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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,4 (1988) 

SEQUENTIAL STRUCTURES INDUCED BY MEROTOPIES 

Horst HERRLICH 

Dedicated to Professor M. Katgtov on his seventieth birthday 

Abstract: Every merotopy on a set X induces a sequential structure and 
a uniformly sequential structure on X. This note character izes those (unif­
ormly) sequential structures on X which a r ise in this way. 

Key words: Merotopy, convergent sequence, adjacent sequences, Cauchy 
sequence, Galois correspondence. 

Classification: 54A20, 54E15, 06A15, 18B30 

Background. A merotopy on a set X specifies ce r ta in collections of sub­

sets of X as micromeric, subject to the following axioms: 

(Mer 1) any collection of subsets of X which contains a member with at 

most one element, is micromeric, 

(Mer 2) if A and .8 are collections of subsets of X such that A is 

micromeric and .8 minorizes A (i.e., if for each A e A there exists B 6 3 

with Be A), then S3 is micromeric, 

(Mer 3) if A ^ 3b is micromeric, then A, or :B is micromeric. 

For fu r the r details on merotopies see [3 J and [5 J and the references given 

there. For convergence structures, induced by merotopies, see'L4J. 

A sequential structure on a set X specifies, which sequences in X con­

verge to which points in X (notation: (x ) — * x), subject to the following 

axioms: 

(Seq 1) x—•» x ( fo r each xeX, where x denotes the constant sequence 

with value x, 

(Seq 2) if a sequence converges to x, so does each of its subsequen­

ces. 

A uniformly sequential s t ructure on X specifies, which sequence pairs 

in X are adjacent, subject to the following axioms: 
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(USeq 1) each sequence in X is adjacent to i tse l f , 

(USeq 2) if a sequence-pair is adjacent, then so is each of i ts subse­

quence-pairs. 

2 
Formally a sequence-pair in X is a map f:N —>X and a subsequence-pair 

of f is a composite foe' of f with a s t r i c t l y increasing map #:N—* N. 

For f u r the r d e t a i l s on (uniformly) sequen t ia l s t ruc tures see C13 and the 

references given there. For sequen t ia l s t r uc tu res , induced by topologies or 

by closure operators, see [6J. 

Sequential structures induced by merotopies 

Definition: 

(1) In a merotopic space (X, P) a sequence (x ) is said to converge to 

x provided the following equivalen t cond i t ions are s a t i s f i e d : 

(a) for each i n f i n i t e subset M of N the c o l l e c t i o n Mx ,xi|meMl; is mi-

cromeric, 

(b) for each in f in i te subset M of N the sets ix] and 4.x |m£M} are near, 

(c) for each uniform cover *VL the set star (x,1t) contains x for alm­

ost all n. 

(2) A sequen t ia l C on X is said to be merotopy-induced provided there 

exists a merotopy V on X, such that (x ) ~£~-* x iff (x ) -J-->. x. 

Remarks: 

(1) If V is a merotopy on X and V is i t s con t i gua l r e f l e c t i o n , then 

T and r' induce the same sequential structure on X. This follows immedia­

tely from (b) above. 

(2) For nearness spaces the above conditions (a) - (c) are equivalent to 

(d) each uniform cover has a member which contains x and almost all x , 

but for merotopic spaces (d) is properly stronger than (a) - (c). 

Proposition: A sequen t ia l s t ruc ture on X is merotopy-induced if and on­

ly if i t s a t i s f i e s the following cond i t i ons : 

(Seq 3) [ Urysohn condition ] if each subsequence of (x ) contains a sub­

sequence, which converges to x, then (x ) converges to x, 

(Seq 4) CKoutnfk condi t ion! if for each n the constant sequence x con­

verges to x, then (x ) converges to x, 

(Seq 5) I* Symmetry condit ion] if x converges to y, then y converges to 
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Proof: Obviously the above conditions are necessary. To show the con­
verse, let the sequential structure C on X satisfy the above conditions 
(Seq i ) . Call a collection A of subsets of X micromeric whenever 0 c A> or 

C 
there exists a convergent sequence (x ) » x such that A minor izes 
-Ux n , x 5 | n e N f . By (Seq 1) and (Seq 2) this defines a merotopy P on X. Mo-

r T* r* 
reover, (x ) -J---- x implies (x ) — * x . Hence, V induces C, if (x ) —-.• x 
implies (x ) *> x. If this were not the case, there would exist (x ) and x 
with (x ) ------- x such that (x ) does not C-converge to x. By (Seq 3) we may 
assume that no subsequence of (x ) C-converges to x. Hence, by (Seq 4), we 
may assume that x C-converges to x fo r no neN. In pa r t i cu la r x 4- x f o r 

P 
each neN. Since (x ) —»> x, the collection U x ,xir|n€Njis micromeric. Thus 
there exists (y ) » y such that i {xn,xl|n£ Nl minor izes 4^yn,y}|ne N j . Hen­
ce fo r each neN we can select m(n)eN with 

Axm(n)'x*ctyyy}-

Since x m ( n ) =j- x, this implies 4xm(n).x* = *yn*yj. 

Case 1: M= $m(n)|neNi is infinite. 
Then there exist s t r i c t l y increasing maps 6* :N ~~>N and T : N — * N with 
*?x_,/ \,xi = Sy t, N,yi fo r each neN. If x=y, then x^^ N=y v„>i fo r each neN, ffCn;' /tf(n;'/ 7' 6{n) Jz(.tv 
cont radic t ing the fact that (y^(n)) C-converges to y but (*g(nO does not C-

converge to x. If x 4 y, then xg-(n<\=y and y / s=x fo r each n e N. Hence x C-
converges to y, but y does not C-converge to x, contradicting (Seq 5). Thus 

Case 1 is impossible. 

Case 2: M= 4m(n) |n eN$ is finite. 

Then there exists an element m €. N and a s t r i c t l y increasing map 6f:N—*• N 

with ix ,xl = ̂ yff(n)»y^ for each neN. If x=y, then x =y^/ \
 f°r each n€N, 

cont radic t ing the fact that (ycYn)) C-converges to y, but x does not C-con­
verge to x. If x 4-y, then x =y and y• K=X fo r each nfeN. Hence x C-conver­
ges to y, but y does not C-converge to x, cont radic t ing (Seq 5). Thus Case 2 
is impossible as well. This proves that C is induced by T . 

Remark: If Mer is the construct of merotopic spaces and continuous maps, 
Seq is the construct of sequential spaces (i.e., sets supplied with a sequen­
tial s t ructu re) and sequentially continuous maps, G:Mer—» Seq is the concre­
te functor associating with any merotopy on X its induced sequential structure 
on X, and F:Seq — » Mer is the concrete functor associating with any sequen­
tial structure C on X the merotopy whose micromeric collections are precisely 
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those A which contain 0 or minorize -Ux ,x} |n €N} for some (x )—*-x, then 
G n n 

Mer.^1-iJtSeq is a Galois connection of the third kind (over Set) in the sense 

of 12.1. The above proposition characterizes the corresponding Galois closed 

objects in Seq. More obviously, a merotopic space is Galois-closed provided 

that every micromeric collection contains 0 or minorizes H x ,xi|n€NJ for 

some convergent sequence (x ) —->x. 

Uniformly sequential structures induced by merotopies 

Definition: 

(1) In a merotopic space (X,T) a sequence-pair (x
n»yn)

 is said *° De 

adjacent provided the following equivalent conditions are satisfied: 

(a) for each infinite subset M of N the collection i{x,yi|m£ Ni is 

micromeric, 

(b) for each infinite subset M of N the collection U<-X|An.4'x ,y J4-0 

for each meNr is near, 

(c) for each uniform cover V there exists n£N such that for each m2n 

there exists U e. It with 4 x
m>y m5

c U-

(2) A uniformly sequential structure C on X is said to be merotopy in­

duced provided there exists a merotopy T on X such that a sequence-pair is 

C-adjacent if it is adjacent in (X,T). 

Proposition: A uniformly sequential structure on X is merotopy-induced 
if and only if it satisfies the following conditions: 

(USeq 3) if each subsequence-pair of (x ,y ) contains an adjacent sub-

soquence-pair, then (x ,y ) is adjacent, 

(USeq 4) if for each n the constant sequence-pair (x ,y ) is adjacent, 

then so is (x ,y ), 

(USeq 5) if (x ,y ) is adjacent, then so is (y ,x ). 

Proof: The proof is completely parallel to the proof of the sequential 

version, if we observe that the conditions (USeq i) imply: 

(USeq 6) if (xn,yn) and (
x
n»y') are sequence-pairs such that (x ,y ) is 

adjacent and -tx ,y $= ̂ xn»yn^ *
or eacn n» tnen ^xn,yn^ is adJacen"t-

Reroark: Consider the following conditions: 

(a) if (x ,y ) and (y ,z ) are adjacent, then so is (x ,z ), 

(b) if (x ,x) and (y ,x) are adjacent, then so is (x_,yn). 

Then in a uniform space (a) and (b) hold, in a nearness space (b) but not 
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necessarily (a) holds, in a merotopic space neither (a) nor (b) need be true. 

Remark (Cauchy sequences). The concept of adjacent sequences can be con­

sidered as a generalization of the concept of convergent sequences ((x ) — * x 

iff (x>>0 is adjacent), being less unsymmartric and less point-bound. For 

uniform (and, more generally, for nearness) spaces there is a more familiar 

such concept namely that of Cauchy sequences, i.e., of "potentially converg­

ent" sequences, i.e., of sequences converging in a suitable extension of the 

given space. For merotopic spaces, however, there seems to be no reasonable 

concept of Cauchy sequences. The natural candidates 

(a) \{x |mZ"n$|neNl is micromeric, 

(b) any pair of subsequences of (x ) is adjacent, 

are too restrictive, since not even satisfied by all convergent sequences. E-

ven worse: every merotopic space (X,H) can be embedded into a merotopic spa­

ce in which every sequence converges: just add a point oo to X and call a col­

lection A of subsets of X u -looj micromeric provided {Anx|Ae A} is micro­

meric in (X,T). Then every sequence converges to oo . Hence, in a merotopic 

space (as in a topological space) every sequence is "potentially" convergent. 
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