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On rectangular covers of K2\A 

A.P.KOMBAROV 

Abstract. A paracompact E-space X has a G$-diagonal iff there exists a locally finite (in 
X 2 \ A ) rectangular open cover of JT2\A. 
Keywords: paracompact S-space, G$-diagonal 
Classification: 54F65 

It is proved in [1] that every regular E-space X with X 2 \ A paracompact has a 
G$~diagonal. The proof of this theorem in [1] uses an existence of a locally finite 
cover of K2\A by open sets whose closures miss A = {(x, x) : x £ X}. * 

Theorem 1. A paracompact Tt-space X has a Gs~diagonal iff there exists a locally 
finite (in X2\A) rectangular open cover of X2\A. 

A family # of subsets of X2 is called rectangular if t? = {Ua x WQ: a £ A}. All 
spaces are assumed to be regular and Tj . 
PROOF: A paracompact space X with a G^-diagonal is submetrizable {see [2, 
Corollary 2.9]). So, if r is a topology on X2, then there exists a topology r ' such 
that r ' C r and (X2 ,r') is metrizable. There exists a locally finite (in K2\A) 
rectangular open cover of K2\A in r ' ([3, Proposition 1]) and therefore in r . 

We prove the converse assertion. We need the following Lemma 1 which is similar 
to Lemma 2 of [1]. 

Lemma 1. Suppose d is a locally finite (in X2\A) rectangular open cover of X2\A 
and x £ X. If x £ M for some countable M C X\{x}, then x is a G&-point. 

PROOF: For each m 6 M, let Um x Wm C K2\A be a basic open neighbourhood 
of (a:, m) such that the number n(Um x Wm) = |{V € $ : V 0 (Um x Wm) ^ 0}| is 
minimal. We prove that {x} = f){Um : m £ M}. If y £ f\{Um : m € M}, y ^ x, 
then (y,x) £ P x Q £ ti. Note that x $ P. Since x £ M, there exists m £ M such 
that (y, m) £ P x Q. Then H = (Um \ P) x Wm is a basic open neighbourhood 
of (x,m), H C Um x Wm, H n (P x Q) = 0 and P x Q £ t?, but n(Um x Wm) is 
minimal. This is a contradiction. • 

Proposition 1. Suppose t? is a locally finite rectangular open cover of X2\A and 
X is a strong T>-space. Then each point of X is G$. 

PROOF: Let x £ X. If x is not a G^-point and X is a strong E-space, then there 
exists a compact space B C. X such that x £ B and x is not isolated in B, [4]. Let 
A = {P : P x Q £ d,Pf)B ^ 0,.r € Q}. If we choose z(P) € PflB for each PGA, 
then Z = {z(P) : P £ A} is discrete because A is locally finite in X \ {x}. From 
compactness of B it follows that x £ M for every infinite M C Z. Now Lemma 1 
completes the proof of Proposition 1. • 
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Lemma 2. Let U,W Q X and x £ Uf)W. Then there exists an open neighbourhood 
Gofx such that G2D(UxW) = 0. 

We omit the easy proof of Lemma 2. 

Proposit ion 2. Let X be a strong H-space and d be a locally finite rectangular 
open cover of X2\A. Then X has a Gs-diagonal. 

We confine ourselves to showing how Proposition 2 can be proved by following 
the proof of Theorem 4 in [1]. See [1] for the beginning of the proof up to the 
condition (iv). For our proof d should be taken to be a locally finite rectangular 
open cover of X2\A. 

(iv) Ift <j <n, Xi ^ Xj, U x W = V G t?, x g UnW, and ({*,-} x G(s r ; + l ) ) n 
V ^ 0, then G(s~{x))2 f) V = 0. It follows from Lemma 2 that G(s~(x)) exists. 
Now we can formally follow the proof given in [1] up to a cluster point p G C. 

Now suppose f){G(s r n) : n € u>} contains a point q ^ p. Let (p, q) € U x W = 
V £ d. Let Xi, Xj, xn £ U, i < j < n, Xi ^ XJ. Then xn $ W and hence 
xn $ 17 n W. We see that (x{,q) € ( { x j x C(s r j + 1)) n V. By (iv), we have 
G(s r n)2 n V = 0, contradicting (p, q) € G(s r n)2 n V. 

So a strong E-space X has a Wis-diagonal. Then X has a G^-diagonal (see [2, 
Theorem 4.14, Theorem 6.6]). 

Proposition 2 completes the proof of Theorem 1. • 

Coro l l a ry . A paracompact p-space X is metrizable iff there exists a locally finite 
rectangular open cover of X2\A. 

Let aZ denote the one-point compactification of an uncountable discrete space Z. 
It is easy to see that there exists a point-finite rectangular open cover of (aZ)2 \ A. 

Theorem 2. A Lindelof j3-space X has a Gs-diagonal iff there exists a countable 
rectangular open cover of K2\A. 

We note that every E-space is a /3-space (see [2, Definition 7.7]). Theorem 2 can 
be deduced from Corollary 2.9 and Theorem 7.9 of [2]. 

Rema rk. It is easy to see that if there exists a countable rectangular open cover of 
X 2 \ A and X is hereditarily Lindelof then X has a Gts-diagonal. The author does 
not know an example of a Lindelof space X without a G^-diagonal such that there 
exists a countable rectangular open cover of K2\A. 

The author is indebted to the referee for his suggestions. 
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