. This completes the proof as I';, continuous on ]0,1[ x ]0,1[, is measurable on
this set. ]
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Corollary 1. If condition (P) holds then for cach h — LA(I), one has

IL7 hlo < IDilallbvslly;y, (8=1,2),
where |.|oo denotes the norm in Leo(]0,1] x ]0,1[) and T'; is defined in (6).
PROOF : For each ¢ € I, one has, using Lemma 1,

L7 h)E)] =

/ Gilt I (olo) do| < / S ) o)) d bl

.

Let us now define the linear operator A; by D(4;) = D(L) and 4; = L — N1,
so that A; : D(4;) C C(I) — Ly(I) and, by the discussion above kerd; =
spanv;, (i=1,2). Hence the space C(I) can be splitted as the (topological)
direct sum C(I) = span v; ® C;(I) and each u € C(I) can be written accordmgly
u=H;+4; (i=1,2).
Lemma 2. If condition (P) holds, there ezists A; > 0 such that for each u =
ii; + U; € D(A;), with 4; € kerA; and 4; € C; one has

Wl < Adl(Aitiivilla;p = Adll(Aiw)villap, (G =1,2).
PROOF : If it is not the case, we can find a sequence (u,) in 6.-([) with |t,lo =1
such that
1> n||(Ai@ia)villip
and hence, by Corollary 1,
"-llriice > IL-l(Aiﬁu)lo = [ty ~ Ao'L—l?‘:-Jo
for all n € N°*. ~Now, L~ being compact, there is a subsequence (%, ) such that
L4, =y € Ci(I) in C(I) and hence @i, — Ay in C(I), which implies
y=AL"y
i.e. y = Ker A;, and hence y = 0, a contradiction with |iia,| = 1 for all £ € N*
and ); > 0. ]
Remark 1. A; is obviously a densely defined operator and if A;z, — y in L}(I)
and z, — z in C(I), then 24 — A\;L™ 'z, — L~y in C(J) so that z = \;L™'z +
L'y € D(L) and A;z = y; thus A; is closed (i = 1,2). Finally,
L7'A; =TI - )L™ on D(4;)
AL =1~ )L™ on LY(I)
which implies by a known result [Sch] that A; is a Fredholm operator (i = 1,2).
Moreover, as L is Fredholm of index zero as well as I — )\;L™!, we have, for the
Fredholm indices Ind,
0 = Ind(I — \;L™!) = Ind(L™') + Ind(A;) = Ind(A;),

and A; is Fredholm of index zero.



544 J.Mawhin, W.Omana

Remark 2. If h € Im A;, then we have
~(pv')’ = Aipu = ph

for some u € D(L), and hence
/ (' () wi(t) dt — A / w(t)p(t)oi(t) dt = / KOpoi(t)dt (i =1,2).
1 1 1

Integrating by parts and using the boundary conditions, we get

- [ o @) + Amerpoluerd = /, MOPOi(E) dt,
I

ie.
/h(t)p(t)v.-(t) dt =0, (:=1,2).
I
3. The solvability of the nonlinear problem.

Let f : I xR — R be a Caratheodory function, i.e. f(t,.) is continuous on R for
a.e. t € I, f(.,z) is measurable on I for each z € I and for each r > 0, there exist
ar € L}(I) such that

() < ar(t)

for a.e. t € I and each u with |u] < r. The Nemitsky operator F' defined by

(Fu)(t) = f(t,u(t))
maps C(I) into L3(I).
Lemma 4. F is A;-completely continuous on C(I) (i=1,2).

PROOF : By definition (see e.g. [Maw;]) we have to prove that if B : C(I) —
Ly(I) is continuous, of finite-rank and such that A; + B : D(4;) — Li(I) is
bn,)ectlve, then (A; + B)"'F : C(I) — C(I) is completely continuous. For such aB
we have

(Ai+ B)"'F = (L Nl + BYF = (I 4 L7(B — \D)] ™ L

Now L_;(B — \;I) is compact on C(I) and hence [I + L~}(B — AiI)] ™ is contin-
uous on C(I) and, L~! being compact, it is standard to check that L=!F : C(I) —
C(I) is completely continuous, and the proof is complete. [ ]

Theorem 1. Assume that p satisfies condition (P) and that f satisfies the following

conditions (f1) — (f2) or (f1) = (f2).
(f1) There ezists v € L1(I), such that

1f(tw)l S ef(t,u) + ()
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forae t€l,allu€Rande=+1or -1
(f2) There ezist 64 € L3(I), 6— € LI(I) such that

ft,u) <é4(t) foru20
f(t,u)26-(t) foru<o

and
@ / F(Eui(tp(t)dt <0 < / Fo()oi(t)p(t) de
I I
where
@)= li?ii‘:gf(h“)» f+(®) = l.“_‘}*l_%g f(t,u)
(f}) There ezist 64 € LI(I), 6— € Li(I) such that

f(t,u) S 64(t) foru>0
f(t,u)>6_(t) foru<o

and

®) [ romonna<o< [ 1wt d
I I
where
f-(8) = liminf f(t,u), f*(t) = limsup f(t,u).
Then equation
9) —(1/p(®))(p(t)'(2))' — hiu(t) = f(t,u(t)), t€]0,1],

has at least one solution satisfying (2;) (i=1,2).

PROOF : Wefix i = 1 or 2 and, to apply Theorem IV.13 of [Maws] to the abstract
equivalent version
Aju=Fu

of (9), we first find an a priori bound for the possible solutions of

(10) Aju=AFu, A€l0,1].

If u is & solution of (10) for some A € ]0, 1, then

0= f p(t)(Ai)(t)vi(t) dt = A / S u(®)vi(t)p(t) dt
I 1
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and hence

ay [ e enui e =o
1
Moreover, using (f;) and (11),

[ e =x [ 156 ue)mpn <

T 7

< 3¢ [ 1 uiOpe) 4 A [ HOuORO & < ity = s

T T
Hence, by Lemma 3,
[Elo < AiCL =C,.

Therefore, if the set of solutions of (10) is not a priori bounded, we can find sequences
(un) in D(A;) and (An) in ]0, 1] such that up is a solution of (105, ), [@ale < Ca,
in(t) = cavi(t) with ca — +00 or c, — —00 88 n — 00. Supposing, say that

¢p — 400 and condition (f2) holds (the three other cases are treated similarly), we
have

(12) 0= / F( un(O)vilt)p(t) dt
I

and un(t) 2 cavi(t) - [inlo > cavi(t) — C3, 50 that uy(t) — +oo for ae. t € I.
Consequently, using (12) and Fatou’s lemma, we get

0 = liminf / £t un(t))vi(t)p(t) dt 2
1
> [timint £t unlNloepe e 2 [ Fulthoonte) d,
I I

a contradiction with (7). It then remains to find an a priori bound for the set of
solutions of the real equation

fO= [ ftonymeya=o
1
which again follows by contradiction from (f1) or (f2) using Fatou’s lemma, and
condition (7) or (8) then easily implies that
lds(f,]-r,r[,0)| =1

for r sufficiently large, as f(—r)f(r) < 0. Thus all conditions of Theorem IV.18 in
[Maws) are satisfied and the proof is complete. [
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Two-point b 'y value p for perturbations . ..
Remark 3. The class of nonlinearities verifying (f), which contains of course the
bounded nonlinearities but also various classes of unbounded ones, was introduced

by Ward in [War] for periodic problems.

Remark 4. If we take p(t) = ¢* where 0 < a < 1 in order that condition (P;)
holds, then the eigenvalue problem associated to L is

(13) —t~*(t*u'(t)) - Mu(t) =0, te€]o,1]
(14) u(0)=u(1)=0 or ‘Eno1+ t%u'(t) = u(1) =0
(i.e) tu"(t) + au'(t) + Mu(t) =0, t€]o,l1f

u(0)=u(1)=0 or ‘Er& t*u'(t) = u(1) = 0.

(13) is a special case of the Lommel equation [Nik] and the general solution of the
equation is

u(t) = td-)/? [Cl Ja-ay2(VAt) + C2J(u—1)/2(‘/xt)] )

where C; and C; are arbitrary constants and J, denotes the Bessel function of first
kind of order v. Hence

tou'(t) = t1+e)/2 [ClJ.(l.,.a)/g(\/Xt) - CzJ(H..,)/z(\/Xt)] .

v
As Jy(2) ~ F((’;l/i)l) for z — 0, the boundary condition u(0) = 0 in (14) implies

that C; = 0 and the second u(1) = 0 will be satisfied for a nontrivial u if and only
if

Ja-ay2(VA) =0

i.e. if only if X is the square of a zero of the Bessel function J(1-a)/2- In particular,
A1 is in this case the square of the smallest positive zero of J(a-1)/2- Similarly, the
condition lim¢—o4 t*u'(t) = 0 implies that C; = 0 and the condition u(1) = 0 is
then satisfied for a nontrivial u if and only if

Jia-1)/2(VA) = 0

i.e.if and only if A is the square of a zero of J(a—1)/2- In particular, A, is the square of
the smallest positive zero Jia~1)/2. Notice that for a = 0, Jy/2(t) = 1/2/xt=1/3sint
and we recover the classical results. The results mentioned in the introduction are
easy consequences of this Remark 2, Theorem 1 and the following Theorem 2.

When f(t,.) is monotone for a.e. t € I and satisfies condition (f,), one can give
8 neceggary and sufficient condition for the solvability of (9).

547



J.Mawhin, W.Omana

Theorem 2. Assume that p satisfies condition (P) and F satisfies condition (f).
Assume moreover that f(t,.) is monotone for a.e. t € I. Then equation (9) has a
solution verifying (2;) if and only if there ezists c € R such that

(15) [t enmpwa=o, =12
I
PROOF : Necessity. If (9) has a solution u verifying (2;)(: = 1 or 2), then
/ F(t u(@)i(t)p(t) dt =
1

Now we have also

u(t) = / Gilt, ) [hiu(s) + (s, u(s))] p(s) ds
I

and hence, using Lemma 1 and the symmetry of G;, we have, on |0, 1]

|2 < / (S ) + o, uM o) ds <
< INlam s+ F )l £C:

Consequently, if we assume, say, that f(t,.) is nondecreasing, we have
[ 1t —cutmme <o s [ 56, cutminte d
I I

and the result follows from the intermediate value theorem.
Sufficiency. Let ¢ be a solution of (15) and let us consider the case where f(t,.)
is non decreasing, the other one being similar. If

(16) / F(t, bui(t)wilt)p(t) dt = 0
I

for all b > c, then necessarily
£, bui(2)) = f(¢t, cvi(t))
for all b > c and a.e. t € I. Let w; be a solution of the problem

=(1/p®))p(t' () = Aiw(t) + f(¢, cvi(t)), t €]0,1],
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satisfying (2;) (which exists because of (15)). By an argument similar to that used
in the necessity proof, we shall have

w;(t)
| o) |I<cC

for some C > 0 and all ¢ € )0, 1], and if we choose ¢; > ¢ so large that

wi(t)
w(t) =
fort € ]0,1[, which will be the case if ¢; > c+C, then the function u = ¢, v;(t)+w;(t)
will be such that

= (1/p(&))(p(t)u'(£)) — Aiu(t) = —(1/p())(p()wi(t)) — Mwi(t) = .
= .f(tv wl(t)) = j(t’ u(t)), te€ ]0 ’ 1[

and will satisfy (2;), i.e. u will be a solution of (9). We construct similarly a solution
if (16) holds for all b < ¢. Thus it remains to consider the case where there exist
by < ¢ < by such that

/ F(t b )ue)p(t)dt <0< / £t bavi(t))ui(t)p(t) dt
I I

But, in this situation, one has of course

f(t,u) > f(t,0) foru>0
f(t,u) < f(t,0) foru<O.

and
[ ompna<o< [ fuomopte d
I T
where
F®)=_lm_ftu), fa(t) = lim_f(t,u)
so that the conclusion follows from Theorem 1. .
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