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Solvability and multiplicity results
for variational inequalities

PAvoL QUITTNER

Abstract. We study the solvability and the multiplicity of solutions of variational inequal-
ities of the following type

ueE K: (Au— F(u,\),v—u) >0 Vv € K,
where K is a,closed convex cone in a real Hilbert space H and F : H x R — H is a
completely continuous, asymptotically linear map.

Keywords: variational inequality, Leray-Schauder degree
Classification: 49A29

This paper is concerned with inequalities of the following form
(1) ue K: (Au— Au —g(u,A)— fiu—u) 20 WveK,
where

H is a real separable Hilbert space with the scalar product (-, -),
K is a closed convex cone in H with its vertex at zero,
K #0,K # H,K # {0},
(A)j A: H — H is a completely continuous linear operator,
g: H x R — H is a (nonlinear) completely continuous map,
f € H is a right-hand side,
\ A € Rt := (0, +00).

Using the projection Py : H °%° K we reformulate the inequality (1) as a non-
linear equation and then we study the solvability of this equation (for sublinear g)
using the Leray-Schauder degree.

We prove various multiplicity, existence and non-existence results for the solu-
tions of the inequality

2) ueK (lu—Au-fiv—-u)2>20 Wvek

and as consequence of our considerations we get also the existence of nontrivial
solutions of the inequality

(3) veK (Mu—F(u),v—u) 20 WwekK
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282 P.Quittner

where F : H — H is a completely contintious map, F((0) = 0 and F'(0), F'(oo) fulfil
some additional assumptions (in particular F'(0) # F'(o0)).

Our assertions imply also some existence results for bifurcation points of vari-
ational inequalities; these results are close to the results of Miersemann (7], [8],
[9] and Kuéera [4], [5], [6]. Moreover, our bifurcations are global (in the sense of
Rabinowitz [20]).

Our method is the same as in [11], nevertheless many of our results are new. The
reformulation of the problem (1) is just sketched, all details can be found in [11].

Let us mention that another degree-theoretic approach to variational inequalities
was used by Szulkin [17],[18], [19] and that our degree d()) is very close to the
‘degree investigated by Svarc [14], [15], [16] in problems involving operators with
jumping nonlinearities (in fact, these two degrees coincide for some special cones in
R™).

In the whole paper we will assume (A).

1. Preliminaries.
We will denote by ox(A) the set of all (real) eigenvalues of the inequality

4) u€ K (Au—Au,v—u) 20 WvekK

i.e. the set of all A € R such that the inequality (4) has a nontrivial solution.
Further denote by o(A) the spectrum of the operator 4 and put

0k (A) ;= ok (A)NR*, o*(A):=0(A)NR*, where R :=(0,00).
Note that the set o} (A) is closed in Rt and that the set ox(A) is bounded by
+||A]l. In general, the set ox(A) may contain an open interval even for H = R?

and it may also consist of only one point even for dim(H) = +o00, A symmetric (see
(10], [11)).
Let A* be the adjoint operator to A. We will denote

E()) : = Ker(\I — A),
E*()) : = Ker(AI — A*),
Ex(A):={ueK; (QAu—Au,v—u)>0 VveK},
Ex(A):={ueK; (Au—-A®u,v—u)>0 VveK}

Moreover, for Ao € Rt we put
At i =inf{) € ok (4); A > Ao},
Ag :=sup({0} U {) € ok (A); A < Ao}),
[}
B(h):= Y dim(|J Ker(AI - A)),

A>A »=1

¥(ho) =Y dim(| Ker(AI — 4)?).

A3 p=1
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If {An} is a decreasing sequence of real numbers, A, — Ao, Ap > Ag, then we shall
write A, | \Ao; analogously A, T Ap. Finally, we put

Br(uo) : = {u € H; lu—uol| < R}, Bg:=Bg(0),
- S :={ue H;|u||=1},
Py : = the projection of H onto K,

OM : = the boundary of M,
M : = the closure of M,
M?® : = the interior of M,

K*:={ueK;(3DC H,D=H)Yw € D)(3e >0) u+ewe K},
KA s = {u, € K;(Vw € U,\€RE(/\))(3€ >0) u+eweE K}

Obviously, K ¢ K*®. If, moreover, A is symmetric, then K° C K4 ¢ X°.

Example 1. Let Q := (0,7)? C R?, H := Wy**() (the Sobolev space), (u,v) :=
fn Vu - Vvdz, (Au,v) := [uvdz, K := {u € H;u > 0 on M}, where M C Q is
a closed set of positive capacity. Then one can easily prove K° = @, nevertheless
KA+ (eg ifu>e>0o0n M, then u € K4).

Lemma 1. Let E*(A\)NK® #0. Then Ex(\).= E(A)N K.

PROOF : Obviously E(A\)N K C Eg()). We shall prove the converse inclusion.

Let u € Ex(\) and choose u* € E*(A) N K®. By the definition of K* there exists
D c H,D = H, such that (Vw € D)(3¢ > 0)u* +ew € K. Putting v = u+u*+ew

in (4) we obtain

0 < (du — Au,u” +ew) = (u, M’ — A%u*) + (Au — Au, +ew) = +e(du — Au, w),

hence \u — Au € D+ = {0}, ue€ E()). ]
Lemma 2. Let K be such that it s not a subspace of H (i.e. span(K) # K). Then
there ezists 0 # up € K such that (u,uo) 20 Vue€ K.

PROOF : Choose vy € span(K) — K. Then {vo} and K are disjoint closed convex
sets, {vp} is compact, and according to Hahn-Banach theorem there exists 0 # u; €
span(K) such that (u,u;) >0 Vu € K. Put ug := Pgu,. Since K is a cone with
its vertex at zero, we get using the characterization of the projection Py

(u1 - PKul,PKul) =0

and
{u1 — Pkuy,u) <0 forany u € K,

which implies (up,u) = (Pxuj,u) > (u1,u) > 0 for any u € K. Since (ug,u) >
(u1,%) > O for suitable & € K, we have ug # 0. .
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2.Reformulation of the problem and bifurcations.
The problem (1) is equivalent to the equation
) T(u) =0,

where T : H — H,T(u) := u — + Px(Au + g(u, A) + f) (see [11]).

We shall often write T'(}, f,g) or T(), f, 9,4, K) instead of T to indicate the
dependence of T on the corresponding parameters (while the other parameters are
fixed).

Lemma 3. (Apriori estimates). Let J C Rt —ok(A) be a compact set, '-&f—:'“’\)- -0

- for ||u]| = oo (uniformly for A € J). Then

(VM >0)3R>0) |fl<M, te[0,1], reJ, T(\ftg)(u)=0= Jlull <R

PROOF : [11, Lemma 2]. n

As a corollary of Lemma 3 and the homotopy invariance property of the Leray-
Schauder degree we get that the degree deg(T(A, f,¢),0,Br) is well defined for
A ¢ ok(A) and for R > 0 sufficiently large and does not depend on f and g.
Moreover, if we define

d(}) := deg(T(,0,0),0, B,)

where r € Rt is arbitrary, then the function A + d()) is locally constant on
R* - OK(A).
Remark 1. (i) In [11], [13] there is given a more general version of Lemma 3; the
apriori estimates are proved to be independent on some small perturbations of the
cone K. As a consequence of this result we get e.g. the following statement:

Let Kn(n =1,2,...) be closed convex cones in H with their vertices at zero and
let
(6) sup |Pxu — Pk,ul| =0  for n — co.

w€EBy

Let A € R* — ox(A). Then ) ¢ ok, (A) and dn(A) = d(A) for sufficiently large n,
where d,,()) := deg(T}, ), 0,0, 4, K,),0, B;).

Moreover, carefully reading the proof the proof of [11, Lemma 1] one can see that
the condition (6) can be weakened to

sup ||PxAu — Px,Aul| -0  forn — oo.
%€B,

(i) Denote by xk(A) the set of all 4 € R such that the inequality
vuEK: (u—pAu,v—u) >0 WvekK
has a nontrivial solution. For s # xx(A) we can define
d(s) := deg(I ~ uPy A,0, B,).

Then, obviously, 4 € xk(A) NR* & L € 5%(4) and d(p) = d(L) for p € R* -

xx(A). Moreover, if (Au,u) 2 0 for any u ¢ H, then one can easily show xx(A) C
R*, which implies d(#) = 1 for u < 0.
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Lemma 4. (Local bifurcations). Let A\;,A2 € Rt — ax(A), 1 > A2, d(\1) #
d(Az), ﬂ%ﬁ—'l — 0 foru—0 (i=1,2) and let g(0,)) = 0 for A € (A2,A1). Then
there ezists a bifurcation point Mo € (A2, A1) for the inequality

) ue K: (Au — Au — g(u,),v—u) >0 W € K,

i.e. there exists a sequence (un,An) of solutions of (7) such that u, # 0 and
(tny An) = (0, X). Particularly, Ao € ok (A).

PROOF : [11, Lemma 3). ]

Lemma 5. (Global bifurcation). Let A be an isolated point of 0 (A) with
lim+d(/\) # lim d()\). Let @ C (H x R) be an open set, (0,{;) € Q. Put
A—=Ag A=Ay

po = 7\1; and suppose ‘1.1_% ’-iﬁ‘ﬁ‘l = 0 locally uniformly in u. Further denote by S

(u,p)EQ
the closure (in Q) of all nontrivial solutions (u,p) of the inequality

ue K: (u — pAu — g(u,p),v —u) 20 WweK

and let C be the component of S containing the point (0, o).

Then the set C has at least one of the following properties

(i) C is not bounded

(@) CNoN#0

(i) €N ({0} x B) # {(0, wo)}-
PROOF : is the same as the proof of Rabinowitz’s global bifurcation theorem [20),
[21] so that we shall just sketch it. We shall use the notation from Remark 1 (ii).

Suppose that C has none of the properties (i)-(iii). Then C is compact and
similarly as in [20, Lemma 1.3] we can find an open bounded set O C € such
that C C 0,SNAO0 = @ and ON (B, x R) = B, x [ug — €, o + €], where
€ < dist(po, xKx(A)). Moreover, we can choose p > 0 such that the equation
u = Pg(pAu + tg(u,p)) is not solvable for u = po +¢,0 < |lull < p and ¢ € [0,1]
(see the proof of [11, Lemma 3]). Put G := {(u, p); [[ull® + (4 — po)? < p* +€2}; we
may suppose G C Q. Further put

H{(u, p) := (u = Pc(pAu + tg(u, ), t(llull” = r) + (1 = 1)(e? — (4 — mo)?)).

Using the homotopy invariance property of the Leray-Schauder degree we get (for
sufficiently large R > 0)

0 = deg(H},0,0) = deg(H},0,0) = deg(H,,0,G) = deg(H,,0,G) =
d(po — €) — d(po +¢) #0,

which is a contradiction. n
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3. Determination of d(}).
The following Theorem 1 is proved in [11].

Theorem 1. (i) If A > supog(A),A >0, then d(A) = 1.

(ii) Let Ao € o+ (A),dim E(Ag) = 1, E(A) N K° # B, E*(Xo) N K® # @ and choose
g € E(Ao) N K% uy € E*(A) N K°. Then \; < Ao < A (i.e. Ao is an isolated
point of o};(A)) and moreover,

(a) if (uo,ug) > 0, then d(\) = (=1)P) for any A € (Ao, AT),d(}) = 0 for
any A € (Ag,Xo) and there ezists a right-hand side f € H such that the
inequality (2) is not solvable for any X close to Ao, A < Ao;

(b) if (uo,ud) < 0, then d(A) = (=1)Y*9) for any A € (Ay,X0),d(A) = 0 for
any X € (Mo, A{) and there ezists a right-hand side f € H such that the
inequality (2) is not solvable for any )\ close to Ao, A > Ag.

Remark 2. (i) The assertion d(A) # 0 for some ) enables us to prove that the
corresponding inequality (2) (or (1)) is solvable for any f € H. The assertion
d()) = 0 does not guarantee the existence of f € H such that the inequality (2) is
not solvable ([14]).

(i1) Using Theorem 1 and Lemma 4 or 5 one can easily prove various assertions about
the existence of bifurcations of solutions of the inequality (7) (e.g. [11, Corollary of
Theorem 3]). Similar assertions can be proved also using the following Theorems
2,3,4,5,6.

(iii) If K is an intersection of a finite number of halfspaces, then we have more
precise information about the structure of the solution set of (2): for A ¢ ox(A)
and a generic f € H the number of solutions of (2) is finite, locally constant and
its parity depends only on the parity of d()\) ([11, Theorem 5)).

(iv) If K is a halfspace, K = {u € H; (u,ug) > 0}, X € R—o(A), then the inequality
(2) is (uniquely) solvable for any f € H iff

F()) == (M = A)  uo, up) > 0
and X € ok(A) iff F(A\) = 0. If the operator A is symmetric, then the function F
is strictly decreasing on each component of R — ¢(A) ([11, Lemmas 8,9,10]).
The following four theorems are some analogous to Theorem 1 in the case of
multiple eigenvalues and cones with empty interior.

Theorem 2. Let Ay € ot (A), E*(A)NK® # 0.

(i) Let (VO # u € E(A\) N K)(3u* € E*(A) N K) (u,u*) > 0. Then Ay <
Mo, d(X) = 0 for' X € (Mg, Ao) and there ezists a right hand side f € H such that the
inequality (2) is not solvable for \ close to Mg, A < Ao.

(i) Let (VO # u € E(M) N K)(Ju* € E*(M)NK) (u,u*) < 0. Then A} >
Ao, d(A) =0 for A€ (/\o,/\:) and there ezists a right hand side f € H such that the
inequality (2) is not solvable for \ close to Ao, A > Ag.

PROOF : We shall prove only the assertion (i), the proof of (ii) is analogous. All
assertions will be proved by a contradiction argument.
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First suppose there exist A\, € 0%(4), A\n T Ao. Then there exist un € Ex(An) N
Sy. Since A, ¢ o(A) for sufficiently large n, we have u, € K for n > ny (each so-
lution of an inequality lying in K° is simultaneously a solution of the corresponding
equation). Using our reformulation of the problem (1) we get

1
(8) U, = —Pg Au,.
An

Without any loss of generality we may suppose u, — u. Passing to the limit in (8)
we obtain

U, U= —I—PKAu,
Ao

since the right hand side in (8) converges strongly. Thus u € Ex(A) NOK N S,
and according to Lemma 1 we get u € E()g). By our assumptions there exists
u* € E*(Ap) N K such that (u,u*) > 0. Putting v := u, + u* in the mequahty
(Anun — Aug,v —u,) > 0 we get

0 < (Apun — Aup,u*) = (Ap = Ao)(un, u*) + (un, Aou* — A*u*) =
= (A" - ’\0)(""7“‘)’

hence (upn,u*) <0, (u,u*) < 0, which is a contradiction.

Thus we have Ay < Ag and it is sufficient to prove that the inequality (2) is not
solvable for suitable f and A close to Ag(A < Ag). Our assumptions guarantee that
E*(A) N K is a closed convex cone (with its vertex at zero) and that it is not a
subspace of H. According to Lemma 2 there exists uj € E*(A\o)N K NS} such that

(ug,u*) >0 for any u* € E*(Ao) N K.

Suppose that the inequality (2) is solvable for f := uj and A, T Ao, i.e. there exist
un € K such that

(9) (Antp — Au, —ug,v—u,}) >0 V€K
Putting v := u, + ug in (9) we obtain (as above)
(An = Xo)(un, ug) 2 [lusll® >0,

which implies |jun)| — co. We may suppose “%:-" — u; passing to the limit in the

equation
Up

=] ol T
we get quap = u € Ex(Ao) = E(A)NK u € S). According to our assumptions
there exists u* € E*(A) N K such that (u,u*) > 0. Putting v := u, + u* in (9) we
obtain

1
= TPK(A

(An = Ao)(un,u*) > (ug,u*) 20,
hence (un,u*) <0, (u,u*) <0, which is a contradiction. n
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Theorem 3. Let Ao € 07(A), E(Ao)NK® #0,E*(M) NK°® # 0.
(i) Choose ¢ € (0,/2) and 8,62 € (0,¢) such that

2
(10) 82462 %5353 <, B<da-9)

(we can put e.g. & = & := 52-) and suppose there ezist ug € E(Xo) N Sy and
uy € E*(Ao) N Sy such that

(11) S1 N B (uj) C Ko,
(12) fluo — ugll < &1,
(13)  (Vu€ EQo)NIK N S)(3u" € E* Q) NKNS,) |lu— v <6,

Then A\§ > Ao and d(A) = (—1)P) for any X € (Ao, A).
(i) Let ug € E(Ag) N K°, (ug,u*) < 0 for any u* € E*(Ao) N K, (ug, uy) < 0 for
some uy € E*(M\o)N K. Let, moreover,

(Vu € E(A) N 0K N S1)(3u* € E*(Mo)NK) (u,u*) >0.

Then Ay < Ag and d(\) = (—1)7) for any A € (A7, Xo)-
PROOF : Similarly as in the proof of Theorem 2 we will argue by contradiction.
(i) First suppose that there exist A, € ox(A) such that A, | Ap and choose
un € Ex(An) N S1. As in the proof of Theorem 2 we may suppose u, € 9K
and u, — u € E(A)NIK N S;. By (13) there exists u* € E*(A)N K N S,
such that ||u — u*|| < 6;. Using (10) and (11) we obtain Bj,(u}) C K°, hence
u—u*+ul € K° u,—u*+u} € K for sufficiently large n. Putting v 1= u, —u*+u}
in the inequality

(Antin — Aup,v—up) 20 WweK

we get (An — Ao){tn,ud — u*) >0, hence
. 1 . . 1
(u,03) > {w,0%) = S(ul? + o — Ju— ) 2 1- 383,

so that |lu — u3|| < 83,u € S1 N B,(u§) C K°, which gives us a contradiction. Thus
/\: > Ao-
Now let us consider the inequality

(14) ueK: (Adu—~Au—(A—=Xup,v—u) >0 WVveK.

This inequality has for A > )g the solution u := uy € K°, which is its unique
solution in K° for A ¢ o(A) (since each solution of the inequality lying in K?° is
also a solution of the corresponding equation). Thus for p > 0 small, R > 0 large,
A close to Ag(A > Ag) and T := T(A, (A — Ag)ug, 0) we get

d(X) = deg(T,0, Br) = deg(T, 0, B,(uo)) + deg(T, 0, Br — B,(uo)) =
= (—1)PQ9) | deg(T,0, Bp — B,(uo)),
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since T(u) = u — 1 Px(Au + (A — Ao)uo) = u — 1(Au + (A = Xo)uo) for u € B,(uo).
We shall prove deg(T',0, Br — B,(u9)) = 0. To prove this it is sufficient to show
that the inequality (14) does not have solution in K for A sufficiently close to
Xo(A > Ag). Suppose the contrary, i.e. there exist A, | Ao and u, € K such that
(15) {Antn — Atpn — (An — Ao)ug, v — uy) >0 Vv € K.

Choosing v := u, + u§ we get (A, — Ao){un — up,ug) > 0, so that
(16) (umyul) > (o, ul) 21— %a;.

Hence ||un|| 2 ¢ > 0 and we may suppose joo5 — u. Passing to the limit in the
equation
Up Uo
—— K(A +(An — Ao)i—
ol = 3P + O =D
we get uap — u € Ex(Ao)NOKNS). Further pag € KNS, thus || ey — ug|l = > €,
which implies (W—Ll-’uo y<1- —e2 The last inequality and (16) imply

2 62
(17) luall 2 5—3-
By (13) there exists u* € E*(Ag)N K N .5'1 such that
(18) llu —w™|| <6,

thus u§ + u — u* € K°. Choosing v := u, + u§ — u* € K in (15) and dividing this
inequality by ||un|| we obtain

Un Ug
An = do)5— — —,ug —u*) > 0.
O =20 ] ™ ™~
Using the last inequality together with (16) (17) and (18) we get

(u,ug) > (u,u*) +hmsup" "((uo,uo) (uo,u*) >
>1—-1-62+——(1——62—1)>1—-1-52
=7 227 2-¢2 21 =" 27

so that u € S; N B.(uy) C K°, which gives us a contradiction.

(ii) The proof of A; < Ag is the same as that in Theorem 2. Similarly as in the proof
of (i) it is now sufficient to prove that the inequality (14) does not have solution in
OK for A close to Ag, A < Ag. Suppose the contrary, i.e. there exist u, € 0K and
An T Ao such that (15) is valid. Choosing v := u, + u*,u* € E*()o), we get

(19) ("mu ) S (anu ) S 01
which implies (putting u* := u§) ||u,]| = ¢ > 0. As in the proof of (i) we get now
—u € Ex(X)NOKNS,.

II '.II

By (19) we have (u,u*) < 0 for any u* € E% (o), which gives us a contradiction
Wwith our assumptions. ]

289



290 P.Quittner

Remark 3. If E(A)NK® # 0 # E*(Ao)NK® and dim E()\¢) = 1, then Theorem 1
enables us to compute the degree d()) in a neighbourhood of A in a generic case (if
(ug,ug) # 0). Unfortunately, if dim E()\¢) > 1, then Theorems 2 and 3 do not give
us such general answer. The following Theorem 4 guarantees that under additional

assumption (20) we are able to compute d()) for A > ) again in a generic case (cf.
Remark 4).

Theorem 4. Let Ay € 0t (A),dim E(X) > 2,E*(A) N K® # 0 and let moreover,
(20) (Vu € E(X)NOK N S;)(Fu* € E*(A)NK) (u,u*) <.

Choose uy € E*(Ag) N K NS, such that (ud,u*) > 0 for any u* € E*(\o) N K (see
Lemma 2) and denote M := E(Ag) NSy N(E* (X)L ® {cug;c > 0}). Then AF > Ao
and for any A € (Ao, Ad) we have

@) dA) = (-1)f* M cCK°,
(i) d\) =0 fMNK=9.

Remark 4. Let {u;}™,,{uf}™, be orthonormal basis of E()\g), E*()\o), respec-
tively, and let det((u;,u})) # 0. Then the set M in Theorem 4 consists of exactly
one point (see [13]).

PROOF of Theorem 4: The proof of A\f > )¢ is the same as that in Theorem 2.
We shall show that for A close to Ag(A > Ag) the inequality

(21) u € 0K : (Adu—Au—ug,v—u)20 WweK
is not solvable and, moreover,

(a) R\ Aug e K  if McK°,
B) R(M\Aug¢ K if MNnK=4,
where R(), A) := (M — A)~!. Using these facts one can prove the assertions of

Theorem 4 similarly as in the proofs of Theorems 2 and 3.
First suppose that there exist u, € K and A, | Ao such that

(22) (Antin — Aup —ug,v—u,) 20 Vv eK.

Putting v := u, +ug we get (un,ug) > A.—Ao 5 llug]l = +o0, thus ||us|| — co. Passing
to the limit in the equation

Up

=)
At * Ilunll

we get “l‘-'-ﬁ — u € E(X)NAKNS,. Choosing v := u,+u*,u* € E*(\)NK, we get

from (22) (un,u*) 2 115 5= (ug, u*) > 0, hence (u,u*) > 0 for any u* € E*(\)NK,
which gives us a contradiction.
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It remains to prove the assertions (o) and (). To prove them it is sufficient to
show that for any sequence {A,}, where A, | Ao, there exists a subsequence (which
we will denote again by {\.}) such that

R(An, A)ug

—_— - yu€eEM.
| R(An, A)ugll

Thus let A, | Ag. Let us write R(Ap, A)ug = un + wn, where u, € E(\),w, €
E(X)*. Then we have

(23) ug = (Ap = A0)tn + (Anl — A)w,.

Further, for a suitable ¢ > 0 and for n sufficiently large we have

(24) (ArI = A)wa|l 2 cllwall,

since w,, € E(A\o)t. Multiplying the equation (23) by uy we get

(25) 1= (An = 20)((un, ug) + (wn, ug)).

Suppose (An I — A)w, — ug. Then by (23) we get (Ap — Ao)un — 0 and (24) implies
that the sequence {wy,} is bounded, which gives us a contradiction with (25). Thus
Wwe may assume

(26) "(’\nI - A)wn - u:) ” 2€e> 0.

Using (26) and (23) we obtain |ju,]] — o0, by (23), (24) and (26) there exists § > 0
such that

(An = 20)lluall = (And = A)wn = ug]| 2 6 - max(jjwall, 1),

hence “‘—::H — 0,

. R(\,, A)ug . Uy + Wy, . Uy,
1 _— = — = ] —— =u€ E(\) N S;
s TROu D]~ 0 Tt ]l — e [ (o) 51

(for a suitable subsequence of {u,}). Moreover, by (25) we get ”lingo (n-“—::-", ug) >0,
thus (u,u§) > 0. Finally, for u* € E*(Ao),u* L ug, we have (R(An, A)ug,u*) =
(ug, R(An, A*)u*) = r"—}_-ﬁ-(ua,u') =0, thus {u,u*) =0.

The properties of u proved above imply u € M. ]

Theorem 5. Let A be symmetric, Ao € 0+ (A), E(A)NKA #0. Then Ay < Ao <
Al and

dA)=0 for X€(Ag,N),
d(A) = =1’ for X € (Mo, )
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PROOF : The assertion A; < A¢ and d(A) = 0 for A € (Ag, Ao) is guaranteed by
Theorem 2(i).
Denote by P, the orthogonal projection of H onto the space \ 9.\ E()) and choose
ZA0

up € E(Ag) N KA N S;. First we will show that
for A > A, sufficiently close to Ag, the inequality
(a) 27) vueK: (Au—Au—(A=X)ug,v—u) >0 WVveK

has the unique solution u := u,.
‘Suppose the contrary, i.e. there exist A, | Ap and u, # ug such that
T(’\n’(’\n - A('1)"‘0’0)(“") =0.

Choosing v := u,+ug in the corresponding mequa.hty we get (An—2X0){un—ug,up) >
0, hence (un,ug) > |Juol|? = 1, ||un|| = 1. Put @, := ;s Ty We have

An = Ao
uall

and passing to the limit we get ¥, — u € E(Xo) N K N S;. Since ug € K‘;‘, we have
(uo + Po(tin — u)) € K for sufficiently large n. Choosing v := ug + Po(ti, — u) =
uo — u + Potiy, in the inequality corresponding to (28) we get

(28) tUn = II-PK(Au,. ug)

(29) 0 < (Aniiy — Afiy — ﬁuo,uo —ut (P, = I)iy) =

= (An = Ao)(fn — wo — u) + (Aniin — Ailn, (Po — I)iin) <

_Yo_
"“n",
< (An = Ao)(Un,uo — u)

since (—uo,uo — u) <0 and

(30) (Antin — Atin, (Po — I)il,) = — Z (An = Aa))cd)? <0,
A)<Xro

where A(,) are eigenvalues of the operator A and ¢! are corresponding Fourier
coefficients of ,. The inequality (29) implies (Un,uo — u) > 0 and passing to
the limit we obtain (u,u¢) > |lul|> = 1, hence u = ug. By (29) we get now
(Anti, — Aliy, (Py—I)u,) = 0, which implies (together with (30)) &, = Pyi,. Since
uo € K4, we obtain further

A;i,. = Atto + A(t'I,. - uo) = douo + PoA(i,. - uo) €K

for sufficiently large n, thus (28) implies

o = 3o (A + u ] B
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ie. Aty — AUy, = 4\If“;:—’l‘[“un. Since (AnI — A) is an isomorphism for n sufficiently
large, we have u,, = "-}:-" Since tn,ug € Sy, we get ||un|| = 1, hence u, = @, = uy,
which is a contradiction.

Thus we have proved the assertion (a). In the same way as in the proof of (a)

one can show A{ > )g; this proof is left to the reader. In what follows we shall
prove

if A> Ao, A <inf{X € 0(A);X > Ao} and n > 0 is
2] sufficiently small, then
deg(T (X, (X — Ao)uo,0),0, By(ug)) = (—1)P(Ro),

Obviously, the assertions (@) and (8) imply d(A) = (=1)?( for A € (Ao, A),
which we are to prove.

So let A fulfil the inequalities in (8). Put f := (A — Ao)uo and define the following
homotopy )

H(tu)i=u— 3 Pildu+ f) - “(Autf),  te[0,1]

Obviously, H(1,-) = T(}, f,0) and deg(H(0,-),0,B,(ug)) = (—1)#*). Thus it
is sufficient to prove H(t,u) # 0 for t € [0,1] and u € 0B,(uo), where n > 0 is
sufficiently small. Suppose the contrary, i.e. there exist u, # ug,un — ug, and
tn € [0,1] such that H(t,,u,) = 0. Using the equality H(t,,u,) — H(t,,up) = 0
we get

(81) wn o = (PK(Atn + £) = (Auo + 1)) + = 2((Aun + ) = (4uo + £)).
We shall show
(32) P (Aun + f) = (Aun + f) = o([lun — uoll)  (for n — co),

which (together with (31)) gives us
_ Up — Yg

llun — uol|
and passing to the limit in this equation we get w, — w € E(\) N Sy, which
contradicts A ¢ o(A). To prove (32) let us choose § > 0 and write u, — up =
ZP thu(,), where u(p) are eigenfunctions of A forming an orthonormal basis in

H,up) € E(Ap) where [A)| > [Az)l > .... Since up € K4, there exist £, > 0
such that uo % €pu(p) € K. Choose pg such that |A(;,)| < 6. Further choose 7 > 0

1
w, = :\-Aw,. +0(1)  (where w,:

such that |A¢p)lT < ;)‘;6, for any p=1,2,...,py and suppose ||up — ug|| < 7. Then
we have

A

A A& Ap)tpPo n
Aup + f = duo + Alun ~uo) = - > (w0 + um) + D Aty -
=1 P>po

~ J/

v v~

" n
5 %
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. Apt?
Since |~e52f| < lﬂl}"’—""un —u| < '—'\—Q}I—pgf < €p for p < po, we have 2} € K,
hence

(Aun + f) = Px(Aun + )|l < (Aun + f) = 27|l = ll22]| =

= [ Y Ontp)? < Aol - lltn — voll < 8llup — uol|.
P>po

Thus we have proved (32) and simultaneously the assertion (3) and the whole
Theorem 5. =

In the following theorem we describe some other situations in which the degree
d()) can be determined.
Theorem 6. (i) Let dim H < oo, let K be such that it is not a subspace of H and
let0< A< lél; (Au,u). Then A ¢ ox(A) and d()) =0.
¥ES
(i) Let Ao > 0,E*(No) N K® # §,E(A)NK = {0}. Then A ¢ ox(A) and
d(A) =0.

(iii) Let A be a symmetric and put \g := sup (Au,u). Suppose that Ay €
wESINK

RY — o(A) and card(Ex(Mo) N S1) = 1. Let ug € Ex(Xo) N Sy and suppose there
ezists wo # 0 and € > 0 such that

(33) B.(uo) N K = {u € Be(uo); (u — uo,wo) > 0}.

Then Mg < Ao and d(A) =0 for A € (A\g, Xo).

PROOF : The assertions (i), (ii) are proved in [11]. Suppose that the assumptions
of (iii) are fulfilled. We shall prove (by contradiction) that the inequality (2) does
not have solution for A close to Ag(A < A¢) and for a suitable f; the proof of \j < Ag
can be carried out in the same way. Suppose that for A\, T Ao and f, := — A ug+Au,
there exist u, € K such that (A\,u, — Au, — fo,v —u,) >0 for any v € K, i.e.

(34) (An(un + uo) — A(up + ug),v—u,) >0 VveK.
Choosing v := u, + ug in (34) we obtain
(35) ((And — A)un,uo) 2 —((AnI — A)uo, uo) >0,

since (Auo, o) = Aol|uol|* = Ao. Moreover, choosing v := 2u, and v := 0 in (34)
we get ((Anl — A)(up + ug), un) = 0, thus according to (35) we have

(36) ((AnI - A)“m“n) = _((’\nI - A)“Oy “n) <0,

hence (Aun,upn) > Anllunl|?, so that u, # 0 and

(Aup,u,) = sup (Au, u)

(37) Tunll? oo Tl
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We may suppose ey — u. Thenu € K N B, and (37) implies (Au,u) = Ag,u €
EK(f\_g) N S, since the functional v — (Av,v) attains at v := u its maximum in
K N Bj. Hence u = uy, uiy — u (since |lgz2gll = [lu]l). Moreover, we have

(38) 0= {((Anf — A)(un + o), un) =
= ((AnT = A)un, un) + (An = Ao){uo, un) + (oI — A)uo, ua).

Since ((AnI — A)un,u,) < 0 by (36) and (An — Ao){uo,un) < 0 for sufficiently
large n, it is sufficient to prove (Ao — A)ug,un) = 0 and (38) will yield us a
contradiction. According to (33) we have (Aol — A)ug = twy for some ¢ > 0 and
so it is sufficient to prove (wo,un) = 0 for large n. Suppose the contrary. Then
by (33) we get u,, € K°, hence u,, is the solution of the equation corresponding to
(34), i.e. u, = —up. Nevertheless, —uq ¢ K, which gives us a contradiction. ]

Remark 5. The assertion of Theorem 6(iii) can be proved (for some special prob-
lems) also if the condition (33) is not fulfilled ([13]).

Example 2. Let H := W;’Z(O, ), {u,v) = j:u’v'd:c, (Au,v) := fo*uvdx,K =
{u € H;u(z1) < 0,u(z2) > 0}, where z; = 2r,z, = 2x. Then u is a solution of
the inequality (4) iff

A" (z) —u(z) =0 in (0,z;) U(z1,22) U (22,7)

u(0) =u(r)=0

u(z1) < 0,u(zz) > 0,u’_(z1) < ul(z1),ul(22) > uy(z2)
(ul(z1) — vl (21))u(z1) = 0, (ul(z2) — vy (2))u(z2) =0

(39)

Solving (39) we get ok (A) N [F,+0) = {3, %, 1, &, 3, 1%, %5} and using our
results we can derive following facts:

d(A) | follows from

A>4/9 1 Theorem 1(i)

A€ (9/25,4/9) | 0 | Theorem 6(iii) (Ao = 9/25)
A€ (1/4,9/25) -1 Theorem 1(ii)
A€ (4/25,1/4) 0 Theorem 1(ii)
A€ (1/9,4/25) 1 Theorem 1(ii) + Remark 1
A€ (9/100,1/9) | © Theorem 1(ii) + Remarkl
A€ (1/16,9/100) | -1 Theorem 1(ii) (Ao = 1/16)

} (Ao =1/4)

} (Ao =1/9)
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(Remark 1 can be used e.g. with Ky := {u € H;u(z1) < 0,u(z2 + 1) > 0}).

Example 3. Let H := W,'*(), where Q := (0,7)?,(u,v) := [, Vu - Vvdz,
(Au,v) := [quvdz, K := {u € H;u > 0 on M}, where M := (}x,37) x (0,x). Us-
ing similar arguments as in [11, Example 2] one can easily show ox(4) N[}, +00) =
{3, 4,1} and using Theorem 5 we get

d(A)=1 for A >1/2,
d(A)=0 for X € (4/13,1/2),
d(\)=-1 for A € (1/5,4/13).

Remark 6. Theorem 2 and 6 (ii) were used in [13] to get some existence results for
eigenvalues of inequalities of reaction—diffusion type; these results imply some desta-
bilizing effect of unilateral conditions for the system of reaction—diffusion equations
and generalize in many directions results proved in [1], [2], [12].

4. Multiplicity results.

If A > sup (Au,u), then the operator AI — A is strictly monotone, so that the
w€B;

inequality (2) has a unique solution for any f € H (e.g. [3]). Nevertheless, for
A < sup (Au,u) we may lose the uniqueness.

uw€B,
Theorem 7. Let A € Rt — (0 (A) U a(A)),d(}) # (=1)PN and let f € (\] -
A)KA) (if A is symmetric) or f € (\I — A)(K®). Then the inequality (2) has at
least two solutions. If, moreover, K is an intersection of finitely many halfspaces,
then for each 6§ > 0 there exists f € Bs(f) such that the inequality (2) with the
right-hand side f has at least |(—=1)P™ — d()\)] + 1 solutions.

PROOF : Let f = (A — A)u, where u € K° (or u € K4 and A be symmetric). In
both cases we know that u is an isolated solution of the equation

(40) (A £,0)(u) =0

and that deg(T(}, £,0),0, B,(u)) = (=1)’* for sufficiently small ¢ (for u € K4
and A symmetric this fact was proved in the proof of Theorem 5). Thus we have

d(X) = deg(T(), £,0),0, Br) = deg(T(}, £,0),0, Br — B.(u)) + (-1)°™.

Since d()) # (—1)P(™, the equation (40) has at least one solution in Bg — B,(u).
If, moreover, K is an intersection of finitely many halfspaces, then [11, Theorem 5]
implies that for any § > 0 we can find f € Bj(f) such that f € (Al — A)(K®) (or
f € (\I = A)(K4)) and f is a regular value of T, i.e. all solutions u; of (40) are
isolated and deg(T(}, f,0),0, B.(u;)) = +1 for sufficiently small ¢. "
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Corollary. Let A € R* — (ox(A) Uo(A)),d(\) = 0, f € (Al — A)(K®) (or f €
(M — A)YKA) and A be symmetric). Then (2) has at least two solutions.

Example 4. Let A be symmetric, let A; > A2 > 0 be the two largest eigenvalues

of 4, let E(\})N K = {0}, K* # 0 and let A, have an odd algebraic multiplicity

(i.e. 7(A1) is odd). Let A > max()s, s}t(1pB (Au,u)),A < A;. Then d()\) =1 by
uw€EKNB;

Theorem 1(i) and (—=1)#(Y = —1, so that any f € (A\]—A)(K*4) we have at least two
solutions of (2) (or 3 solutions, if K is an intersection of finitely many halfspaces).

Example 5. Let Q be a bounded domain in R", H := Wy*(Q), (u,v) := J, Vu-
Vvdz,(Au,v) = [yuvdz,K = K* := {u € H;u > 0}. Let )\, be the first
eigenvalue of A and let e; € E(\;)NS;. We may suppose ¢; > 0 in §; using similar
arguments as in [11, Example 2] one can prove that o}(A4) = {1}, Ex(A\) N Sy =
{e1}. Choosing the test function v := u + ¢; in the inequality

ueK: (Mu—Au—e,v—u)>0 WvekK

we get that this inequality is not solvable for A < );, so that d(A) = 0 for A < A;.
Further choose f € KS := {u € H;{u,v) <0 Vv € K —{0}} and X € (0, ),).
Then u := 0 is a trivial solution of (2) (with A := )\g) and we can use the idea of
Szulkin [17], [19] to prove that the inequality (2) (with A := )\g) has at least two
solutions:

Choose A > A; and first let us prove that the inequality (2) has no solution in B,(0)
for any A € [Ao,A] and ¢ > 0 sufficiently small. Suppose the contrary, i.e. there
exist 0 # un — 0 and A, € [Ag, A] such that (Aau, — Au, — f,v — u,) > 0 for any
v € K. Dividing the equation (A un — Au, — f,u,) = 0 by |Jua||? and passing to
the limit (assuming W:T:Tf —u€K,\, = A>0) we get

1 Up
_ = lim ——(f —"_} <
A= () = Jim o ) <©

hence u # 0, (f,u) = 0, which gives us a contradiction. Thus we have

0 = d(Xo) = deg(T()o, £,0),0, B.) + deg(T( o, £,0),0, Br — B.) =
= deg(T(A, f, 0), 0, B¢) + deg(T(/\o, f’ 0)7 O) BR - Eﬂ) =
=1+ deg(T()o, f,0),0, B — B.),

which implies the existence of a solution in Bg — B..
Moreover, we have K4 # 0: if {ex}§2, are eigenfunctions of A forming an or-
thonormal basis in H, then e.g. u := 205 ]%}l € KA. Hence we can apply Corol-
k=1
lary of Theorem 7 to prove a multiplicity result for f € (Al — A)K 4). Since
(M — A)K#) ¢ KS, we get also new right-hand sides with multiple solutions (in
comparison to the Szulkin’s result).
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Theorem 8. Let A be symmetric, let Ay > A2 > 0 be the two largest eigenvalues
of A. Let dimE()\;) = 1,e; € E(\) N S1, Bs(e1) C K° (obviously § < 1). Put
= [A2+(1-62)(A1=22), A1) and choose Ao € J. Then Ao ¢ ok (A), the inequality

(41) ue K: (Mou—Au—e,v—u) >0 WWwekK

does not have solution (which implies d(Xo) = 0) and for any f € K = {u €
H;{u,v) <0 VYve K},f #0, the inequality (2) (w;th (A := Xo) has ezactly two

solutions.
PROOF : Let {e;}2, be eigenvectors of A forming an orthonormal basis in H.
00 o0
First suppose Ao € ok (A4),u € Ex(Xo)NS1. Then u = ¥ cie;, where Y c? =1,
i i=1

=1

and using the equality Ao||ul|? = (Au, u) we obtain (A; — Ag)c? = Y (Ao - Ai)e? >
i>2
(Mo = X2)(1 = ¢3), which implies

o —A
2 0 2
(42) €= N =g

Since Ag ¢ o(A), we have u € K. Since Bs(e;) C K°, we get (u,e1)? = c? < 1-6%
Thus we have Ao — A
2

Al — A2 T

which implies A ¢ J and gives us a contradiction.

Now suppose that u € K is a solution of (41). Choosing v := u + e; we get
(Mo = M1){u,e1) > 1, hence (u,e;) < 0. Moreover, (Aou — Au — e3,u) = 0, so that
(Au,u) > Xol|u]|?, which implies (as in the derivation of (42))

u 2 AO—’\I
(e > 5 =a

<cd<1-62

(43)

Since the unique solution of the equation Agu — Au = e; does not belong to K, we
have u € 9K and thus

u
(44) (m,e,)2 <1-82

The inequalities (43) and (44) imply Ao ¢ J, which is a contradiction.

Finally, choose f € K — {0}. If A > Ao, then u := 0 is the unique solution of (2)
lying in OK: if, on the contrary, there exists a solution.u € K — {0} of (2), then
(Au — Au — f,u) = 0,(Au,u) = A|ul|® — (f,u) > A||u||?, which implies (similarly
as above) A ¢ J and also A < )\, thus it gives us a contradiction. Further choose
A > );. The equation Au — Au = f is not solvable in m—) for any A € [Ao,A] and
€ < x4jaf 2ad thus u := 0 is the unique solution of (2) in B(0) for any A € [Xo, A].
Hence

1 =d(A) = deg(T'(A, £,0),0, B.(0)) + deg(T'(\o, f,0),0, B.(0)).
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On the other hand we know

0 = d(Xo) = deg(T' (Ao, f,0),0, B) + deg(T (Ao, f,0),0, B — B(0)),
so that there exists a solution u® € Bg — B,(0) of the inequality
(45) u€ K: (dou—Au-—f,v—u) >0 VveK.

Since the inequality (45) does not have solution in 8K — {0}, we have u° € K9, i.e.

u? is uniquely determined. Hence (45) has exactly two solutions: 0 and u°. =

In the following theorem we shall use this notation: if A, is a completely contin-
uous linear operator in H, then we put

da()) := deg(T(),0,0, Aq, K),0, B,).

Theorem 9. Let F : H — H be a completely continuous map, let Ay, Ao be
completely continuous linear operators and let

F(u) — Aou _ . F(u)—- Axu

= im =0.
R T eSS T

46 lim
(46) Tl

Let, moreover, 1 ¢ ox(Ag) U og(Ax) and dy(1) # doo(1). Then there ezists a
nontrivial solution of the inequality '

(47) vueK: (u—F(u),v—u) 20 WveK.
PROOF : Putting goo(u,A) = F(u) — Asou we get using Lemma 3
doo(1) = deg(T(1,0, goo, Acos K), 0, Br) = deg(I — Pk F,0,Bg)

for sufficiently large R > 0. On the other hand, putting go(u,A) = F(u) — Aou we
get (as in the proof of [11, Lemma 3])

do(1) = deg(T(1,0, go, Ao, K), 0, B,) = deg(I — PxF,0,B,)
for sufficiently small ¢ > 0. Hence
deg(I — PxF,0,Br — B,) = do(1) — do(1) # 0,

which implies the existence of a nontrivial solution of (47). =

Example 6. Let Q be a bounded regular domain in R”, H := Wy'}(Q), (u,v) :=
fﬂ Vu - Vvdz, (Au,v) = [juvdz, (F(u),v) := Jo f(u)vdz, where f € C(R, R),
f(0) = 0. Suppose there exist f'(0) and f'(c0) := Ilim ﬁtﬂ and 'put Ay =

t|—oo
f'(0)A, A, := f'(c0)A. Then one can easily verify (46). Suppose that f'(0),
f'(00) ¢ xk(A) and d(f'(0)) # d(f'(cc)) (see Remark 1 (ii)). Then Theorem 9

implies the existence of a nontrivial solution of (47).
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5. Variational inequalities in R?.

In this section se shall show how the structure of the solution set of (2) depends
on A in a very special case.

Suppose H := R?, A is symmetric with eigenvalues A\; > X, > 0,¢; € E()\;) N
S1,w; € Sl(t = 1’2)’0 < (’wg,ez) < (wl’GZ)sK = {u € H; (u7w1) 20, (uaw2) > O}
(see Fig.1). Denote

Ki:={u€ K;u 1l w;,u+#0} (:=1,2),
K}i=(-A)K) (i=1,2),
K} i = (A — A)K®),

K:= {crwy + c2we;¢ <0, ¢z <0}.

An element u € H is a solution of (2) iff exactly one of the following four conditions
is fulfilled:

(o) weK® f=(\-Au

{C1) u€K,, M—Au—f=tw, forsomet>0
(C2) u€ Ky, A — Au— f=tw, forsomet>0
(€3) u=0, fek.

Thus the right-hand sides f, for which is the inequality (2) solvable, can be described
in the following way: f € My U M; U M, U M;, where M, := K}, M; := K} +
{twi;t <0} (i =1,2), M3 := K. Moreover, the number of solutions of (2) is for
A € R* —o0k(A) and generic f (see [11]) given by the number of indices ¢ such that
f € M;.

Denote A} > A\? the eigenvalues of (4) which correspond to the eigenvectors lying
in Ki,K;. Then A\ > A} > A2 > M\, 00 € o(PiAj{w;}+), where P; : H — {w;}*+
is the orthogonal projection. Using Fig.2 — 6 one obtains the following multiplicity

results:
the number of solutions
d) of (2) for generic f 5ee
A> N 1 1 Fig.2
Ae (Aha) 1 1,3 Fig.3
Ae (03,0 0 ’ 0,2 Fig.4
A€ (X2, 22) -1 1,3 Fig.5
A€ (0,)2) 0 0,2,4 (or 0,4) Fig.6

Similar discussions can be made also for another inequalities in R? (or R?) and
some of the results of these considerations can be used as conjectures for inequalities
in a general Hilbert space, e.g. one sees how to choose a right-hand side f € H, for
which the inequality (2) “should not” have solution.



Solvability and multiplicity results for variational inequalities 301

K} K}

N

Fig.1 Fig.2 (A > A1)

K} K

RN

Fig3 (Al <A< )y)

»Kl)‘

3

>
y
L\
2

SERL L LN

N
/
K

A

P
V

N he

Ve anve
KA KX KIAK

Fig.5 (A2 < A < A%) Fig6 (A2 —e <A < )y)

w, Uiy N ",




302

P.Quittner

REFERENCES

[1] Drébek P., Kuéera M., Mikova M., Bifurcation points of reaction-diffusion system with
unilateral conditions, Czechoslovak Math.J. 35 (1985), 639-660.
[2] Drabek P., Kuéera M., Eigenvalues of inequalities of reaction-diffusion type and destabilizing
effect of unilateral conditions, Czechoslovak Math.J. 36 (1986), 116-130.
[3] Kinderlehrer D., Stampacchia G., “An introduction to variational inequalities and their ap-
plications,” Academic Press, New York, 1980.
[4] Kuéera M., A new method for obtaining eigenvalues of variational inequalities based on
bifurcation theory, Cas.Pést.mat. 104 (1979), 389-411.
[5] Kuéera M., A new method for obiaining eigenvalues of variational inequalities. Operators
with multiple eigenvalues, Czechoslovak Math.J. 32 (1982), 197-207.
[6] Ku€era M., Bifurcation points of variational inequalities, Czechoslovak Math.J. 32 (1982),
208-226.
[7) Miersemann E., Uber héhere Verzweigunuspunkte nichtlinearer Variationsungleichungen,
Math.Nachr. 85 (1978), 195-213.
[8] Miersemann E., Hohere Eigenwerte von Variationsungleichungen, Beitrage zur Analysis 17
(1981), 65-68.
[9] Miersemann E., On higher eigenvalues of variational inequalities, Comment.Math.Univ.
Carol. 24 (1983), 657-665.
[10] Quittner P., A note to E.Miersemann’s papers on higher eigenvalues of variational inequal-
ities, Comment.Math.Univ.Carol. 26 (1985), 665-674.
[11] Quittner P., Spectral analysis of variational inequalities, Comment.Math.Univ.Carol. 27,3
(1986), 605-629.
[12] Quittner P., Bifurcation points and eigenvalues of inequalities of reaction-diffusion type,
J.reine angew.Math 380 (1987), 1-13.
[13] Quittner P., “Spectral analysis of variational inequalities,” Thesis, Praha, 1986.
[14] Svarc R., The solution of a Fuéik’s conjecture, Comment.Math.Univ.Carol. 25 (1984),
483-517.
[15] Svarc R., The operators with jumping nonlinearities and combinatorics, Preprint.
[16] Svarc R., Some combinatorial results about the operators with jumping nonlinearities
Preprint. .
[17] Szulkin A., On a class of variational inequalities involving gradient operators, J.Math.Anal.
Appl. 100 (1984), 486-499.
[18] Szulkin A., Positive solutions of variational inequalities: a degree-theoretic approach, J.Dif.
Equations 57 (1985), 90-111.
[19] Szulkin A., A noncoercive elliptic variational inequality. In “Nonlinear functional analysis
and its applications”, Proceedings of symposia in pure mathematics 45 (1986), 413-418.
[20] Rabinowitz P.H., “A global theorem for nonlinear eigenvalue problems and applications. In
“Contributions to nonlinear functional analysis”,” ed.E.H. Zarantonello, Academic Press,
New York - London, 1971.
[21] Nirenberg L., “Topics in nonlinear functional analysis,” Academic Press, New York - San
Francisco — London, 1977.

FU CEFV SAV, Dibravska cesta 9, CS-84228 Bratislava, Czechoslovakia

(Received December 22,1988)



		webmaster@dml.cz
	2012-04-28T17:48:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




