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A generalized Hankel transformation 

J . J . B E T A N C O R 

Abstract. In this paper we introduce a new integral transformation depending on three 
parameters, which reduces to the Hankel, Hankel-Schwartz and other Hankel type trans­
formations for suitable choice of the parameters. We study classical properties of this 
transformation and establish an inversion formula for it. Also, we solve several differential 
equations involving the operator Ba0yOtlya7 = xa°Dxai Dxa2 by using the new integral 
transformation. 

Keywords: Hankel transformation, time varying network 

Classification: 44A15, 33A40 

1. I n t r o d u c t i o n . The integral transformation defined by 

, 0 0 
hv{f(x)}(y) = / f(x)xJv(xy)dx 

jo 

is called the Hankel transformation. Hankel [6] was the first to give an inversion 
formula for it. 

Theorem 1. ([16]) Let F(x) be an arbitrary function of the real variable x subject 

to the condition that JQ F(x)yfx dx exists and is absolutely convergent. Let the 

order v of the Bessel functions be not less than — | . In these conditions, 

лoo r o o ! 

/ udu F(x)Jv(ux)Jv(ur)x dx = -(F (г + 0) -f- F(г -
Jo JQ 2 

o)) 

provided that the positive number r lies inside an interval where F(x) is of bounded 
variation. 

Essentially the same proof was given by Sheppard [12], who stressed the impor­
tant fact that the value of the integral depends only on that part of the .r-range of 
integration which is in the immediate neigbourhood of r. A different class of proof, 
based on the theory of discontinuous integrals, has been given by Sonine [14]. Bas­
set [2] presented a proof of a more direct physical character but, according to Gray 
and Mathews [5], it is open to various objections. A proof depending on the theory 
of integral equations has been constructed by Weyl [17]. 

An important property of the Hankel transformation is the following Parseval's 
equation. 
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Theorem 2. If the functions f(x) and g(x) satisfy the conditions of Theorem 1 
and if F(y) and G(y) denote their Hankel transforms of order v > — ~, then 

i*00 /»oo 

(1) / xf(x)g(x)dx= yF(y)G(y)dy 
Jo Jo 

Other conditions under which (1) holds were given by Macaulay-Owen [9], 

The Hankel transformation is relevant because besides other properties, the op­
erational rule 

hv{B„f(x)}(y) = -y2h„{f(*)}(y) 

holds for suitable functions f(x). Here Bv denotes the Bessel operator x~v~l 

Dx2i,+iDx~v. This fact opens a wide field of applications for the Hankel trans­
form (see Sneddon [13] and Gerardi [4]). 

In the last years several variants of the Hankel transformation (see Zemanian 
[18], Schwartz [11], Hayek [7], Mendez [10] and others) have been studied. Each 
one generates a rich operational calculus for certain Bessel type operator. 

In this paper we introduce a new integral transformation defined by 

F«o,«u«Af(x)}(y) = yQ0~a2 / J(*y,<**,<*u«o)/(*) dx 
Jo 

where J(z,a0,aua2) = z^'a^2a^2Jv(^z^k^2\ with k = ~aQ-al -~a2,v = 
^Z'i ~ ~~ I an<^ ^-ffc > 0. This paper is organized as follows: first, we study classical 
properties of this transformation and establish an inversion formula for it. Note that 
Fao,ai^"transformation reduces to the Hankel-type considered above (see also [1], 
[7], [10] and [18]) for suitable choises of the parameters a$,a\ and o;2- This new 
transformation satisfies the following operational rule 

FO0,a1,a2{Ba0,a1,a2/(x)}(y) = - y 2 + * i P o o , o r 1 , « , { / ( * ) } ( y ) 

where BaQ>ax,a* = xa°DxaiDxa2 and f(t) is a suitable function. Hence, Fao,ai,a2 

is useful to solve ordinary and partial differential equations involving the operator 
Bao,ax,a3- Finally, we analyze several applications of the Fa0tai)Cr2-transformation. 

2. The function J(X;a0yai,a2). Properties. 
Let ao,ai,c*2 -^ re8-l numbers. We now consider the differential equation 

(2) (BO 0 ,0 t l ,O 2 + l)y(x) = 0 

with 2 — (o;o + c*i + <*2) > 0. In the sequel, to simplify notation, we will denote 
k = — a 0 — c-i ~ OL2. 

The operator Ba0)aXta7 reduces to the important Bessel operators related to cer­
tain Hankel type transformations. For example, the operators: SM = .r""^1/2 

Dx2"+ijr),.,-M--/2 (Zemanian [18]), DP„ = Dx"+-Dx-.- (Mendez [10]), BM = 
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x-*-xDx2*+xDx-* (Sneddon [13]) and AM = x-
2»-xDx2*+xD (Altenburg [1]) 

can be obtained from Bao,c_i,a_ for suitable values of the parameters ao, a_ and a 2 . 
We chose among the solutions of (2) the function denoted by 

(3) j ( x ; a o , a i , Q 2 ) = = x a - « . - ^ ) / V . ( ^ _ x ( 2 + * ) / 2 ) 

when v = "f^fk — ~ I ' ^ n * s m n c * - o n plays an underlying role in our work and 
reduces to known special functions for certain values of a o , a j and a 2 (for example 
the Bessel function JM of the first kind and order /* is equal to J(x; —\i — 1,2/-. + 

-.-/•))• 
The function J(x;ao,ai,a2) possesses the following series expansion which con­

verges for every x 6 (0, oo) 

j(_;«_,«.,«_) = (2 + fc)0-«0/(*+*)x-«, £ izff i__^!lxn( .+ t) . 
n==Qn.l {n + 2+fc + i) 

We now list some properties of the function that will be useful in the sequel. 

Proposit ion 1. If °f^- > - | and2 + k>0 then 

BaQlQua2iXJ(xy;a0,ai,a2) = ~ y 2 + * J ( x y ; a 0 , a i , a 2 ) 

To prove this assertion it is sufficient taking into account that J(x;ao,ai,a2) is 
a solution of the differential equations (2). 

Proposit ion 2. In the same conditions that in Proposition 1, one has 

—-(xO f 2J(x;a 0 ,a 1 ,a 2)) = 

(4) = - x - « * + * J ( x ; a o " ^,<*i+2 + k,a2 - - ^ ) 

^ 2 + f c > / 2 » ( x ^ ^ - 1 J ( x ; a 0 , a 1 , a 2 ) ) = 

(5) = s - a o J ( x ; a 0 + ^~± ,<* i - 2 - k,a2 + - i ± i - ) 

(4) and (5) can be proved by using known properties of the Bessel function JM. 
In the following proposition we present the asymptotic behaviours of the J-

function. 

Proposit ion 3 . In the conditions of Proposition 1, we have: 

X(i+-"»-.)/-j(-. iao,a.,a,) __ .y!_±_-x-<-+»).«x 

(6) x c o s ( ^ x < > + * > / > - j ( | ^ i + i ) ) + •(_-»<»+•)/«), « - -> oo 

(2 + *)(*-«.>/(*+-) 
-xi+rø 

(7) Ј(_;a 0,a u<* 2) = V „,! , tt1_lч *—, « * - 0. 
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3. T h e integral t r a n s f o r m a t i o n Fa0iQlta_* 
Under certain conditions of convergence which will be conveniently specified, the 

following pair defines an integral transformation denoted by Fo0,ai,aa-

(8) 

F(y) = í i , ^ , . - , { / ( * ) } ( » ) = У°""" Г J(xy;ac2,<Ч,<*o)f(x)dx 
Jo 

f(x) = Fao,aua,{F(y)}(x) =xa'-^ Г J(xy;a2,aì,<*o)F(y)dy 
Jo 

The main property of this new transformation is that it reduces to other ones 
studied earlier for suitable values of a 0 , a i and a 2 , namely: HM = F_i_M,i+2M,_M 

(Hankel [6]), hM = F_M_|>2M+i ,_„__£ (Zemanian [18]), chM,2 = F-.M,M+i,0 (Hayek 
[7]), chM , i .= Fo,M+i,-M (Mendez [10]) and BM = F-2M-i,2M+i,o (Schwartz [11]). 

3.1. Convergence. 
In this section the conditions of convergence for the Fao,ai,^-transformation are 

stated. 
We consider the integral 

(9) / J(x;a2,ai,a0)/(x)dx 
Io 

where f(x) is a locally integrable function on 0 < x < oo such that 

f(x) = o(xa), a s i - 4 0, and 

f(x) = o(ar^), as x —> oo 

According to (6) and (7) it can be deduced that the integral in (9) is absolutely 
convergent when 

a > a0 - 1 and p < H 1 

Hence we get 

Proposit ion 4. The integral defining FQOfQuQ_{f(x)}(y) is absolutely convergent 
provided that f(x) is a locally integrable function on 0 < x < oo such that a > a0 — 1 
and 0 < av=l±22UL + -t±* - l . 

3.2. Operational Calculus. 
We now prove several operational rules for the FQ0)QuQ_ -transformation, some of 

them are useful in certain applications. 
In view of the previous definitions we can write 

Fa0,a1)a2{Bao,ai,a2/(ar)}(y)= / xa*J(xy;a0,alya2)Dxa*DxQ*f(x)dx 
Jo 
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and by using (4) and integrating by parts, one has 

Fao,aua,{Ba,„auaJ(x)}(y) = [x - J (xy ;a 0 , « j , «a ) - " , - ' x " , / (* ) -

xa>+a'f(x)D(xa'J(xy;a0,ai,a2)]l» - y2+kFao,aua,{f(x)}(y) 

Therefore 

(10) Fao,auai{Bao,auaJ(x)}(y) = -y2+*F_0,„„„,{/(x)}(_) 

provided that: 

(11) xa>+a>J(x;ao,aua2)D(xa*f(x))]? = 0 

(12) xa^a>f(x)D(xa>J(x;ao,aua2W = 0 

Note that there exists a wide class of functions satisfying (11) and (12). For 
example, all enough smooth functions f(x) such that 

f(x) = o{x% f(x) =- o(x7) as x - 0 

/(*) = o(x'), f(x) = o(xa) as a; — oo 

with p > 1 - ai — a2,a < ~-j - a\ — 2o;2>7 > —«2 - <*i an<l £ < min(| - a\ — 
2a2 - £, £ + | - 2a2 - «i), satisfy (11) and (12). 

With respect to the integral operation the following operational rule is true 

(13) F_ 0 _ 4 i , a i + . + M j _^{x -»+* l 2 / ( I -« . / ( x ) )} (y ) = 

= y-(2+k)/2Fao,aua7{f(*)}(y) - jr»>-<J+*>l2x 
x(xs,)'">J(x;a2,a1,ao)/{x-0"'/(x)}]g0 

which can be seen by making use of (4) and integration by parts. 
On the other hand, it can be easily proved that 

(14) -p-..-,.-,{/(«x)}(y) = ^ - " ' - ' F ^ ^ m K l ) 

a being a positive real constant. 

3.3. ParsevaPs relations. 
Let f(x) and G(y) be functions such that f(x)%-a* is in 1-r(0, oo) and G(y)y""a° 

is also in Li(0, oo). If 

f - _ £ > -\,F(y) = F„0,_„_,{/(x)}(y) an<i g(x) = Fa„aua,{G(y)}(x), 
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one has 

/ f(x)g(x)xa-~a-dx= f f(x) f J(xy;a2,auaQ)G(y)dydx = 
Jo Jo Jo 

/>oo *oo 

= / G(y)ya*-a°{ya°-a> I J(xy;a2,ai,ao)f(x)dx}dy = 
Jo Jo 

= ^ G(y)F(y)ya>-a° dy 
Jo 

It is possible to interchange the integration order because z a ° J ( z ; a 2 , a i , a o ) is 
bounded on 0 < z < oo (see (6) and (7)) and 

f0\f(x)x~a°\dx r\G(y)y-"°\dy 
Jo Jo 

< oo 

Hence we can state 

Proposit ion 5 . If f(x)x~a° and G(y)y~a° are in Li(0, oo) and, in addition, 

<£;£ > -hF(v) = Faa,aua,{f(~)}(y) and g(x) = Fa0ia„a,{G(y)}(x), then 

>»oo /»oo 

/ xa>-"°f(x)g(x)dx= ya*-a°F(y)G(y)dy 
Jo Jo 

Other integral products are formally the following ones: 

a) Iff(x) = g(x) then F(y) = G(y) and 

b) 

/•OO ЛOO 

/ xa>-a°[f(x)}2 dx = / ya'-a°[F(y)]2 dy 
Jo Jo 

i " 0 0 /'OO 

/ x°*-a°f(x)G(x)dx= / ya>-a°F(y)g(y)dy 
Jo Jo 

4. The inversion theorem. 
In this section we give a direct proof of the inversion formula for the 

Fa0,^^"transformation. This proof is supported in the properties of the function 
J(.r;ao,ai,a2) although the employed procedure is similar to the way followed by 
Watson [16], Sneddon [13], and Titchmarsh [15] to establish the inversion theorem 
for the ordinary Hankel transform. 

Our inversion formula is obtained as a consequence of the results that we will 
present in the following three propositions. 

Proposit ion 6. If ^ > - | and the integral fQ°° \f(x)\x^-°"-2ao^2-^2+k^4 dx 
exists, then 

/•OO ( /»oo 

/ u

a°~a- J / ( x ) J ( u x ; a 2 , a i , a o ) J ( i . r ; a 2 , a i , a o ) d x d u = 
Jo Jo 

= lim / f(x) I ua° a 2 J ( t i x ; a 2 , a i , a o ) J ( « r ; a 2 , a i , a o ) d t i d x 
A—oo J0 J0 
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provided that the last limit has sense. 

P R O O F : We define the function 

$ ( x , u ) = / ( x ) J ( r u ; a 2 , a i , a 0 ) J ( u x ; a 2 , a i , a 0 ) u Q , o " ' Q ' 2 

It can be written 

<I>(x,u) = /(x)x 2 4 U7r 2 4 X 
, a i + 2 Q Q - l 2__ ? 1 4 - 2 a 0 - l , 2 j ^ 

x (ui) 2 i- 4 J(u.r;a2,ai,a0)(ur) 2 1- 4 J(ur;a2,ai,aQ) 

and, since in virtue of (6) and (7) u 2 + 4 J(u;a2,ai,a0) is bounded on 
0 < u < 00, there exists a constant A — A(a\,k) such that 

| * ( x , « ) | < X L r ^ ^ - ^ x ^ 2 2 * - ^ ^ | / ( X ) | 

Therefore, / 0 f0 |4?(x,u)|dudx exists provided that the integral 

/0°° |/(x) |x 2 4 dx exists and by using Fubini's Theorem one has 

fOO r X rX AOO 

/ / $(x,u)dudx = / / $(x,u)dxdu 
Jo Jo Jo Jo 

Therefore if fQ | /(x) |x 2 ~ * dx exists then 

/•OO />oo 

/ u a o _ a 2 / / ( x ) J ( u x ; a 2 , a i , a 0 ) J ( u r ; a 2 , a i , a 0 ) d . r d u = 
Jo Jo 

= lim / f(x) I u Q r o ~ Q f 2 J ( u x ; a 2 , a i , a o ) J ( u r ; a 2 , a i , a 0 ) d u d x • 
*—°° Jo Jo 

By using a procedure similar to the one followed by Watson [16] pp. 457, the 
following statement can be proved. 

Lemma 1. If f(x)x~ * is absolutely integrable in (a, 6)(0 < a < b) then 

* ^ ^ / /( 
Ja 

ч - 1 - - + -Q-2 т, . v , / ч - - ^ 

x)x 2 J(xл,a0,ai,a2)ax = o(л * ) 

as X —» 00 for ^ fc 1 > — | . 

An integral involving J-functions arises in the proof of the following propositions. 
This is solved in Lemma 2. 



J.J.Betancor 

Lemma 2. If °^ > ~ | then 
2+fc — 2 

Л 

j u<*o a - J ( x t i ; a 2 , a i , a 0 ) J ( t i r ; a 2 , a ! , a 0 ) d u = 
Jo 

Xax+2«o-H.*& ^ 2 + k 2 + fc, 
=

 x2+fc_ r2+fc ( g 2 ^ A ; a 2 - - - y - , a i + 2 - f fc,a0--y-)x 

r/ x --ti r/ x 2 + fc _ , 2 + fcN x J ( r A ; a 2 , a i , a 0 ) - r - J ( r A ; a 2 — , a 1 + 2 + fc,a0 — )x 

x J ( x A ; a 2 , a i , a 0 ) ) . 

PROOF: In view of Proposition 2 and integrating by parts, one has 

rx 

1=1 ua° a 2 J(xu; a 2 , a i , a 0 ) J ( t i r ; a 2 , a i , a 0 ) d t i = 
Jo 

= r - * - ± [ M " i - w « o + * J ( r t i ; a 2 - ? ± * ,a_ + 2 + fc,a0 • 2 + * * " 

x 

xJ(arti;a2,ai,a0)]í_:oX + ( - ) 2 ^ x 
r 

/ u a ° - a 2 J ( x _ ; a 2 - - ™ - ^ , a i + 2 + fc,a0 
Jo --

2 + fc ^ f 2 + fc,, 
xJ(tir;a2 — ,ai + 2 + fc,a0 — )dti 

Hence, since °2+~k — ~~! w e 8e^ 

I = r - ' - V 1 * 4 A°'+ 2 o°+^J(r A; _2 - ?-±_:, a, + 2 + fc, _„ - ^ ) x 

xJ(xA;a2 ,ai,a0) + (rx) - x 

1 2 4- k 2 4-/ 

x / _~.-«»j(x_ ;a2__|_)0íl + 2 + _ ) ao__r_ 
2 + k 2 + k 

xJ(ur;a2 — ,ai + 2 + fc'Qí0 —)du) 

By repeating the procedure, we can write 

A a i + 2 Q 0 _ 1 + _ | _ m 2 + fc 2 + ib 
j =

 T2+fc__r2+fc (* ' J(xA;a2---—,a!+2 + k,a0--—-)x 

x Ј ( r Л ; a 2 , a ь a 0 ) - r - Ј ( r A ; ; a 2 — , a ! + 2 + fc,a0 — )x 

x Ј ( æ Л ; a 2 , a i , a 0 ) ) 

The next proposition shows that the only part of the x-range of integration 
which contributes to the value of the repeated integral under consideration is the 
immediate vicinity of the point x = r. 



A generalized Hankel transformation 9 

P r o p o s i t i o n 7. Under in the same conditions of Proposition 6, if r f [a, b] then 

^oo pb 

/ ua°~Q7 f(x)J(ux;a2,a1,a0)J(ur',a2,ai,ao)dxdu = 0 
JO Ja 

PROOF: To prove this result we use Proposition 6 to obtain 

/ u

a°-<** / f(x)J(ux;a2,auao)J(ur;a2laua0)dtdu = 
JO Ja 

= lim / f(x) / i f ° f o ~ a 2 J(« .r ;a 2 ,a i ,ao)J(t-r;a 2 ,a i ,oto)^ w r fa: 
A—oo Ja j 0 

By applying Lemma 2, we have 

/ ua°-a2 I f^x^J^ux^a^.a^ao^J^a^^a^.ao^dxdu^ 
JO Ja 

lim Л ^ + ^ - ^ ^ Ј Í r Л j a г ^ a ь a o ) / ҖxX; a2 - ^ Ц Д a , + 2 + fc,a0 - ^ ) x 
—oo Ja 1 Ł 

ÍÌXУ^kdx - fc?.Л^+2-~1+-t-J(rЛ;a2 - - ^ , a i + 2 + *,a 0 - Ц±)x 

Ґ f(x) т, , w 

j x 2 + f c « r 2 + f c Ј ( a î Л î a - ' a Ь « 0 ) c ř -

r 2+* _ r 2 + * 
__ 

XГ 2 

We denote 
2+* 

2 + * л . i _ 1 _ . Ł 2 + k \ f ( X ) X * 
iгK2+k - r2+k dx r /x. ________ f T/ , 2 + k ^ 

Ij(A) = A 2 / J(a:A;a2 —,a1+2 + k,a0 

I2(A) = A---^--1 / 2J
(x)

2+kJ(x\;a2,aua0)dx 
Jo ~ r 

Hence, since f(x)x 2 " 4 is integrable (if it is an improper integral it is 
absolutely integrable) on (a, 6) and the functions 

_t i , 
x 2 1 

and x2+k _ r2+fc 3.2+Jk _ r 2 + * 

are bounded on x G [a, 6] (note t h a t r ^ [a, 6]), we can infer by using L e m m a 1 t h a t 

I, = o(A~ * ) as A —> 00, for i = 1,2. 

Therefore 

/ uao~a2 I f (x)J(ux;a2lai,a0)J(ur-} a2,ai,ao)dxdu = 0 
Jo Ja 

when r $ [a,6], since the function u 2 + 4 J(i_;a2,ai,a0) is bounded on 
0 < u < 00 provided t h a t °£~~ > - | . 

We now establish the contribution from the immediate vicinity of x = r . • 
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Proposit ion 8. If f is of bounded variation in a neigborhood of the point r > 0 
and S is a positive number, then 

rr+6 f\ 
lim r a ° - a 2 / / f(x)ua°-a2J(ux;a2,a\,a0)dudx = 

A—oo Jr_6 J0 

= \{f{x + 0) + f(x - 0)}, provided that ^ ~ > = - ± . 

PROOF: We consider the following integral 

/

r+6 r\ 
I f(x)ua°~a2J(ux; a2, a\, a0)J(wr; a2,a\, a0) dudx 

. -6 Jo 

If / is of bounded variation in a neigborhood of r > 0 then 

/ ( . r ) x ( 3 a 2 + a i - a o ) / 4 = X\(x) - X2(x) 

on the said neigborhood, where X\ and X2 are monotonic positive increasing func­
tions. 

By applying the second mean-value theorem to X\(x) we can write 

fr+6 r \ 
/ K1(.r).r-

(3a2+ai-ao)/4
W

a°-a2 J(itx; a2,aly a 0 ) x 

/

r+6 r\ 
/ x - ( 3 a 2 + a i - a o ) / 4 x 

x u a ° _ a 2 J ( t t x ; a 2 , a i , ao)J(ur; a2, a\, a 0 ) dudx+ 
rr+6 f\ 

+{X\(r+S)~X\(r+0)} / x - ( 3 a - + a i - a o ) / V * ° - a - x 
Jr+e Jo Jr+£ JO 

xj(ux; a2,a\, ao)J(ur; a2, a\, a 0 ) dudx 

( being in (0, S). 
Hence 

rr+6 f\ 
lim 

10 /

r+6 ,A 
/ Ki(x)x-(3a2+ai-ao)/4

tx
a°-a2J(«.r;a2,a1,a0)x 

Jo 

x J(ur;a2,ax,a0)dudx = ^X\(r + o)r(-*<*2+<*i-°o)/4-(2+k)/4 

The procedure can be repeated for X2(.r) and the x-integral is extended on 
x G (r -S,r). 

Finally we obtain 

/

r+6 r\ 
I f(x)ua°-a2J(ux;a2,a\,ao)J(ur;a2,a\,a0)dudx = 

-6 Jo 

= \{f(x + 0) + f(x-0)}. 

m 

In virtue of Proposition 6,7 and 8 we can state 
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T h e o r e m 3 . If f is of bounded variation in a vicinity of the point r > 0, °£. £ 

and fQ | / (x ) | - " < d i exists, then 

tx 
>a°~a2 J(ux; c*2, o;i, ao)J(ur; o;2> <*i > <*o) dudx = lim ra°-a> 

Л—+oo 

/•OO i»A 

/ /(*) / «° 
Jo JO 

= |{/(x + 0) + /(x-0)}. 

5. Applications. 
We now show several applications of the new integral transformation 

Fa0,c*i,a2- We solve certain differential equations involving the Bessel type operator 
Ba0,ai,a2 which describe time varying networks. 

Example 1. Given the positive feedback circuit of Figure 1 with a variable gain 
amplifier and variable networks elements 

o 
Amplifier 

K(t) 

Figure 1 

L(t) 

C(t) 

L(t) = ata\ a>0 

C(t) = bta\ b>0 

K(t) = Kta\ K>0 

with k = —2, (o;i — l)2 — ^— > 0 and c*2 < 4. We wish to determinate the charge 
q(t) flowing the inductor and capacitor during the time 0 < t < oo. q(t) satisfies 
the following differential equation 

(15) ab(ta°Dta*D - ~ta>)q(t) -r q(t) = bKta*+a°e(t). 
ab 

In virtue of the previous conditions there exist three real numbers ko>&i and &2 
such that 2 - (k0 + h + k2) > 0 and tk°DtklDtk* = ta°DtaiD- ^taK Hence (15) 
can be rewritten 

(abtk° DtkWtk* + l)q(t) = bKta*+a°e(t) 

By applying the Fjfc0,jfcx,ib2-transformation and according to the operational rule 
(10) one has 

where 

1 + a6i 4 -°" 

0(*)=-n.,*,.*,{9(0}(«)"-d 
-5(») = Fko<kuk3{bKt°>+°°e(t))(x). 
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Therefore, by invoking the inversion formula we get 

1 
9(0 =-*.,*.,*»{ 1 + abx*-0" 

E(x)}(t). 

Example 2. Consider the electrical network shown in Figure 2 for the time 0 < 
t < oo. The network consists of a voltage source e(t), two inductors Li(t) and L2(t) 
and a capacitor C(t). Let q\ and q2 be the mesh charges as shown. 

Lt(t) L2(t) 

9>(0~ « 2 ( * П 

C(t) 

Lx(t) = ať\ a>0 

L2(t)^bť\ 6 > 0 

C(t) = cť\ c>0 

Figure 2 

Upon applying a mesh analysis we obtain simultaneous differential equations 

cta°e(t) = acBa0tQu0 qi(t) + qi(t) ~ q2(t) 

0 = q2(t) - qt(t) + c 6 B a o > a i j 0 q2(t) 

These equations have the right form for an analysis via the FQo,al,a2-transforma­
tion. By applying Fa ,2 one hаs 

E(x) = (1 - acxt-o^Шx) - Q2(x) 

0 = (1 - cЪx2-a°-a>)Q2(x) - Q^x) 

where E,Qi and Q2 denote the Fao>ai>o-transforms of cta°e(t),qi and q2, respec­
tively. Upon solving the last system equations for Q\ and Q2, we get 

n ( v l - c 6 x 2 - ( Q 0 + Q l >  

W l W ~ a c 2 6 . r 4 - 2 ( a o + « i ) __ ( f l + 6 ) c a . 2 - ( a o + a i ) " ^ 

^ 2 ' * ' = ac2bxA-2^+a^ - (a + 6)cx 2-(«o+ aO ^ ' 

By invoking the inversion formula we obtain the solution of our problem. 

E x a m p l e 3. Consider the series circuit of Figure 3 consisting of a voltage source 
e(t), a capacitor C(t) and an inductor L(t) which vary with the time as indicated. 
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L(f) C(t) 
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Q) L(t) = ať*\ a>0 

C(t) = bta°, 6 > 0 

-o  
e(t) 

Figure 3 

The mesh charges q(t) satisfy the differential equation 

abBao,auoq(t) + q(t) = bta°e(t) 

and by applying the Fao>ai ^-transformation and in virtue of the inversion formula 
we get 

1 
q(t) = F«0,ai,o{ 1 - a б î / 2 - ^ o - 0 -yř'a„,a1,o{6íQ°e(0}(y)}(0 

E x a m p l e 4. Given the circuit of Figure 4 we wish to find the three charges qi,q2 

and 03 by writing loop equations and transforming. 

Let Li(t) = at01, a > 0, Ci(t) = cta°, c > 0, L2(t) = btai, b > 0, 
C2(t) = dt°; d>0. i ( t ) 

<t\ o 
c,(0 

ca(0 

92(0 
1 1 £i(0 

, з (01 5 L*(ť) 

Figure 4 

Figure 4 yields the following system of differential equations 

cdta°e(t) = (d + c)?i(0 - <*02OO - c « 3 ( 0 
0 = q2(t) - qi(t) + acBao>ait0q2(t) 

0 = g 3(t) - qi(t) + bdBQ0iau0q3(t) 
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Transforming all three equations with the Fao,at,(^transformation it follows 

E(x) = (d + c)Qi(x) - dQ2(x) -cQ3(x) 

0 = Q2(x) - Qx(x) - acx2~^0+^Q2(x) 

0 = Qz(x) - Qx(x) - bdx2-(a«+a^Q3(x) 

where Qt(x) = FQo>au0{qi}(x) and E(x) = Fao>Ql,o{cdtQ°e(t)}(x). 

Solving the above algebraic system and invoking the inversion formula for FQo,ai ,o 

we can obtain the charges <ji, q2 and q3. 

This technique can be applied to any finite number of loops as long as there is no 

resistence and every inductance and capacitance in the networks varies with time 

as they do in this problem. 

R e m a r k . The problems solved in this section generalize the ones studied by Ger-

ardi [4], Zemanian [18] and Koh [8] by using the Hankel and others transformations. 
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