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Representation of semigroups by products of simple graphs 

VLADIMfR PUS 

Abstract. We construct representations of every countable commutative semigroup by 
products of simple graphs which are formed by means of simple operations (sum and 
product) from graphs with very simple structure (namely from paths and also from cir­
cuits). 
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Classification: Primary 05C99, Secondary 20M30 

1. Notations and definitions. 
We denote by u) the first infinite cardinal, i.e. the set of all non-negative integers. 
Let n,ra € w. By n mod ra we shall denote the unique integer r such that n = 

m - q + r where q € u; and 0 < r < ra. Further we put [n, ra] = {«; 6 k>; n < i < ra}. 
By uM we denote the semigroup of all functions on M with values in u endowed 

with the pointwise addition, and by expu>M the semigroup of all subsets of uM with 
the addition defined by A -f B = { / + g; f € A and g € B}. 

If A is an arbitrary set then | A | denotes the cardinality of A. 

In this paper, all graphs will be simple, i.e. undirected and without loops and 
multiple edges. The set of vertices of a graph G is denoted by V(G) while E(G) is 
the set of edges. A sequence 5 in a graph G is any finite series (t>o-*>i> • • •, vn) of 
vertices in G such that consecutive vertices are connected by an edge. The vertices 
vQ and vn are called the endpoinU of S and the number n is the length of S. A 
sequence (t>o>t>i, • • • >t;n) is called a path if Vi ^ Vj whenever i ^ j . The distance 
between vertices x and y in a graph G is denoted by dP(x, y) or simply by d(x, y). 

Let G = (V,E) and G' = (V\E') be graphs. A mapping / : V -> V is said to 
be compatible if the following condition holds:{a:, y} € E => {f(x),f(y)} € E'. 

Now let us recall some notations from category theory. Let K be a category. We 
write A = B if A and B are isomorphic objects in K. The product of a family of 
objects {Ai\ i € / } in K is denoted by f | A* and ]£ A% denotes the coproduct of this 
family. 

Recall that simple graphs and compatible mappings constitute a category with 
products and coproducts. The products are usually called direct producU. The 
coproducts are disjoint sums. 
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2. Introduction. 

Let K be a category with finite products and let (5, + ) be a commutative semi­
group. A collection {r(s); s G S} of objects of K is called a productive representation 
of(S,+)inK if 

(1) r(s -r s') is isomorphic to r(s) x r(s') for all s,s' € S and 
(2) r(.s) is not isomorphic to r(s') whenever s ^ s'. 

Which semigroups can be represented in which categories? In answering this 
question the following theorem proved to be very useful. 

Theorem 1 (Trnkova, [6]). For every commutative semigroup S there is a ho-

momorphism h: S —• expo***0"'5' such that 

(1) h(s) 0 h(s') = 0 for s ^ s' (hence h is one-to-one) and 
(2) every f € r(s) is distinct from the constant zero and \h(s)\ = No • \S\ for 

every s € 5 . 

A lot of theorems on productive representations of commutative semigroups in 
a category has been proved on the basis of Theorem 1. For example, in [1],[3],[5], 
[6] and [7], Theorem 1 is used to prove a number of results on representations of 
commutative semigroups by products of graphs. In particular, the following theorem 
has been proved. 

Theorem 2. Every commutative semigroup S has a productive representations in 
the category of simple graphs and compatible mappings. 

For constructing a representation of a commutative semigroup by products of 
graphs, Theorem 1 is applied as follows: 

Let 5 b e a commutative semigroup and let h : S —> expo;**0"'5! be a homomor-
phism, fulfilling the conditions (1) and (2) of Theorem 1. Put H = No • \S\. Now, 
let a set {G\\ A < H} of graphs be given. For every / € o > * \ { 0 } , where O denotes 
the constant zero, put 

<?(/) = I I ^ A ( A ) ; A < x and /(A) ? 0} 

(Further we shall write Jl Gf
x

{X) instead of I ] { G A ( A ) ; A < H and /(A) ^ 0}.) Then 
A<* 

clearly G(f) x G(g) £- G(f -\-g). For s € S define r(s) as a coproduct (disjoint sum) 
of H copies of ]£ 0(f), i.e. 

/6fcW K-) = £ ( £ <?(/))*• 
A<* f€h(») 

Since r(s) contains each of its components in H copies, r(s -f s') & r(s) x r(s'). 
The non-isomorphism of graphs r(s) and r(s') for s / s' is forced by a suitable 

choice of the starting set {G\; A < x}. The choice is always made such that the 
following condition (C) is fulfilled. 

(C) If G(f) is a sumrnand of r(s)> then necessarily / € h(s). 
Since h(s) ^ h(s') for s / s', the above condition implies that also r(s) p r(s') 
whenever s ^ s'. 

Condition (C) is obviously fulfilled whenever the following condition (R) holds. 
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Condition (R) . Every f € u;* \ {O} can be fully recognized from one (distin­
guished) component of G(f). 

The aim of many papers dealing with representations of commutative semigroups 
by products of graphs is to construct representations by graphs having some special 
additional properties. For example, in [5], Trnkova proved the following strength­
ening of Theorem 2: 

Given a graph G, every commutative semigroup S has a productive representation 
{r(s);3 € 5} in the category of simple graphs and compatible mappings such that 
every r(s) contains G as a full subgraph. 

In order to prove this theorem, Trnkova constructed an appropriate set {G\; A < 
x} of graphs fulfilling the condition (R) such that all graphs G\ contain G. To 
achieve this, the structure of the graphs G\ and consequently the structure of r(s) 
had to be considerably complicated. On the contrary, in [1], Adamek and Koubek 
tried to give representations of commutative semigroups by products of graphs as 
simple as possible. They proved, for example, that every countable commutative 
semigroup can be represented by products of bipartite graphs of diameter 3. (By a 
diameter of a graph G we understand the least number n such that any two vertices 
in a component of G can be connected by a path of length at most n). On the 
other hand, they showed that no non-trivial group can be represented by products 
of bipartite graphs of diameter 2. (Bipartite graphs of diameter 2 are exactly sums 
of complete bipartite graphs.) 

Similarly, in [3], Koubek, Nesetfil and Rodl showed that no non-trivial group can 
be represented by products of simple graphs of diameter 1. (Graphs of diameter 1 
are exactly sums of complete graphs.) On the other hand, they showed that every 
set {G\\ A < H} of complete graphs with at least three vertices fulfills condition (R). 
So, they gave another representation {r(s); s € S} of every commutative semigroup 
by products of graphs. It is true, that the structure of graphs r(s) they obtained 
is complicated, but these r(s) are formed by means of simple operations (sums and 
products) from graphs with simple structure (namely from complete graphs G\). 

The above result of Koubek, Nesetfil and Rodl motivates \he aim of the presented 
paper. Given a set H = {G\; A < H] of graphs, is it true that H fulfills condition 
(R)? We show that it is true for the set of all paths of length greater than 1, for 
the set of all odd circuits and for the set of all even circuits. On the other hand, it 
is not true for the set of all circuits. 

3. Resu l t s . 
Let us begin with a definition. 

Definition 1. Let a be an infinite cardinal. We say that a set {G\;\ < *} of 
graphs is a-productively independent if for every two functions f,g '- * ~+ a *n e 

following holds: 
HG{w*l[Gf)^f = g. 
A<* A<* 

(We write ft Gf
x
(X) instead of I H ^ A ^ A < * and /(A) ^ 0}.) 

A<* 
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We say that a proper class H of graphs is productively independent if every subset 
of H is cr-productively independent for every cardinal a. 

R e m a r k . Let H = {G\; A < x} be a set of graphs. If all products JJ Gf^X\ where 
\<K 

f € u>* \ {O}, are connected then the following statements are equivalent: 

(1) H is a>-productively independent. 
(2) H fulfills condition (R). 

Obviously, the product of each collection of complete graphs with at least three 
vertices is connected. Hence, the following theorem implies that every set of com­
plete graphs with at least three vertices fulfills condition (R). 

T h e o r e m 3 (Koubek , Nesetr i l , Rod l , [3]). The class of all complete graphs 
with at least three vertices is productively independent. 

Now we shall prove the result of the paper. 

Theorem 4. The following sets of simple graphs fulfil condition (R) ( and conse­
quently they are u>-productively independent): 

(a) the set {Pn; n > 2} of all paths of length greater than 1, 
(/?) the set {O2fc+1; k > 2} of all circuit of odd length, 
(7) the set {C2*; k > 1} of all circuits of even length. 

In the proof of Theorem 4 we shall often use the following simple proposition (see 
[2] or [4]). 

Suppose that {(?»•; t € / } is a collection of bipartite graphs and G = J\Gi 
i€1 

is the direct product of this collection. Let x and y be vertices in G. Denote 
x = (xi)i£j,y = (yi)iei and dt = d(a?t,yt). Then the following holds: 

d(x, y) < 00 if and only if the collection {dt; i € / } is bounded and moreover all 
di's are odd or all dt's are even. 

Further, if d(xy y) < 00 then d(x, y) = sup{cft; i € I } . 

PROOF of Theorem 4: 

Case (a). Denote by P„ = ([0, n], {{e, i -f 1}; i € [0, n - 1]}) the path of length n. 
00 , , . 

Let / - w \ {0,1} —• u; be an arbitrary function and let G = f [ P« . We show 
n=2 

that / can be recognized from a distinguished component of G. 
For this, let C be an arbitrary component of G containing a vertex of degree 

1. Clearly all such component are pairwise isomorphic, so C is a distinguished 
component of G. We show that / can be recognized from C Choose for this 
purpose arbitrary but fixed vertex x of degree 1 in the graph C. 

(I) We determine by induction the values /(2k) for k = 1,2. . . 
So, let us suppose that the values f(2j) for,; € [1, k — 1] are known; we are going 

to determine / (2k ) . 
Let M% be the set of all vertices in C of degree 1 having a distance of 2k from 

the vertex x. If y € Mx then all projections of y have degree 1 and moreover y 
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can differ from x only in the projections into paths P2j where j G [l,fc]. (Indeed, 
if the vertex y of degree 1 differs from x in the projection into a certain path P,, 
where s > 2k, then d(x,y) > 2k and if it differs from x in the projection into a 
certain path P2j+i, where j € [1, k — 1], then d(x,y) = oo.) Moreover x necessarily 
differs from y in at least one of the projections into paths P2* because otherwise 
d(x,y) < 2k. Thus 

|Afx| = (2^<2*> - 1) • I I 2^W> 
; = i 

which enables us to calculate /(2k) from the numbers f(2j), where j = 1,2, . . . , 
k — 1, and from the structure of the graph C. 

(II) Let k be a positive integer. We determine / (2k + 1). 
(A) First suppose that /(2k) ^ 0. 
Let Nx be the set of all vertices y in C such that the following conditions hold 

(in C): 

(1) d(y) = 2 
(2) d(y,x) = 2k 
(3) d(z,y) = 2 =» d(z,x) < 2k 
(4) d(z) = l^d(z,y)>2k 

Let y € Nx. Then the following holds: 

(a) The vertex y has exactly one co-ordinate of degree 2, whereas all other co­
ordinates have degree 1. 

We show that 

(b) The co-ordinate yi of y, which has degree 2, is a projection of y into a certain 
path P2*-fi and has a distance of 2k from the projection x, of the vertex a; 
into this path. 

First we show that the co-ordinate y, of degree 2 has a distance of 2k from the 
corresponding projection Xi. For this, suppose that d(xi,yi) < 2k. Then the co­
ordinate yj such that d(yj,Xj) = 2k (such a co-ordinate exists by (2)) has degree 
1 (i.e. yj is an endpoint of some path P2fc). Thus, if we define vertex z by Zi = Xi 
and zr = yr for r -j*- i, then d(z) = 1 and d(z,y) = d(xi,yi) < 2k (since d(x,y) is 
even, we also have that d(xi,yi) = d(zi,yi) is even and so d(z,y) < oo). But the 
existence of vertex z contradicts condition (4). 

Now we show that the co-ordinate yi of degree 2 is a projection into a certain 
path P2*+i. Indeed, by the above, y, is a projection into a certain path Pr where 
r > 2k -f 1. Suppose that r > 2k + 1. Then there is a vertex z, in the path Pr 

such that d(zi,yi) = 2 and d(zi,Xi) = 2k -f 2. Thus, if z denotes the vertex having 
the i-th co-ordinate equal to Zi and identical with y in all other co-ordinates then 
d(z, y) = 2 and d(z, x) > 2k which contradicts condition (3). 

Further, 

(c) the vertex y coincides with x in all projections into paths Pr where r > 2k + 1 
excepting the co-ordinate y,, and also in all projections into paths P2j+i 
where ; € [1 ,&- 1]. 
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(Otherwise d(x, y) > 2k or d(x, y) = oo.) 
On the contrary, every vertex y which fulfills conditions (a),(b),(c) belongs to Nx. 
The conditions (1) - (3) are obvious, let us prove (4). If z is a vertex in C and 

d(z) = 1 then either d(zi,yi) = 2k (and hence d(z,y) > 2k) or d(zi,yi) = 1. We 
show that the latter case leads to a contradiction. Indeed, since /(2k) ^ 0, then 
we can consider the projections ZJ and yj of the vertices z and y into a certain 
path P2*- Vertices Zj and yj have degree 1, so d(zj,yj) is an even number. Thus 
d(z, y) = oo, so z is not in C, a contradiction. 

(B) Now suppose that /(2k) = 0. 

Similarly as in case (A) we show that the set Nx defined by conditions (1) - (3) 
coincides with the set defined by conditions (a) - (c). Indeed, some co-ordinate yi 
of the vertex y has a distance of 2k from the corresponding co-ordinate Xi of x. 
Clearly y,- is the projection into a certain path Pr where r > 2k -f 1, y« has degree 
2 and all other co-ordinates of y have degree 1. Further we proceed analogously as 
in case (A). 

The sets Nx (in case (A)) and Nz (in case (B)) are described by conditions (a) -
(c) which follows that 

m+»-h*»-{™ * if f(2к) ф 0 

f(2к) = 0. 

Thus /(2k -f 1) can be determined from the numbers /(2j), where j = 1,2,..., k, 
and the structure of the graph C 

Case (/?). Denote by Ck = ([0, k - 1], {{*,i -f 1}; i € [0, k - 1]} U {{0, k - 1}}) the 
circuit of length k. Let / : u; \ {0} —» w be an arbitrary function and let G = 

OO f(t\ 

I I ^2*4.1 • We show that / can be recognized from a distinguished component of 

G. Since all components of G are isomorphic we choose an arbitrary component C 
and show that / can be recognized from C. 

So, choose an arbitrary but fixed vertex x° in C and a vertex x1 adjacent to x°. 
Suppose without loss of generality that x° = (0 ,0 , . . . ) and x1 = ( 1 , 1 , . . . ) . Define 
by induction a sequence {-E*}J£o °f vertices in C such that {x , ,a: , +1} € E(C) and 
moreover there exists exactly one path of length 2 between vertices a;,+1 and x1"1. 
It can be easily seen that the sequence {#t}J£o is uniquely defined (for given vertices 
x° and x1) and that the projection of x* into C2.M-1 is equal to i mod 2k + 1. 

If Ck is the circuit of length k, x and y are two vertices in Ck with a distance d and 
t is a non-negative integer then by N(k, d, i) we denote the number of sequences 
from x to y of length i in the graph Ck- Clearly, if k is odd then N(k,d,d) = 
l ,N (k , k - d,d) = 1 for d ^ k and N(k,0,k) = 2. 

Obviously, if x and y are two vertices in C, {pj',j € J} is the set of all projections 
OO f(k\ 

of the product f| C f̂c+i ^ ^ *i *s ^ e l e n $ n °i * n e circuit Pj(G) then the number 

of all sequences of length i from x to y is equal to 
n^(ti,<iW(0>(pi(x),p,-(y))l«). 
i6J 
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In particular, for k > 1, the number of all sequences from x° to ar2*4"1 of length 
2k -h 1 is equal to 

2><*> • JjN(kJ7d^G\Pj(x%Pj(x
2k^)),2k-hl), 

*€J 

where J C J and {pj]j € J} is the set of all projections of the product f [ O/*+1 

into circuits of length < 2k — 1. (Note that the empty product of natural numbers, 
we put to be equal to 1.) But the value of the product 

llmk^d^p^x^p^x^^k^l)^ 
i€I 

Yl N(kh <fk> (0,2k + 1 mod kj\ 2k + 1) 
i€J 

depends only on k and on the numbers / ( l ) , / ( 2 ) , . . . , f(k — 1). Since moreover 
this value is different from 0, we can determine the number f(k) from the numbers 
/ ( l ) , / ( 2 ) , . . . , f(k — 1) and the structure of the graph C 

Case (7). Let / : a; \ {0,1} —» CJ be an arbitrary function, and denote G = 

f[ Cjik • We show that / can be recognized from a distinguished component of 
* = 2 

G. We perform the proof in a similar way as in the proof of Case (/?). 
(I) First we suppose that / (2) = 0. 
We define the sequence {a:*}g0 of vertices in the same way as in (/?), as well as 

the numbers N(k,d,t). Obviously, N(2k,d,d) = 1 for d < k and N(2k,k,k) = 2. 
Thus, for k > 2 the number of all sequences from x° to a:* of length k is equal to 

2**>. iimk^d^Hp^ip^x^k), 
jeJ 

where J C J is defined in the same way as in Case (/?). The rest of the proof is the 
same as in Case (/?). 

(II) If / (2) 7̂  0 then we must modify the construction of the sequence {a;*}^0. 
This construction can be done as follows. 

Define x° and x1 as in Case (ff). Before we define vertices x*, where i > 2, we 
determine the number / (2) from the structure of C. Denote by 0(xl) the set of 
all vertices connected by an edge with xl. If y € 0 (x 1 ) and y ^ x° then clearly 
d(y, x°) = 2. Denote by k(y) the number of all paths of length 2 between y and x°. 
It can be easily seen that 

min{*(y);y€0(x1)} = 2^>, 

which immediately enables us to calculate / (2) . 
Now by induction we define a,,+1 to be arbitrary vertex such that {a, ,,a: ,+1} € 

E(C) and moreover there exist exactly 2-^2) paths of length 2 between x i + 1 and 

The rest of the proof is the same as in (I). • 
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Example. The set {C*; k > 3} of all circuits is not (^-productively independent 
because, for example, the equality K2 x O2H-1 — K2(2fc+i)> which can be easily seen, 
implies that 

K2 X O2J+1 X O2*+l = O2(2j+1) x O2fc+1 ~ O2J+1 X O2(2fc+1)-
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