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Solvability and multiplicity results 
for variational inequalities 

PAVOL QUITTNER 

Abstract. We study the solvability and the multiplicity of solutions of variational inequal­
ities of the following type 

u € K : <Au-F (u,A ) ,v-u) > 0 Vu € K, 

where K is a .closed convex cone in a real Hilbert space H and F : H X R —+ H is & 
completely continuous, asymptotically linear map. 

Keywords: variational inequality, Leray-Schauder degree 

Classification: 49A29 

This paper is concerned with inequalities of the following form 

(1) ueK: ( A u - A t i - g ( u , A ) - / , t i - u ) > 0 Vv € K, 

where 

H is a real separable Hilbert space with the scalar product (•,•), 

K is a closed convex cone in H with its vertex at zero, 

Ktt,K*H,K?{0}, 
(A) ^ A ; H —• H is a completely continuous linear operator, 

g : H x R —• H is a (nonlinear) completely continuous map, 

/ € H is a right-hand side, 

A € -R+ := (0, +oo). 

Using the projection PK ' H °-V K we reformulate the inequality (1) as a non­
linear equation and then we study the solvability of this equation (for sublinear g) 
using the Leray-Schauder degree. 

We prove various multiplicity, existence and non-existence results for the solu­
tions of the inequality 

(2) u€K (\u-Au-f,v~-u)>0 V v € K 

and as consequence of our considerations we get also the existence of nontrivial 
solutions of the inequality 

(3) u£K ( A u - F ( u ) , t ; - u ) > 0 Vv € K 
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where F : H —> H is a completely continuous map, F(0) = 0 and F'(0), F'(oo) fulfil 
some additional assumptions (in particular F'(0) ^ F'(oo)). 

Our assertions imply also some existence results for bifurcation points of vari­
ational inequalities; these results are close to the results of Miersemann [7], [8], 
[9] and Kucera [4], [5], [6]. Moreover, our bifurcations are global (in the sense of 
Rabinowitz [20]). 

Our method is the same as in [11], nevertheless many of our results are new. The 
reformulation of the problem (1) is just sketched, all details can be found in [11]. 

Let us mention that another degree-theoretic approach to variational inequalities 
was used by Szulkin [17],[18], [19] and that our degree d(A) is very close to the 
degree investigated by Svarc [14], [15], [16] in problems involving operators with 
jumping nonlinear!ties (in fact, these two degrees coincide for some special cones in 
Rn). 

In the whole paper we will assume (A). 

1. Preliminaries. 
We will denote by o"#(A) the set of all (real) eigenvalues of the inequality 

(4) u€K (Xu-Au,v-u) > 0 V v € K 

i.e. the set of all A € R such that the inequality (4) has a nontrivial solution. 
Further denote by a(A) the spectrum of the operator A and put 

a£(A) := aK(A) n R+, a+(A) := a(A) n f*+, where R+ := (0, oo). 

Note that the set a"^(A) is closed in R+ and that the set o*x(-4) is bounded by 
+j|-4||. In general, the set aK(A) may contain an open interval even for H = R3 

and it may also consist of only one point even for dim(H) = -f-oo, A symmetric (see 

[10], [ i i ] ) . 
Let A* be the adjoint operator to A. We will denote 

вд 
ЯҶЛ) 

EK(\) 

EЏX) 

= K e r ( A I - A ) , 

= Ker(A/-~A*), 

= {w€K; (Xu-Au,v-u) > 0 Vv€K} , 
= { u € K ; (Xu-A*u,v-u)>0 W € K } . 

Moreover, for Ao € -R+ we put 

A+ : = inf{A € aK(A)\ X > A0}, 

XQ : = sup({0} U {A € aK(A); X < A0}), 
oo 

/?(Ao) : = 5 2 dim( U Ker(AI - A)'), 
A > A 0 J > = 1 

7(A0): = £ dim(|J Ker(A7- A)'). 
A>A0 p = l 



Solvability and multiplicity results for variational inequalities 283 

If {A«} is a decreasing sequence of real numbers, An —• Ao, A« > Ao, then we shall 
write An | A0; analogously A„ | A0. Finally, we put 

BB{«Q) : = {" € F ; \\u - u0|| < J*}, BR := Bjt(O), 

5 i : = {tt€iT;||tt|| = l } , 

PK : = the projection of H onto K, 

dM : = the boundary of M, 

M : = the closure of M, 

M° : = the interior of M, 

K* : = {tt G K; (3D C # , D = #)(Vu> G D)(3e > 0) u + ew G K}, 

KA : = {tt € K; (Vu/ € U\€RE(\))(3e > 0) u + ew € K}. 

Obviously, K° C Ka. If, moreover, A is symmetric, then K° C K^ C K*. 

Example 1. Let ft := (0,TT)2 C R2,H := W"0
1,2(a) (the Sobolev space), (u,v) := 

JQ Vu • Vvdx, (AM,V) := /Q uvdx, K := {u € H\u > 0 on M} , where M C ft is 
a closed set of positive capacity. Then one can easily prove K° = 0, nevertheless 
KA / 0 (e.g. if tt > £ > 0 on M, then u € K^). 

Lemma 1. Let K*(A) fl Ka ^ 0. Tfcen K/c(A>= -E(A) n K. 

PROOF : Obviously K(A) fl K C EK(\)- We shall prove the converse inclusion. 
Let M G Ek(\) and choose it* G K*(A) fl Kfl. By the definition of Ka there exists 
D C H,D = H, such that (\fw G D)(3e > 0)w* + ew G K. Putting v = u + u* + eu> 

in (4) we obtain 

0 < (Au — Aw, M* + ew) = (u, Au* — A*u*) + (Au — AM, +eu;) = +e(Au — Aw, u>), 

hence Aw - Att G Dx = {0}, w G E(\). • 

Lemma 2. let K be such that it is not a subspace of H (i.e. span(K) ^ K). Then 
there exists 0 ^ wo G K such that (w,wo) > 0 Vw G K. 

PROOF : Choose vo G span(K) — K. Then {vo} and K are disjoint closed convex 
sets, {VQ} is compact, and according to Hahn-Banach theorem there exists 0 ^ wi G 
span(K) such that (w,wi) > 0 Vw G K. Put WQ := PKU%. Since K is a cone with 
its vertex at zero, we get using the characterization of the projection PK 

( w i - P K « i , P K t t i ) = 0 

and 
(tti - Pjctti, w) < 0 for any w G K, 

which implies (w0,w) = (PjfWi,w) > (wi,w) > 0 for any w G K. Since (wo,w) > 
(tti, w) > 0 for suitable w G K, we have w0 ^ 0. • 
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2.Reformulation of the problem and bifurcations. 

The problem (1) is equivalent to the equation 

(5) T(u) = 0, 

where T : H-* H, T(u) := u - \PK(Au + g(u, \) + / ) (see [11]). 
We shall often write T(A,/ ,#) or T(\,f,g,A,K) instead of T to indicate the 

dependence of T on the corresponding parameters (while the other parameters are 
fixed). 

Lemma 3 . (Apriori esiimaies). Lei J C R+ — cK(A) be a compaci sei, * fep —• 0 
for ||u|| —• oo (uniformly for \ € J). Then 

(VM>0)(3R>0) | | / | | < M , *€[0 ,1] , A € J , T(A, / , ig)(u) = 0 =» ||u|| < R 

PROOF : [11, Lemma 2]. • 

As a corollary of Lemma 3 and the homotopy invariance property of the Leray-
Schauder degree we get that the degree deg(T(A,/,0),O,B#) is well defined for 
A £ <?K(A) and for R > 0 sufficiently large and does not depend on / and g. 
Moreover, if we define 

d(A):=deg(r(A,0,0) )0,i9 r) 

where r € -f?+ is arbitrary, then the function A t--> d(\) is locally constant on 
R+~aK(A). 

R e m a r k 1. (i) In [11], [13] there is given a more general version of Lemma 3; the 
apriori estimates are proved to be independent on some small perturbations of the 
cone K. As a consequence of this result we get e.g. the following statement: 

Let Kn(n = 1,2,. . .) be closed convex cones in H with their vertices at zero and 
let 

(6) sup^\\PKu - PKnu\\ - * 0 f o r n - f o o . 
*€BT 

Let A € .R+ - <rK(A). Then A g <rKn(A) and dn(\) = d(\) for sufficiently large n, 
where dn(\) := deg(T, A, 0,0, A, K„), 0, P r ) . 

Moreover, carefully reading the proof the proof of [11, Lemma 1] one can see that 
the condition (6) can be weakened to 

sup \\PKAu - PKn Au\\ - • 0 for n - • oo. 
«€B t 

(ii) Denote by XK(A) the set of all /i € R such that the inequality 

u£K: ( u - ^ « , v - u ) > 0 Vt>€K 

has a nontrivial solution. For p ^ XK(A) we can define 

d(f*) := deg(I _ ^ A , 0, Br). 

Then, obviously, /* 6 XK(A) H J?+ & I € <-.+ (A ) ^ 4 J ^ ) « d ( I ) for ^ € fl+ -

XK(-4). Moreover, if <-4u, ti) > 0 for any u € # , then one can easily show XK(A) C 

.R+, which implies d(fi) = 1 for f* < 0. 
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Lemma 4. (Local bifurcations). Let Ai,A2 € R+ — <TJC(-4),Ai > A2, d(X\) ^ 
d(A2),

 s i ^ 1 -*0foru-+0 (i = 1,2) and let g(0,X) = 0 /or A € (A2, Aj). Then 
there exists a bifurcation point A0 € (A2, Ai) for the inequality 

(7) u € K : ( A u - A u - 0 ( u , A ) , t > - u ) > O Vv € K, 

i.e. i&ere ea;t.*is a .sequence (un ,An) of solutions of (7) such that un ^ 0 and 
(un,An) -» (0, A0). Particularly, A0 € <rj<f(A). 

PROOF : [11, Lemma 3]. • 

Lemma 5. (Global bifurcation). Let A0 be an isolated point of cr"^(A) with 
lim d(A) ^ lim d(A). Let SI C (H x R) be an open set, (0, i^) € 11. Put 

A—••Aft A—*Art 

u0 := J- <m<f suppose lim 4nfjp = 0 locally uniformly in p.. Further denote by S 

(«,.«)€ft 
the closure (in Q) of all nontrivial solutions (u,p) of the inequality 

ueK : (u - pAu - g(u, p), v - u) > 0 Vi> € K 

an*f /et C oe Jfce component of S containing the point (0,PQ). 

Then the set C has at least one of the following properties 

(i) C is not bounded 

(ii) cndft^0 
(\n)Cn({0}xR)^{(0,po)}. 

PROOF : is the same as the proof of Rabinowitz's global bifurcation theorem [20], 
[21] so that we shall just sketch it. We shall use the notation from Remark 1 (ii). 

Suppose that C has none of the properties (i)-(iii). Then C is compact and 
similarly as in [20, Lemma 1.3] we can find an open bounded set O C 0 such 
that C C O, S n dO = 0 and O n (Bp x R) = Bp x [pQ - e,/i0 -f e], where 
e < dist(/i0,xK(-4))« Moreover, we can choose p > 0 such that the equation 
u = PK(I*AU + tg(u,p)) is not solvable for p = PQ + £>0 < ||u|| < p and t € [0,1] 

(see the proof of [11, Lemma 3]). Put G := {(u, p); \\u\\2 + (p~ p0)
2 < p2 + e2}; we 

may suppose G C 0 . Rirther put 

ff;(U)/i) := (« - PK(pAu + tt»(t...u)),«(|M|a - r2) + (1 - t)(e2 - {ji - / .0)2)). 

Using the homotopy invariance property of the Leray-Schauder degree we get (for 
sufficiently large R > 0) 

0 = deg(if£,O,0) = deg(IT*,O,0) = d e g ( ^ , 0 , G ) = deg(#°,0,G) = 

d(pQ-e)-d(pQ+e)±0, 

which is a contradiction. • 
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3. Determ ination of d(A). 
The following Theorem 1 is proved in [11]. 

Theorem 1. (%) If \> supcr^A), A > 0, then d(\) = 1. 
(it) Let \0 £ o+(A),&mE(\0) = 1,£(A0) n K° ^ 0,E*(\0) n K° £ 0 and choose 
u0 £ E(\0) n K°,i*; € E*(\0) n K°. Then \0 < \0 < \$ (i-e- A0 is an isolated 
point of a"x(A)) and moreover, 

(a) if (u0,u*) > 0, then d(\) = ( - l ) ^ o ) / o r a n y A 6 (A0, A+),<f(A) = 0 for 
any A € (AQ~,A0) and there exists a right-hand side f £ H such that the 
inequality (2) is not solvable for any A close to A0, A < A0; 

(b) if (ti0,ti5) < 0, then d(\) = ( - I )** . ) for any A € (AJ\Ao),d(A) = 0 /or 
any A £ (A0,Ao") and there exists a right-hand side f £ II such that the 
inequality (2) is not solvable for any A close to A0, A > A0. 

Remark 2. (i) The assertion d(A) ^ 0 for some A enables us to prove that the 
corresponding inequality (2) (or (1)) is solvable for any f £ H. The assertion 
d(\) = 0 does not guarantee the existence of / € H such that the inequality (2) is 
not solvable ([14]). 
(ii) Using Theorem 1 and Lemma 4 or 5 one can easily prove various assertions about 
the existence of bifurcations of solutions of the inequality (7) (e.g. [11, Corollary of 
Theorem 3]). Similar assertions can be proved also using the following Theorems 
2,3,4,5,6. 
(iii) If K is an intersection of a finite number of halfspaces, then we have more 
precise information about the structure of the solution set of (2): for A £ CTK(A) 
and a generic f £ H the number of solutions of (2) is finite, locally constant and 
its parity depends only on the parity of d(A) ([11, Theorem 5]). 
(iv) If K is a halfspace, K = {u £ H; (u, U0) > 0}, A € R — cr(A), then the inequality 
(2) is (uniquely) solvable for any f £ H iff 

F ( A ) : = ( ( A / - A r 1 « 0 , u o ) > 0 

and A € &K(A) iff F(\) = 0. If the operator A is symmetric, then the function F 
is strictly decreasing on each component of R — cr(A) ([11, Lemmas 8,9,10]). 

The following four theorems are some analogous to Theorem 1 in the case of 
multiple eigenvalues and cones with empty interior. 

Theorem 2. Lei A0 € <r+(A), JE?*(A0) n Ka ^ 0. 
(%) Let (V0 £ u £ E(\0) n K)(3u* £ E*(\0) n K) («,u*) > 0. Then A~ < 

A0,d(A) = 0 for A € (\0 , A0) and there exists a right hand side f £ H such that the 
inequality (2) is not solvable for A close to A0, A < A0. 

(ii) Let (V0 ^ u £ E(\0) n K)(3u* £ E*(\0) n K) (u,u*) < 0. Then A+ > 
A0, d(\) = 0 for A € (A0, \0) and there exists a right hand side f £ H such that the 
inequality (2) is not solvable for A close to A0, A > A0. 

PROOF : We shall prove only the assertion (i), the proof of (ii) is analogous. All 
assertions will be proved by a contradiction argument. 
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First suppose there exist An € a"x(A), \ n f Ao. Then there exist wn £ EK(\U) H 
S\. Since An $ cr(A) for sufficiently large n, we have wn € dK for n > no (each so­
lution of an inequality lying in K° is simultaneously a solution of the corresponding 
equation). Using our reformulation of the problem (1) we get 

(8) wn = —PKAun. 
*n 

Without any loss of generality we may suppose ttn —- u. Passing to the limit in (8) 
we obtain 

un -+ « = — PKAU, 
Ao 

since the right hand side in (8) converges strongly. Thus u £ EK(\Q) H dK C\ S\ 
and according to Lemma 1 we get u £ E(\o). By our assumptions there exists 
u* £ JE?*(AO) n K such that (tt,w*) > 0. Putting v := ttn 4- u* in the inequality 
(Anwn - Attn, v - wn) > 0 we get 

0 < (Anttn - Awn, «*) = (A„ - A0)(wn, w*) + (ttn, A0tt* - A*tt*) = 

= (An-A0)(t tn ,M*), 

hence (ttn,ti*) < 0, (tt, tt*) < 0 , which is a contradiction. 
Thus we have \Q < A0 and it is sufficient to prove that the inequality (2) is not 

solvable for suitable / and A close to Ao(A < Ao). Our assumptions guarantee that 
E*(\Q) H K is a closed convex cone (with its vertex at zero) and that it is not a 
subspace of H. According to Lemma 2 there exists ttj € E*(\Q) HKHSI such that 

(«*, "*) > 0 for any w* € E*(\Q) n K. 

Suppose that the inequality (2) is solvable for / := wj and An | Ao, i.e. there exist 
un £ K such that 

(9) (Anttn - Attn - «; , v - tin) > 0 \/v£ K. 

Putting t; := un + uQ in (9) we obtain (as above) 

(A n -A 0 ) ( t t n , t t 0 *)> | | t t* | | 2 >0, 

which impHes ||ttn|| —> oo. We may suppose trĴ TT —»• w; passing to the limit in the 
equation 

"n _ - p (A W n Wg 

iw r */Jrt W K l ' 
we get irj^j -+ w € ^(Ao) = E(\Q) n K u £ S\. According to our assumptions 
there exists w* € E*(\Q) f] K such that (w, w*) > 0. Putting v := wn -f w* in (9) we 
obtain 

(An-Ao)(wn,w*)>(w*,tt*)>0, 
hence (ti-»> «*) S 0> (w, u*) < 0, which is a contradiction. • 
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Theorem 3 . Let A0 g <r+(A), E(X0) nK°?Q, E*(\0) r\K°?9. 
(i) Choose e g (0, >/2) and Si,S2£ (0,e) such that 

(10) S\ + Si - \S\S'2 < e2, S\ < e\l - j ) 

(we can put e.g. Si := S2 := -7-) and suppose there exist u0 € 1£(A0) n 5i and 

uj eE*(A0)n5i such that 

(11) 5 inB e (uJ)cK ° , 

(12) | |u0-ti5| |<*i, 

(13) (Vu € E(\0) ndKn Sx)(3u* € E*(\0) n K n 5i) ||u - u*|| < 82. 

Then A+ > A0 and d(\) = (-1)^*°) for any A € (A0, A+). 
(ii) Let u0 € E(\0) n K°, (u0,u*) < 0 for any u* € E*(\0) n K, (u0,u*) < 0 /or 

some uj € JE?*(A0) n K. Let, moreover, 

(Vu € £(A0) ndKn 5i)(3u* € £*(A0) n K) (u, u*) > 0. 

Then \0 < A0 ana* d(A) = (-1)^A°) /or any A € (A~, A0). 

PROOF : Similarly as in the proof of Theorem 2 we will argue by contradiction. 
(i) First suppose that there exist An € &K(A) such that An J, \0 and choose 

«n € Ex(\n) H Si. As in the proof of Theorem 2 we may suppose un € OK 
and un -> u € -t7(A0) n dK n Si. By (13) there exists u* € E*(\0) n K n Si 
such that || u — u*|| < S2. Using (10) and (11) we obtain -9$2(uJ) C K°, hence 
u — u* + uj € K°, un — u*+uj € K for sufficiently large n. Putting v := un — u* + uj 
in the inequality 

(Anun - Aun, v - un) > 0 Vv € K 

we get (An - A0)(un,uJ - u*) > 0, hence 

(«,«;> > <«,«*> = l(||«|p +1|«»||2 - n« - «-||-) > i - \s2, 

so that ||u - uj| | < S2>u 6 Si n Be(u0) C K°, which gives us a contradiction. Thus 
\t > A0. 

Now let us consider the inequality 

(14) u € K : (Au - Au - (A - A0)u0,t; - u) > 0 Vv € K. 

This inequality has for A > A0 the solution u := u0 6 K0, which is its unique 
solution in K° for A $ a(A) (since each solution of the inequality lying in K° is 
also a solution of the corresponding equation). Thus for p > 0 small, R > 0 large, 
A close to A0(A > A0) and T := T(A,(A - A0)u0,0) we get 

d(\) = deg(r, 0, BR) = deg(T, 0, J3,(«0)) + deg(T,0, B« - £,(«„)) = 

= (-l)«*o) + d e g ( T ) o, BR - B^o)), 
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since T(u) = u - \PK(AU + (A - A0)u0) = u - {(Au + (A - A0)u0) for u € Bp(u0). 
We shall prove deg(T,0,Bn — Bp(u0)) — 0. To prove this it is sufficient to show 
that the inequality (14) does not have solution in 8K for A sufficiently close to 
A0(A > A0). Suppose the contrary, i.e. there exist An J. A0 and un € OK such that 

(15) (Anun - Aun - (An - A0)u0, t; - un) > 0 Vv € K. 

Choosing t; := un + uj we get (An — A0)(un — u0, uj) > 0, so that 

(16) K,ti;)>(u0,uJ)>l-i^. 
Hence ||un|| > c > 0 and we may suppose j r ^ —* u. Passing to the limit in the 
equation 

¥A\~KK{ AJKl + (An" XoW 
we get j ^ - t u e EK(Xo)ndKnS!. Further ^ € dKnSx, thus H ^ - a S H > e, 

which implies (||*"||)**o) !s - — 2£2- The last inequality and (16) imply 

(17) IKH > | f § . 

By (13) there exists u* € E*(X0)nKnSi such that 

(18) | | u - u l < * 2 , 

thus UQ + U — u* G K°. Choosing v := un + uj — u* € K in (15) and dividing this 
inequality by ||un | | we obtain 

<A--A°,(w-irap":-"')£0-
Using the last inequality together with (16), (17) and (18) we get 

(W,UJ) > (U,U*) +HmSUp.- rr((u0,uS) - (UQ,U*) > 
n—oo | |U n j | 

so that u € S\ fl BC(UQ) C K°, which gives us a contradiction, 
(ii) The proof of AJj" < A0 is the same as that in Theorem 2. Similarly as in the proof 
of (i) it is now sufficient to prove that the inequality (14) does not have solution in 
dK for A close to A0, A < A0. Suppose the contrary, i.e. there exist u„ € OK and 
^n T A0 such that (15) is valid. Choosing t; := un + u*^u* € I2*(A0), we get 

(19) < u n , u * ) < ( u o , u * ) < 0 , 

which implies (putting u* := uj) ||un|| > c > 0. As in the proof of (i) we get now 

^Lf^u€EK(XQ)ndKnS1. 
\\un\\ 

By (19) we have (u^u*) < 0 for any u* € .fc7£(A0), which gives us a contradiction 
with our assumptions. • 
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Remark 3. If .E(A0)nK° ^ 0 / £*(A0)nK° and dim£(A0) = 1, then Theorem 1 
enables us to compute the degree d(\) in a neighbourhood of A0 in a generic case (if 
(UQ,UQ) T£ 0). Unfortunately, if dim.E(A0) > 1, then Theorems 2 and 3 do not give 
us such general answer. The following Theorem 4 guarantees that under additional 
assumption (20) we are able to compute d(\) for A > A0 again in a generic case (cf. 
Remark 4). 

Theorem 4. Let \Q £ <T+(A),dimJEJ(A0) > 2,E*(A0) n Ka ^ 0 and let moreover, 

(20) (Vu € E(\Q) ndKn St)(3u* € E*(\Q) n K) (u,u*) < 0. 

Choose uJJ € E*(\Q) n K n Sx such that K,u*) > 0 for any u* € E*(\Q) n K (see 
Lemma 2) and denote M := JE7(A0) n Si n (.E*(A0)

X 0 {cu*; c > 0}). Then A+ > A0 

and for any A € (A0, \Q) we have 

(i) d(A) = ( - l )^ A o ) | / M C K ° , 

(ii) d(\) = 0 if M n K = 0. 

Remark 4. Let {uJ^Lj^u*}^! be orthonormal basis of I£(A0),IS*(A0), respec­
tively, and let det((u^, u*)) ^ 0. Then the set M in Theorem 4 consists of exactly 
one point (see [13]). 
PROOF of Theorem 4: The proof of A0 > A0 is the same as that in Theorem 2. 
We shall show that for A close to A0(A > A0) the inequality 

(21) uedK: ( A u ~ A u - u ; , v ~ u ) > 0 Vv G K 

is not solvable and, moreover, 

(a) R(\,A)u*,£K° if M C K ° , 
(0) R(\,A)u*0$K if M n K = 0, 

where i?(A, A) := (AJ — A)"1. Using these facts one can prove the assertions of 
Theorem 4 similarly as in the proofs of Theorems 2 and 3. 

First suppose that there exist un € dK and An J, A0 such that 

(22) ( A n u n - A u n - u ; , v - u n ) > 0 Vu € K. 

Putting v := un-f*«0 we get (uniuQ) > xn^x0\\
uo\\ -* +°°> t n u s ll«*n|| -+ <*>. Passing 

to the Hmit in the equation 

IK i r A. * KB KIT 
we get | ^ | - • u € E(\Q)ndKnSi. Choosing v := un+u*,u* € .E*(A0)nK, we get 
from (22Httn>u*) > i ^ ( « ; , « * ) > 0, hence (u,u*) > 0 for any u* € E*(\Q)nK, 
which gives us a contradiction. 
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It remains to prove the assertions (a) and (0). To prove them it is sufficient to 
show that for any sequence {An}, where An J, A0, there exists a subsequence (which 
we will denote again by {An}) such that 

\\R(Xn,A)u*0\\ 

Thus let An I A0. Let us write R(Xn, A)uJ = u„ + u>„, where u„ € E(\o),u>„ € 
E(X0)-

L. Then we have 

(23) u* = (A„ - A0 )u„ + (A„/ - A)wn. 

Further, for a suitable c > 0 and for n sufficiently large we have 

(24) | | (A„J-X)u>„| |>c |K| | , 

since wn € E(Xo)x. Multiplying the equation (23) by uj we get 

(25) 1 = (An - A0)((un, u0*> + K , u;». 

Suppose (AnJ — A)wn —• u0. Then by (23) we get (An — A0)un —> 0 and (24) implies 
that the sequence {wn} is bounded, which gives us a contradiction with (25). Thus 
we may assume 

(26) | | ( A n J ~ A ) « ; n ^ t / ; | | > € > 0 . 

Using (26) and (23) we obtain ||un|| -> oo, by (23), (24) and (26) there exists S > 0 
such that 

(An - A0)||un|| = \\(XnI - A)wn - u0*|| > 6 * max( |K| | , 1), 

h e n c e & - * 0 > 

R(Xn,A)ul un + wn un r B , M , n C 

n-oo P (A n ,A )u ; | | n-oo ||titt + U)n\\ n-oo ||tln|| 

(for a suitable subsequence of {un}). Moreover, by (25) we get lim {ir**¥, u0) > 0, 
n—*oo " n" 

thus (u,u0) > 0. Finally, for u* € £*(A0),u* ± u*, we have (,R(An,.4)u0
,,u*) = 

<u*,Jt-(An,A*)u*) = j ^ ( u * , u * ) = 0, thus (u,u*) = 0. 
The properties of u proved above imply u € M. • 

Theorem 5. Let A be symmetric, A0 € 0+(A),E(Xo)C)KA £ 0. Then XQ < A0 < 
Aj and 

<A) = 0 for A6(Ao-,A0), 

ci(A) = - ( l ^ > for A€(A0 ,A+). 
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PROOF : The assertion AQ~ < Ao and d(X) = 0 for A € (AQ",AO) is guaranteed by 
Theorem 2(i). 

Denote by Po the orthogonal projection of H onto the space ® E(X) and choose 

u0 € E(X0) fl K
A II S\. First we will show that 

for A > Ao, sufficiently close to Ao, the inequality 
(a)^ (27) ueK: (Xu - Au - (A - A0)u0,t> - u) > 0 Vv € K 

has the unique solution u := uo-

Suppose the contrary, i.e. there exist An J, A0 and un -̂ uo such that 

-T(An,(An-Ao)uo,0)(un) = 0. 

Choosing v := un+uo in the corresponding inequality we get (An—Ao)(un—uo, uo) > 
0, hence (un,u0) > ||u0||

2 = 1, ||un|| > 1. Put un := jr^ . We have 

(28) S n = 3 L P / f ( A 5 n + ^ o u o ) 

and passing to the limit we get un —> u £ E(Xo) fl K f) S\. Since u0 G KA, we have 
(uo 4- Po(un — u)) € K for sufficiently large n. Choosing v := uo -f Po(un — u) = 
uo — u + Poun in the inequality corresponding to (28) we get 

(29) 0 < (Anun - Aun - ^ | n p « o , t«o - « + (P. - I)un) = 

= (An - A0)(un - TTAT, uo - u) -I- (Antln - Aun, (P0 - I)un) < 
\\un\\ 

<(A n ~A 0 ) (u n ,u 0 -u) 

since (—uo,uo — u) < 0 and 
(30) (Xnun-Aun,(P0-I)un) = ~ Y, (An ~ A(,))(cJ)2 < 0, 

where A(,) are eigenvalues of the operator A and cj are corresponding Fourier 
coefficients of un. The inequality (29) implies (un,uo — u) > 0 and passing to 
the limit we obtain (u,uo) > ||u||2 = 1, hence u = uo. By (29) we get now 
(Anun — Aun, (Po ~ I)un) = 0, which impHes (together with (30)) un = Poun. Since 
uo € KA

y we obtain further 

Aun = A0u0 + A(un - u0) = A0u0 + Po-4(un - u0) € K 

for sufficiently large n, thus (28) implies 

~ *- t A~ , A n — Ao v 

Un=A: (Att"+iKr t to) ' 
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i.e. Anun — i4un = [L ]j°ti0. Since (AnI — A) is an isomorphism for n sufficiently 
large, we have un = j-^-j. Since un , u0 € Si, we get ||un|( = 1, hence un = un = u0, 
which is a contradiction. 

Thus we have proved the assertion (a). In the same way as in the proof of (a) 
one can show AQ > A0; this proof is left to the reader. In what follows we shall 
prove 

(ß){ 
if A > A0, A < inf {A € a(A); A > A0} and rj > 0 is 

sufficiently small, then 

deg(T(A,(A - Ao)uo,0),0,l?n(uo)) = (-!)'<*•>. 

Obviously, the assertions (a) and (/?) imply d(A) = (-1)0(A°) for A € (A0,A;,*), 
which we are to prove. 

So let A fulfil the inequalities in (/?). Put / := (A — A0)u0 and define the following 
homotopy 

JJ(t, u);=u~ jPK(Au + / ) - ! z i ( A u + / ) , t € [0,1]. 

Obviously, H(l,) = -T(A,/,0) and deg(H(0 , .) ,0,Sn(u0)) = (~1>*<AO>. Thus it 
is sufficient to prove H(t,u) -̂  0 for t € [0,1] and u 6 dB„(uo), where r\ > 0 is 
sufficiently small. Suppose the contrary, i.e. there exist un ^ uo,un —• u0, and 
*n € [0,1] such that H(tn,un) = 0. Using the equality H(tnyun) - H(tn,u0) = 0 
we get 

(31) un-u0 = j(PK(Aun + / ) - (Au0 + /)) + i ^ ( ( A u n + / ) - (Au0 + /)). 

We shall show 

(32) PK(-4un + / ) - (Aun + / ) = o(||un - tfoll) (for n - oo), 

which (together with (31)) gives us 

wn = jAwn + o(l) (where tun := ,. W ~ U ° H ) A IK-u0||' 
and passing to the limit in this equation we get wn —> w € E(X) fl Si, which 
contradicts A $ a(-A). To prove (32) let us choose S > 0 and write un — u0 = 
-C Cu(p)» w ^ e r e u(*>) a r e eigenfunctions of A forming an orthonormal basis in 
Hyu{p) € E(\{p)), where |A(1)| > |A(2)| > . . . . Since u0 € KA, there exist ep > 0 
such that uo -t £pu(f) ^ ^* Choose po such that |A(j,0)| < 6. Further choose r > 0 

such that |A(p)|r < f;ep *or a n y P = 1,2 , . . . ,po and suppose ||un - u0|| < r. Then 
we have 

AUn + / = Au0 + -4K -«,).- A . £ ( u o + ^ p * tt(j>)) + £ .Vrt*;-^. 
* * J»=-l F > P o 
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Since \i&g!l\ < & 5 ^ | | u n - u0|| < J-^J^r < ep for p < jx>, we have zf £ K, 
hence 

||(Au„ +f)-PK(Aun + f)\\ < \\(Aun + f)-2?|| = ||*?|| = 

= JE(V)<?)2 <• I*(P.)I • IK " «o|| < %„ - «o||. 
yp>?o 

Thus we have proved (32) and simultaneously the assertion (/?) and the whole 
Theorem 5. • 

In the following theorem we describe some other situations in which the degree 
d(\) can be determined. 

Theorem 6. (%) Let dim H < oo, let K be such that it is not a subspace of H and 
letO<\< inf (Au,u). Then A g crK(A) and d(\) = 0. 

(ii) Let \0 > 0,E*(\0) n Ka £ 0,£(AO) n K = {0}. Then \ £ aK(A) and 
d(\) = 0. 

(Hi) Let A be a symmetric and put A0 := sup (Au,u). Suppose that A0 £ 
uestnK 

JrZ+ — a(A) and card(.EJ/c(A0) n S\) = 1. Let UQ £ EK(\Q) n Si and suppose there 
exists WQ ?- 0 and e > 0 such that 

(33) Be(u0) n K = {u € Be(u0); (u - u0, u>0) > 0}. 

Then \Q < A0 and d(\) = 0 for A € (Ao", A0). 

PROOF : The assertions (i), (ii) are proved in [11]. Suppose that the assumptions 
of (iii) are fulfilled. We shall prove (by contradiction) that the inequality (2) does 
not have solution for A close to Ao(A < Ao) and for a suitable / ; the proof of AQ~ < A0 

can be carried out in the same way. Suppose that for An f A0 and fn := — Anu0 +AUQ 
there exist un € K such that (Anun — Aun — fmv — un) > 0 for any v £ K, i.e. 

(34) (An(un + uQ) - A(un + u0), i> - un) > 0 Vu € K 

Choosing v := un + u0 in (34) we obtain 

(35) ( (A n J-A)u n , u 0 ) > - ( ( A n J - A ) u 0 , u 0 ) > 0 , 

since (.«4uo,tto) = A0||uo||2 — ^o- Moreover, choosing v := 2un and v := 0 in (34) 
we get ((An J — A)(un + uQ),un) = 0, thus according to (35) we have 

(36) ((AnI - A)un, un) = ~<(AnI - A)u0, un) < 0, 

hence (Aun,un) > An||un||2, so that un ^ 0 and 

f*7\ (Auniun) (Au,u) 

<37> T^^-^T^ 
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We may suppose j ^ — u. Then u € K D B% and (37) implies (Auyu) = A0,u € 
&K{\O) 0 5 i , since the functional v «-• (Av,v) attains at v := u its maximum in 
K f)Bi- Hence u = u0y TJ-̂ JT —» u (since |||ifjTfI -* IMI)» Moreover, we have 

(38) 0 = ( ( A n J - A ) ( u n + u 0 ) , u n ) = 

= { ( A n J - A ) u n , u n ) - f (An ~ A0)(u0 ,un) + ((A0J~ A)u0,un). 

Since <(AnJ - A)un,un) < 0 by (36) and (An - A0)(u0,un) < 0 for sufficiently 
large n, it is sufficient to prove ((AoJ - A)u0lun) = 0 and (38) will yield us a 
contradiction. According to (33) we have (AoJ — A)uo = iu>o for some t > 0 and 
so it is sufficient to prove (u>o,un) = 0 for large n. Suppose the contrary. Then 
by (33) we get u n € K°, hence u n is the solution of the equation corresponding to 
(34), i.e. u n = —Uo. Nevertheless, —uo $ K, which gives us a contradiction. • 

Remark 5. The assertion of Theorem 6(iii) can be proved (for some special prob­
lems) also if the condition (33) is not fulfilled ([13]). 

Example 2. Let H := W0
1 , 2(M), («,») := f* u'v'dx,(Auyv) := f*uvdx,K := 

{u € U;u (x i ) < 0,u(x2) > 0}, where xi = |7r,x2 = §7r. Then u is a solution of 
the inequality (4) iff 

(39) 

' Xu"(x) - u(x) = 0 m(Q,x1)U(x1,x2)U(x2,n) 
u(0) = U(TT) = 0 

u ( n ) < 0,u(x2) > 0,u'_(i!) < ttV(*i)>«'-(*s) > «V(^2) 

l («'-(a:i) - ti'+(*i))u(*i) = 0,(u'_(x2) - u'+(x2))u(x2) = 0 

Solving (39) we get aK(A) n l&,+oo) = {f, £ 4 ' 4 4 > ioo> I s ) a n d U 8 m « o u r 

results we can derive following facts: 

d(\) follows from 

! A>4/9 

Лє (9/25,4/9) 

ЛЄ (1/4,9/25) 

Лє (4/25,1/4) 

ЛЄ (1/9,4/25) 

Aє (9/100,1/9) 

AЄ (1/16,9/100) 

1 

0 

-1 

0 

1 

0 

-1 

Theorem l(i) 

Theorem 6(iii) (A0 = 9/25) 

Theorem l(ii) ì 
i (Ao - 1/4) 

Theoreml(ii) J 

Theorem l(ii) + Remark 1 1 
V(Ao = l/9) 

Theorem l(ii) -f Remarkl J 

Theorem l(ii) (Л0 = l/lб) 
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(Remark 1 can be used e.g. with Kn := {u € H;u(xi) < 0,u(z2 + ^) > 0}). 

Example 3. Let H := W0
1,2(Q), where ft := (0,?r)2,{u,t;) := JQVu • Vvdx, 

(Au,v) := Juuvdx,K := {u € H;u > 0 on M}, where M := (|TT, |7T) X(0,TT). Us­
ing similar arguments as in [11, Example 2] one can easily show C*K(A) f) [|, +oo) = 
{|, ~-, | } and using Theorem 5 we get 

d(X) = 1 for A > 1/2, 

e*(A) = 0 for A €(4/13,1/2), 

d(A) = - l for A €(1/5,4/13). 

Remark 6. Theorem 2 and 6 (ii) were used in [13] to get some existence results for 
eigenvalues of inequalities of reaction-diffusion type; these results imply some desta­
bilizing effect of unilateral conditions for the system of reaction-diffusion equations 
and generalize in many directions results proved in [1], [2], [12]. 

4. Multiplicity results. 
If A > sup (Au,u), then the operator AI — A is strictly monotone, so that the 

inequality (2) has a unique solution for any / € H (e.g. [3]). Nevertheless, for 
A < sup (Au, u) we may lose the uniqueness. 

u€Bt 

Theorem 7. Ltt X € R+ - (<*K(A) U <r(A)),d(X) / (-1)*<A> and Itt f € (AJ -
A)(KA) (if A is symmetric) or f € (AJ - A)(K°). Then tht intquality (2) has at 
Itast two solutions. If mortovtr, K is an intcrstction of finitely many half spaces, 
ihtn for each 6 > 0 thtrt exists f € B$(f) such that tht intquality (B) with tht 
right-hand sidt f has at host | (-1)*A ) - d(X)\ + 1 solutions. 

PROOF : Let / = (AJ — A)u, where u € K° (or u € KA and A be symmetric). In 
both cases we know that u is an isolated solution of the equation 

(40) T(A,/,0)(u) = 0 

and that deg(T(A,/,0),0,Be(u)) = (~1)^A> for sufficiently small e (for u € KA 

and A symmetric this fact was proved in the proof of Theorem 5). Thus we have 

d(À) = deg(Г(A, /, 0), 0, BR) = deg(Г(A, /, 0), 0, BR - B,(u)) + (-l)«л>. 

Since d(X) «fi (— l)^ x\ the equation (40) has at least one solution in BR — Be(u). 
If, moreover, K is an intersection of finitely many half spaces, then [11, Theorem 5] 
implies that for any 6 > Owe can find / € B6(f) such that f € (XI - A)(K°) (or 
/ € (XI — A)(KA)) and / is a regular value of T, i.e. all solutions ut- of (40) are 
isolated and deg(T(A, / , 0), 0, Be(uj)) = +1 for sufficiently small e. m 
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Corollary. Let X € R+ - (<*K(A) U a(A)),d(X) = 0 , / € (AI - A)(K*) (or f € 
(XI — A)(KA) and A be symmetric). Then (2) has at least two solutions. 

Example 4. Let A be symmetric, let Ai > A2 > 0 be the two largest eigenvalues 
of A, let E(Xi) (1 K = {0},KA ^ 0 and let Ai have an odd algebraic multiplicity 
(i.e. 7(Aj) is odd). Let A > max(A2, sup (Au,u)),A < Ai. Then d(X) = 1 by 

ueKnBi 
Theorem l(i) and (-1)^ ( A ) = - 1 , so that any / € ( A J - A)(KA) we have at least two 
solutions of (2) (or 3 solutions, if K is an intersection of finitely many halfspaces). 

Example 5. Let Q be a bounded domain in Rn,H := W0
l,2(Q), (u,v) := JQ Vu • 

Vvdx,(Au,v) := JQuvdx,K = K+ := {u € H;u > 0}. Let Ai be the first 
eigenvalue of A and let t\ € E( X\ )f\S\. We may suppose e\ > 0 in 0 ; using similar 
arguments as in [11, Example 2] one can prove that CT"K(A) = {XI},EK(X\) f) S% == 

{ei}. Choosing the test function v := u + e\ in the inequality 

ueK: ( A u - A u -et,v-u) > 0 Vt> € K 

we get that this inequality is not solvable for A < Ai, so that d(X) = 0 for A < X\. 
Further choose / £ Ks := {u € JET; (u,v) < 0 Vv € K - {0}} and A0 € (0, Ai). 
Then u := 0 is a trivial solution of (2) (with A := Ao) and we can use the idea of 
Szulkin [17], [19] to prove that the inequality (2) (with A := Ao) has at least two 
solutions: 
Choose A > Ai and first let us prove that the inequality (2) has no solution in Be(Q) 
for any A € [Ao,A] and e > 0 sufficiently small. Suppose the contrary, i.e. there 
exist 0 ^ un —• 0 and An € [Ao, A] such that (Anun — Aun — / , v — un) > 0 for any 
v 6 K. Dividing the equation (Anun — Aun — / , u „ ) = 0 by ||u„||2 and passing to 
the limit (assuming -r^-r —- u € K, Xn —> A > 0) we get 

A-(Au,u)= lim T—n(/»ir\) ^ ° n-.oo||un|P ||u„|| 

hence u ^ 0, (/, u) = 0, which gives us a contradiction. Thus we have 

0 = cf(Ao) = deg(T(Ao,/,0),0,Be) 4- deg(T(Ao,/ ,0) ,0,£* - Be) = 

= deg(T(A,/ ,0) ,0,B e) -hdeg(T(Ao ,/ ,0),0,BH - Bt) = 

= 1 + deg(T(A0 , / ,0), 0 , B R - Be), 

which implies the existence of a solution in BR — B e . 
Moreover, we have KA ~fi 0: if {c*}?!! are eigenfunctions of A forming an or-

00 . . 
thonormal basis in H, then e.g. u := Y\ w £ K . Hence we can apply Corol-

lary of Theorem 7 to prove a multiplicity result for / € (XI - A)(KA). Since 
(AJ — A)(KA) £ Ks, we get also new right-hand sides with multiple solutions (in 
comparison to the Szulkin's result). 
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Theorem 8. Let A be symmetric, let Ai > A2 > 0 be the two largest eigenvalues 
of A. Let dim.E(Ai) = l ,e i € E(\x) n 5i,B_(ei) c K° (obviously 6 < 1). Put 
J := [A2-HI—£2)(Ai — A2), Ai) and choose A0 € J. Then A0 $_ <TX(-4), the inequality 

(41) u € K : ( A 0 u - _ 4 u - e i , t ; - u ) > 0 Vv € K 

does not have solution (which implies d(\o) = 0) and for any f € K := {u € 
# ; (u,v) < 0 Vv € K},/ 7̂  0, t&e inequality (2) (with (A := A0j &a.s exactly two 
solutions. 

PROOF : Let {e ,}?^ be eigenvectors of A forming an orthonormal basis in H. 
00 00 

First suppose A0 € cj<"(-4), u G 2sj<"(A0) C\ S\. Then u = £_ c,e», where _>_.c? = 1> 
*=1 i = l 

and using the equality A0||u||2 = (Au,u) we obtain (Ai — A0)cf = _C(A0 — A,)c2 > 

(A0 — A2XI — c2), which implies 

(42) 2 ^ Ap ~ ^2 
U 1 - A , - A -

Since A0 g <r(__), we have u € dK. Since -^(ei) C K°, we get (u, ei)2 = cf < 1 - 8 2 . 
Thus we have 

^ i — ^ < c . < l - 5 2 , 
Ai — A2 

which implies A0 $ J and gives us a contradiction. 
Now suppose that u € K is a solution of (41). Choosing v := u -f ei we get 

(A0 — Ai)(u,ei) > 1, hence (u,ei) < 0. Moreover, (A0u — Au — ei,u) = 0, so that 
(_4u,u) > A0||u||2, which implies (as in the derivation of (42)) 

• _«\ 1 u .2 A0 — Ai 
(43) (R'ei> > AT^V 
Since the unique solution of the equation A0u — Au = ex does not belong to K, we 
have u € dK and thus 

(44) < - « . , _ . ) - < _ _ , - . 

The inequalities (43) and (44) imply A0 $ J, which is a contradiction. 
Finally, choose / € K — {0}. If A > A0, then u := 0 is the unique solution of (2) 

lying in dK: if, on the contrary, there exists a solution u € dK — {0} of (2), then 
(Au - Au - / , u ) = 0,(_4u,u) = A||u||2 - (/ ,u) > A||u||2, which implies (similarly 
as above) A $ J and also A < A_, thus it gives us a contradiction. Further choose 
A > A_. The equation Au — Au = / is not solvable in Be(0) for any A € [A0, A) and 
e < X H A | an<^ t m l 8 w :=r 0 - s *n e unique solution of (2) in JE?*(0) for any A E [A0, A). 
Hence 

1 = <f(A) = deg(T(A, / , 0), 0 ,5.(0)) + deg(r(A0, / , 0), 0, Bt(0)). 
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On the other hand we know 

0 = d(X0) = deg(T(A„,/,0),0, Bc) + deg(T(A0, / , 0), 0, BR - 5,(0)), 

so that there exists a solution u° € BR — Be(Q) of the inequality 

(45) u£K: (X0u-Au-f,v-u)>Q \fv € K. 

Since the inequality (45) does not have solution in dK — {0}, we have u° € K°, i.e. 
w° is uniquely determined. Hence (45) has exactly two solutions: 0 and u°. • 

In the following theorem we shall use this notation: if Aa is a completely contin­
uous linear operator in H, then we put 

da(X) := deg(T(A,0,0, Aa,K),Q,Br). 

Theorem 9. Let F : H —> H be a completely continuous map} let Ao,-4oo be 
completely continuous linear operators and let 

SA*\ v F(u) - A°u n r F(tQ ~ AQQU 
(46) km ,, n = 0, km „ ,. = 0. 
v ; *->o ||ti|| jjulHoo ||ti|| 
Let, moreover, 1 ^ GTK(AQ) U CTK(AOO) and do(l) ^ ^oo(l)« Then there exists a 
nontrivial solution of the inequality 

(47) ueK: (u-F(u),v-u)>Q Vv € K. 

PROOF : Putting goo(w, A) = F(u) - Aoo« we get using Lemma 3 

doo(l) = deg(T(l,0,goo,Aoo,K),0,HH) = deg(J - PKF,Q,BR) 

for sufficiently large R > 0. On the other hand, putting go(u, A) = F(u) — AQU we 
get (as in the proof of [11, Lemma 3]) 

do(l) = deg(T(l,Q,g0,A0,K),Q,Be) = deg(I - PKF,Q,Be) 

for sufficiently small e > 0. Hence 

d e g ( J - PKF,Q,BR -Be) = doo(l)-do(l) ± 0, 

which implies the existence of a nontrivial solution of (47). • 

Example 6. Let 0 be a bounded regular domain in Rn,H := WQ,2(Q), (u,v) := 
/QVtx- Vvdx,(Au,v) := JQuvdx,(F(u),v) := Jnf(u)vdx, where / € C(R,R), 

f(Q) = 0. Suppose there exist / ' (0) and / '(oo) := lim ^ and put AQ := 
j.|—oo # 

f'(Q)A, Aoo := / ' (oo)A . Then one can easily verify (46). Suppose that / ' (0) , 
/ '(oo) i XK(A) and d(f'(Q)) ^ d(f(oo)) (see Remark 1 (ii)). Then Theorem 9 
implies the existence of a nontrivial solution of (47). 
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5. Variational inequalities in R2. 
In this section se shall show how the structure of the solution set of (2) depends 

on A in a very special case. 
Suppose H := P2, A is symmetric with eigenvalues Ai > A2 > 0, e; € K(Aj) n 

SuWi € 5 i ( i = l , 2 ) , 0 < (w2ye2) < (u>i,e2),K := {u G H;(u,wi) > 0 , ( u , w 2 ) > 0} 
(see Fig.l). Denote 

KІ 

K} 

кì 
к 

= {u € K;u _L WÍ,u £ 0} (i = 1,2), 

= (\I-A)(Ki) (i = 1,2), 

= (XI-A)(K°), 

= {c\W\ -f c2w>2; ci < 0, c2 < 0}. 

An element u € if is a solution of (2) iff exactly one of the following four conditions 
is fulfilled: 

(C0) 

<ci) 
(C2) 

(CЗ) 

u G K ° , / = ( A I - A ) u 

u € Ki, Xu — Au — / = tw\ for some t > 0 

w € K2 * A ti — Au — / = tw2 for some t > 0 

tx = 0, / 6 K. 

Thus the right-hand sides / , for which is the inequality (2) solvable, can be described 
in the following way: / € M0 U Mi U M2 U M3, where M0 := K^,M. := Kf 4-
{twi;t < 0} (i = 1,2),M3 := K. Moreover, the number of solutions of (2) is for 
A 6 R~*~ —CTK(A) and generic / (see [11]) given by the number of indices i such that 
f£Mi. 

Denote A} > A2 the eigenvalues of (4) which correspond to the eigenvectors lying 
in Ki,K2. Then Ai > A} > A| > A2,A} G a(P .A / { t i ; .}x), where P, : H -> {wi}L 

is the orthogonal projection. Using Fig.2 - 6 one obtains the following multiplicity 
results: 

d(A) 
the number of solutions 

of (2) for generic / 
see 

A > Л i 1 1 Fig.2 

Aє(A},Лi) 1 1,3 Fig.З 

AЄ(A?,A}) 0 0,2 Fig.4 

AЄ(A 2,A 2) -1 1,3 Fig.5 . 

AЄ(0,A 2) 0 0,2,4 (or 0,4) Fig.6 

Similar 4iscussions can be made also for another inequalities in R2 (or .R3) and 
some of the results of these considerations can be used as conjectures for inequalities 
in a general Hilbert space, e.g. one sees how to choose a right-hand side / G if, for 
which the inequality (2) "should not" have solution. 
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Fig.l Fig.2 (A > Ai) 

кî K* 

Fig.З (A} < A < Лi) Fig.4 (AJ < A < A}) 

Fig.5 (Aa < A < AJ) 

J M0 

js\ ť^ч \ v 5ч -ïvV / 2 \ ч ц yr , ! /л 
І2LXУ / 

\ N ^OÌ ľ5 ,ЮvŽ* 
\\ř.ľí2. 

Ф š̂żb* ^z^ş** ^^CŹSr 
S?ЬÍ?5 SSÏÍ 

кt 

ш ш 
шмx Išss 

Fig.6(Л 2 -є< A< A2) 

M, M3 
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