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On L, — convergence of Rothe’s method

JOzZEF KAGUR

Dedicated to the memory of Svatopluk Fudik

Abstract. Loo - convergence and Loo ~ error estimates are proved for Rothe’s method
(method of lines or method of semidiscretization) applied to semilinear second order
parabolic initial-boundary value probl

Keywords: Parabolic boundary value problems, Rothe’s method, Lo - error estimates
Classification: 65N40, 65N59

1. Introduction. In this note we present a simple proof of L., — convergence
and Lo, — error estimates for Rothe’s method applied to semilinear second order
parabolic equations (systems)

Su+ Au= f(t,z,u) in Qx(0,T)
with linear boundary and initial conditions

Bu=0 on 0Q2x(0,T)
u(0)=uo.

We consider a corresponding variational formulation in the form

1) (Beu(t), v) + ((u(t),v)) = (f(t, u(t)),v), WweV
ae telI=(0,T) with u(0)=u,.

(see, e.g., [4], [5], [3]) where V is a subspace of the Sobolev space W3(Q),Q C
RY is a bounded domain with a Lipschitz continuous boundary 8%, (:,-) is the
scalar product in Ly(Q?) and ((:,-)) is a continuous bilinear form on V x V which
corresponds to A and B (see [4]).

C - convergence and C - a priori error estimates for a modified Rothe’s approx-
imation have been studied in [2], see also [1]. In [2] a maximum principle have
been used and stronger regularity of uy, 92 and A have been required than in our
concept.

2. Assumptions. We assume

(2 ((w,w)) + Klul} > Cllu|* VueV
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where K, C are positive constants and | - |2, ]| - || are the corresponding norms in
L3,V, respectively. Moreover, we assume

3) ((u,u?)) 2 =Colul2}], Vu€VNLo(R), Vp=2k+1.

By |ulp+1 we denote the norm in Lp4+1(€). The function f : Ix Q2 xR — R is
continuous and satisfies

(&) 1f(t,z,8) = f(¥',2,8")| < Ly(Jt = £'|(1+ 8| + |s']) + s — &'])
vi,tel,z€Q,s,s €R.

The only restrictive assumption concerning uo is: up € V' N Loo(f2) and there exists
29 € Loo(2) such that

® (20,v) + (w0, v)) = (f(0,u0),v), WweEV

which requires more regularity of uo.
Solving (1) we apply Rothe’s method in the form

(6) (8ui,v) + ((ui, v)) = (f(tiyuia),v) VeV

wherei=1,...,n, h =n"!T, t; = ih and u; = h~(u; —u;_;). The corresponding
Rothe’s function un(t) is defined by

()] un(t) = uj—y + Sui(t — ti-1), VL€ (ti-1,t))=1I;,

t=1,...,n.

Denote ||ulleo := [[ull,o() and [julloo,@ *= llullLoo(q) Where @ =Qr =R x I.

3. The proof of the main result.
Our main result is

Theorem 1. Let the assumptions (2)-(5) be satisfied. Then the estimate
1
= snllosg SO+ 850 [8(t +7) = Bu(t)eo0)
Irlgn=1

takes place where u is the solution of (1) and uy, is the corresponding approzimate
solution from (6), (7).

We note that the assumptions (2)~(5) imply u € Loo(I, V), it € Loo(Q) ~ see
Remark 10.

First we prove a priori estimates ||6uilloc < C,|luill < C uniformly for n, i =
1,...,n and then we prove Theorem 1.
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Lemma 1. The estimates ||6uilloo < C, |Juill < C take place uniformly for n,i =
1,...,n.

PROOF : First we prove the uniform a priori estimates ||uillco < C, Vn,i=1,...,n
under the assumption u; € Leo(f2). The existence of u; € V satisfying (6) is a
consequence of the Lax - Milgram Lemma. Testing (6) with v = uf(p = 2k + 1) we
estimate

lwilt¥] < (uiza,uf) + Cohluyf?3] + h{LJ(I“i-d Juil*)+
+(fil, luil?)} < (us-x, uf) + Cohlu; 241 + h——-lf.l:j}
+th( 7wt P+ 2;%Ilu.-lﬁii)

where the Young’s inequality ab < % + %(p'l + ¢~ = 1) has been used and
fi == f(i,0). Hence we have

luilpii SO+ L+ e..)h)(u.--.,u')+
s+ @rem {Loinnt+ L pitt),

where L :=2Ls + Co + 1, €n — 0 for n — oo.
Now we apply Young’s inequality to the first term on the right hand side. We obtain

l
lm-ll,+1 P + 1 Iut’;Il

h
N |f.|;1: ALt}

gt < (14 (L +enhyr

which implies
fualfd < 200+ (2 + eadhp* {Juia B3 + BT}
From this recurrent inequality we obtain successively
luifpdi < 21+ (L + en)h) o+ {luom: + }: If; :i:h}
=1
Taking (p + 1)~th root and letting p — oo we deduce
®) luilloo < eE*+<mT({luolloo + [I£(t, 0)lloo,@)

uniformly for n, ¢ =1,...,n where ¢, = %Z and n > no(Ly,Cy).
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We guarantee the boundedness of u; by the following arguments. Let us solve
(6) by the Galerkin method where u; x € Vi and Vi = span(ey, . .., €,) stand in the
place of u;, V, respectively. Here, {e;}$° are linearly independent, e; € V N Loo(£2)
and the subspace spanned by these functions is dense in V. Then we obtain the
estimate (8) with ui,x () is fixed) in the place of u;. By standard arguments we
obtain a priori estimates |u; z|z < C, ||ui,Al| < C(h) where h is fixed, uniformly with
respect to A,i = 1,...,n. Hence u; ) — u; in Ly(Q) for A = 00,i =1,...,n. Then
we conclude u; € Loo(f2). To prove the a priori estimate ||6u;lcc < C we subtract
(6) for i = j and i = j — 1 and put v = (6u;)? where p = 2k + 1. We obtain

(6u; — Su;,, (8u;)?) + h((Sui, (6u,)P)) =
= (f(ti,vi-1) = F(tiz1,%iw2), (8u;)?) < RLgp(Juimy| + |ui-z|, [6u;lP)+
+hLg(16ui-1l, 6uilP).

Now, estimating ||6u;llcc We proceed analogously as in the case ||u;||oo. Using (8)
we successively obtain

6ul2t] < 201 + (L + ea)hY (J6uima 23] + ALy (Juima 211+
HluizalF +1) < 201+ (L + ea))PH(|6ui- [F11+
+Ch([luollZ* + 1£(2,0)llce,@ +1))

where L := 4L; + Co, €n = 1'%1, n 2> ng(Lys,Co). From this recurrent inequality,
analogously as in (8), we conclude (using also (5))

9) 8uilloo < e+ ((|z0]l00 + lluolloo + 1£(2,0)llc0,@ +1)
for all n,i =1,...,n. The estimate |lu;|| < C is a consequence of (8), (9) and (6)
Thus the proof of Lemma 1 is complete.

10 Remark. As a consequence of (8), (9) and (6) we have [u;|lwz < C for
all n,i = 1,...,n because of the interior regularity results for elliptic equations.
Thus, the unique solution u of (1) satisfies: u € Loo(I, V)N Loo(I, W7, (R)), Dru €
Loo(QT)’ ’

Now let us denote &; = h~* [} u,%; = u(t;),&; = U; — u;, for i = 1,...,n where
Il = (ti—lyti)-
PROOF of Theorem 1: Let us integrate (1) over I;(1 <i < n). We obtain
(11) (8Ti,0) + (@, 0) = (fisv) WoeV
where f; := h™1 [; f(t,u). Subtracting (11) and (6) for v = €} we obtain

(12) (i — ei-1,e) + h((ei, el)) =
= h(zi,ef) = B(f(ti,uiz1),€f) + h(Fiyef)



On L, - convergence of Rothe’s method
fori=1,...,n where p=2k + 1, ¢g = 0, u := uy for t € (—h,0) and
% :=6‘1'I;—W,~=h"/l(u(a)—u(a-h))da—h"/l B =
[ ]
=h! /’ (A~ / ’ uu(r)dr — Buu(e)) d.
i [ 2ad

Now we estimate

(13) <472 [ / " 1Bwu(e) ~ ()l dr do <
< suph™!? |6gu(a + 1) — dyu(s)| ds
Iri<h
and
(14) Ifi = f(ti wica)l S 1fi = FT)] + £, T) - £ u)l+

Ut ws) = £t wict)] € Dy(h™? /, /, lu(s) — u(r)| dr ds+

+led + (16wl + ©)) < Ly( [ 10vul + e + (1w + €))
[
where C := max]|u;||oo — see (8). We proceed in (12) analogously as in the proof of
n,i
Lemma 1. Using the estimates (13), (14) in (12) we have
le-l,+x < (ei-1,€8) + h(Co + Ly)leilsty + 3hLy—— + T leil333+

——h [ suph™!? |8gu(s +7) — Beu(s)| ds)*** dz+
P + 1 Jariga

+;ﬁ(h"“‘|&ual§1} +h( / By dr + CPHRFH,
I
Here, we use the estimates

(sup b= / Bu(s + 7) — Byu(s)| ds)?*! <
IrI<h L

<h-'sup / |8eu(s + 7) — Byu(s)IP*1 ds,
s

([ dwp <i [ joup*tds
I L
Then, analogously as in the proof of Lemma 1 we obtain
(18) leilpti < 2°(1 + (L + ea) )P V¥ eo 213+

+hPH( /., /0 (1Beunl™! +18ulP*) + CTH)4

8
+sup / / |Beu(s + 7) — Buu(s)|P* dz ds
|r|<h Jo 1]
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where ¢g =0, L = 4Ly + Co, €n = £, n > no(Ly, Co). Then (15) implies

lleilleo < eS+<T(h(1Beunlico,@r + 18eullcoar +C)+
+ P I8eu(s + ) — Beu(s)llo,qr )

fori =1,...,n. For t € I; we estimate
Nl = unlloo < llu = illoo + & — Gilloo + |T; — uilloo+

+2hlbuilleo < C(2h(I8etlloo,qr + 2ll6eunlloo,or )+
+I:?S‘: 18:u(s + 7) - Biu(s)llor)

and finally
1
flu - unllco,@r < C("; + IT&‘|&“(3 +7) — du(s)llo,Qr)
which is the required estimate.
As a consequence we have

Theorem 2. Suppose (2)-(5). Let u be the solution of (1) and let u, be the Rothe’s

function defined by (7).
i) If Byu € C(I, Loo(RD)) then un — u-in Loo(QT);
ii) If 8u € Loo(Qr) then ||uy — ulloo,@r = 0(1)
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