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On minimizers with prescribed divergence 

MARTIN FUCHS 

Dedicated to the memory of Svatopluk Fu£flc 

Abstract. We extend some regularity results of Giaquinta-Modica obtained for weak so­
lutions of certain equations of the type of the stationary Navier-Stokes system to local 
minimizers of quadratic variational integrals in a class of functions with prescribed diver­
gence. 

Keywords: regularity theory, stationary Navier-Stokes system 

Classification: 35D10 

0. Introduction. 
In [GM] Giaquinta-Modica study nonlinear equations of the type of the station­

ary Navier-Stokes system 

' a) div u = g and 

(0.1) i *) / AQ{^Du).Da(dx~j B^Dutf.dx 

for all solenoidal vector-fields < € JET1'2 ,̂ FT) 

and prove (partial) regularity theorems imposing natural structure conditions on 
9,Aa and B*. Especially the growth of B* in Du is subquadratic; 
hence -.Dcr(.Att(«,u,.Du)) - £(-,u,Du) is in the dual space J.f"1(ft) vanishing on 
solenoidal test-vectorfields and a well-known decomposition theorem (see [A)) 
shows that 

(0.2) -Da(A«(; u, Du)) - £(•, u, Du)) = grad p 

holds in the weak sense for a suitable pressure function p € X2(H). Since the 
pressure p is a controllable term, Giaquinta-Modica replace (0.1) b) by (0.2) and 
apply the methods developed in the study of (nonlinear) elliptic systems (compare 
[G] for a survey) to prove their theorems. 

On the other hand systems of the form (0.1) with B*(-, u, Du) of quadratic growth 
naturally arise minimizing quadratic functionals 

Ң « ) : = [ f{;n,Du)dx 
Ja 



498 M.Fuch. 

in the class of admissible functions 

K := {w € fT1,2(ft, R"): w = u0 on 0ft, div w = g}. 

The purpose of this note is to prove a partial regularity theorem for F-minimizers 
in the class K concentrating on the quasilinear model case 

*"(«) = / ^ ( • . « у О . и ' . О ^ Л 

We then show that Hn~2(Sing u) = 0 holds for the interior singular set of a mini-
mizer u. 

1. Notations and statement of the result. 
Let ft be a bounded domain in Rn, n > 2, and suppose that we are given a function 

g : ft -> R with g € I*(ft) for some 3 > n. On the Sobolev space 13rl»2(ft,Rn) we 
define the functional 

F(u,íl) := j A^i-^D^D^u'dx 

(indices repeated twice are summed from 1 to n) with uniformly continuous coeffi­
cients 

^:nxR"-^R,^ = 4„, 
satisfying 

(1.1) 
(\A%(x,y)\<L 

\ 4 ' A »)<?!,<# >-MQ|2 

for all x 6 ft, y € Rn, Q 6 Rn x n with positive constants £, A. For u € .flrl'2(ft,Rn) 
let 

Reg(u) = {a? € ft | u is continuous in a neighborhood of x}, 
Sing(u) = ft - Reg(u) 

denote the interior regular and singular set. 

Theorem. Suppose u € C := Jf1»2(ft,Rn) n {w : divu» = <?} &« &e property 
F(u,Q) < F(v,ft) /or alive C 3uch that spt(u-v) CC ft. Then Hn~2(Sing u) = 0. 

Remarks. 
1) As we shall see below a point x € ft is regular for the minimizer iff there is 

a ball Br(x) C ft such that 

r2~n / \Du\2dz<eQ 
JBr(z) 

holds, eo denoting an absolute constant depending on the data. 
2) If g and the coefficients of the functional are sufficiently smooth it is not 

hard to see that higher regularity theorems hold on ft — Sing(u). We refer 
to [G] and [GM], the details are left to the reader. 
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2. Proof of the theorem. 
The main ingredient is a Caccioppoli-type inequality. 

Lemma 1. Suppose that u € C is a local minimizer under the side condition div u = 
g. Then for any ball B6(x) C ft 

(2.1) -f \Du\2dz<\-f \Du\2dz+ 
JBi/t(z) 2 JBt{x) 

c i [ / g2dz + 6-2l \u-(u)6\
2dz), 

JBs(z) JB,(«) 

CI being an absolute constant. Here we use (u)6 to denote the mean value fB u dz 
of u on the ball B6(x). 

PROOF of Lemma 1: Let a := (u)6 and suppose that x is the origin. By FYtbini's 
theorem u, Du € L2(SR~l) for almost all R € (6/2,6) and we may choose a radius 
R such that 

(22) (E(u,Sn
R-1)<c26-1E(u,B6), 

X W(u,S5"1) < c26-lW(u,B6), 

where we have abbreviated £ ( / , •) = / |D / |2 , W(f, •) = / \f - a\2. 
Let u denote the solution of the auxiliary variational problem 

( fB \Dw\2 dx —> Min in 

\{ve H^2(BRiR
n) :v-u£ Hl>2(BR,Rn),divv = g}. 

Then 
/ DuD<<fe=0 

JBR 

for all < € Hl>2(BR,Rn) div< = 0, and (compare [GM], Theorem 0.L) there is a 
function p G L2(BR) such that 

(2.3) -Au = grad p 

in the sense of distributions on the ball BR and 

(2-4) ||p - (P)RIU-(B*) < cfell - A«IIH-MBH) 

with c3 independent of BR. Identifying H-1(BR,Rn) with Hl*2(BR,Rn) via the 
isomorphism 

A : f f , ' 2 ( B ^ R " ) ^ i r 1 ( B K , R B ) , 

we see 
|| - AUHH-HB*) = II-^IU-(BR), 
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v being the unique element of H1,2(BR>R1%) representing -Alt: 

(~Au,C>= / DvD(dx. 
JBR 

Clearly v = u - A, h the harmonic extension of It, hence 

|| - Atj||H--(BR) = l imr - Dh\\LHBR) < 2||Du||L,(Bjl), 

and (2.4) gives 

(2.5) / |p - (P)H|2 dx < cA ( \Du\2 dx. 
JBR JBR 

For r 6 [1/2,1) let 

1r(t) := { 

0, 0 < t < -(3r - 1)R 

1, t > rR 

linear, ~(3r - l)R < t < rR 

and 

vr(x) := a + t|r(|x|) ( w ( # r j ) - «J , x 6 Bfl. 

As test vector in (2.3) we use f := u — vr with the result (observe (2.5)) 

(2.6) / \Du\2dx<cA[ \Dvr\
2dx+ f |div(ti - vr)|

2dx . 
JBR UBR JBR 

For the energy of vr we have 

jf \DvT\2dx < ce • {i?(l - r)£(u,SS-1) + ^ - ^ S ^ ) } , 

and recalling divu = g we find 

/ |div(«-t; r ) | 2di< f \g\2dx + f \Dvr\
2dx 

JBR JBR JBR 

Combining these results with (2.2) and (2.6) we arrive at 

/ | . O T | 2 d x < c 7 x ( / g2dx + (l-r)f \Du\2 dx + (1 - r)""1^2-
J BR \JB$ JBf 

• J \u-(u)6\*dx} 
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Now u is locally F-inininiizing in the class C so that 

F(u,Bft)<F(u,BH), 

and from the structure condition (IT) we deduce 

/ |Du| 2 dx < csF(u, BR) <c9 I \Du\2 dx < 
JB$I% JBR 

c i o l / g2dx + (l-r)j \Du\2dx + {l-r)-l.6~* / \u ~(u)6\
2dx\. 

Choosing r sufficiently close to 1 inequality (2.1) is established. • 
From Lemma 1 we immediately deduce higher integrability of the gradient of a 

minimizer: 

Lemma 2 . If u 6 C is a local F-minimizert then Du is locally q-intcgrable for 
some q>2 and for BR C B2R C Q. 

(2.7) ( £ \Du\'dx)1' < c „ { ( £ \Du\Ux)12+ (j-B Iff l '^yj . 

PROOF : combine [G], Prop.LI, Chapter V, and Lemma 1. • 
If the dimension n is two, then u is locally Holder continuous: For n > 3 the 

proof of the Theorem can be completed following ideas of [GG]: 
Fix a ball BR = BR(x0) C 0 and consider the solution v of the problem 

/ 4 , V * o , u^Da^DfiV* =: Fo(v,BR) -• Min 
JBR(XO) 

in the class 
{w£Hh2((BR,Hn):w^u on 6BRydivw = g] 

From [GM], Prop. 1.12, we infer the Campanato-type-estimate 

(2.8) / \Dv\2dx<ci2.\(~)n. [ \Dv\2dx+ f \g~gR\2dx 
JBr L -" JBR JBR J 

and for energy of u — v we have the bound 

A - / \Du-Dv\2dx< [ Aih(x0%uR)'Da(u
i~-vi)Dfi(u

i--v>)dx~ 
JBR JBR 

= F0(u, BR) - F(u, BR) + F(u, BR) - F(t>, BR) + F(v, BR) - F0(v, BR) < 
< F0(u,BR) - F(u,BR) + F(v,BR) - F0(t>,£R). 
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The assumptions concerning the coefficients A^* imply the existence of a continu­
ous, increasing, concave function u> : [0, oo) —> [0, oo) satisfying u>(0) — 0,u(t) < L 
such that 

KV*. v) ~ W - §01 < 41* - «T* + If - 51'). 
hence 

/ |.Du~I>t;|2da:< 
JBM 

< c 1 3 / v(& + \u-uR\*)\Du\*d9 + c14' [ u>(R2+ \v-uR\2)\Dv\2 dx 
JBR JBR 

The first integral one the right-hand side can be handled with the help of (2.7): 

/ u>(R2 + \u - uR\2)\Du\2 dx < 
JBR 

<cnu>(4 R2 + \u-uR\2dxJ x 

X / |Du|2dx + i?*1-2/*) ( ( \g\*dx) 
[JBÍR \JB*R / 

2/íl 

Since t; solves a constant-coefficient-problem it is easy to see that v satisfies Caccio-
ppoli-type inequalities up toe the boundary (compare e.g. [GM], Theorem 2.2) 
which imply global higher integrability of Dv, more precisely: 
Dv 6 L*(BR) for some exponent 2 < q < q and 

-/? 

+ (2.9) f-^ \Dv\*dx\ * <cxA(4 \Dv\2dx) +(4 \Du\<dx\ 

+(£.rfi)"'} 
For simplicity we may assume q = q. Then, using the minimality of v and estimate 
(2.7), (2.9) can be rewritten as 

(£ \Dv\'dx\1' <c17l(£ \Du\*dx)12 + (£ Wdx)%,\ 

and implies the inequality 

/ ^ J . * + | v - U K p ) | i > | J d - < C i e < . J 4 " R* + \v-uR\3dx\ x 

x I / \Du\2dx + R«l-W (J |,|«dx\% | . 
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Since 

-f \v-uR\2dx<c19R
24- \Du\2dx, 

JBR JB* 

we finally arrive at 

J \Du\2dx < c20 • { ( £ ) • + * ( * • , * ) } J \Du\2dx+ 

+ < * - { / \9-92R\2dx + Rn(J- \g\<dx) ' J , 

# r 0 , J?) := u> (c22 - R2~n f (1 + \Du\2)dx) , 
\ JBn(xo) / 

where we have used (2.8) and the foregoing estimates for the energy of u — v. Recall 
g € L*(Q) for some exponent s > n, therefore 

JBtR \ JB,R / 

We may write n(l — 2/s) = n — 2 + 2a for some 0 < a < 1 and end up with the 
result 

/ \Du\2 dx < c24 • \(^)n + il>(x0,R)] I \Du\2 dx + cn • Rn~2+2a 

JBr(xo) L -« J JBtR(*o) 

for all balls .Br(xo) C B«(a?0) C B2JR(-C0) C 0, The statement of the Theorem now 
follows as in [G] or [GG]. 

Remarks. 
1) Since Du € tfoc(Q) for some q > 2 we have Hn~«(Singu) = 0. 
2) The case of non-uniformly continuous coefficients needs some changes which 

can be found in [GG]. 
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