
Commentationes Mathematicae Universitatis Carolinae

Bernhard Banaschewski
Another look at the localic Tychonoff theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 29 (1988), No. 4, 647--656

Persistent URL: http://dml.cz/dmlcz/106680

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106680
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,4 (1988) 

ANOTHER LOOK AT THE LOCALIC TYCHONOFF THEOREM 

B. BANASCHEWSKI 

Dedicated to Professor M. Katgtov on his seventieth birthday* 

Abstract: A new proof is presented of the familiar result of ulohnstone 
[2] that the coproduct of compact frames is compact by describing the frame 
coproduct by means of the frame r e f l e c t i o n of the corresponding preframe co-
product. Here, a preframe is a p a r t i a l l y ordered set which has all f i n i t a r y 
meets and updirected joins such that binary meet distributes over the latter, 
and the frame reflection of a preframe A is shown to be the frame of Scott 
closed subsets of A. The result of [2] is obtained as a consequence of a num­
ber of general fac ts concerning preframes and the manner in which the frame 
coproduct can be obtained from the preframe coproduct. 

Key words: Frame, frame coproduct, preframe, preframe coproduct, frame 
r e f l e c t i o n of preframes. 

Classification: 54030, 54H99 

The usual proofs of the theorem that the coproduct of compact frames is 

compact employs a description of the frame coproduct as a certain quotient of 

the free frame on the meet-semilattice coproduct of the given frames and ap­

pear to be somewhat lengthy slogs without discernible intermediate stages of 

independent interest. I t is the aim of this note to re-route the proof in a 

manner that exhibits dis t inc t ive steps of separate meaning on the way to the 

final r e s u l t . In order to achieve this we introduce a new notion, that of 

preframe, which is a partially ordered set resembling a frame except that the 

finitary joins may be missing. Preframes have coproducts as well as reflecti­

ons to frames, and both processes preserve compactness. The relevance of this 

for frames is that the frame coproduct can also be described in terms of the­

se processes, and this turns out to work in such a way that its compactness, 

for given compact frames, becomes an immediate consequence of earlier results. 

Although rearranged and with new emphases placed, all details of this 

proof have essentially appeared in previous arguments. Still, it is 'felt that 
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the present presentation should help to make an undeniably complex subject 

matter somewhat more t ransparent . 

This note was written during sabbatical leave spent at the University of 

Cape Town. Financial assistence from that institution as well as from the Na­

tural Sciences and Engineering Research Council of Canada are gratefully ack­

nowledged. 

1. Background. We shall employ the usual lattice theoretic terminology 

and notation. For general concepts concerning frames we refer to Johnston '.'3.'. 

Recall that a nucleus on a frame L is a closure operator k on L which 

preserves binary meet, and that the associated closure system Fix(k)= {xel\ 

|k(x)=x} is a frame such that the map k:L-—>Fix(k) is a frame homomorphism. 

In the following, we shall encounter nuclei generated by certain data, and as 

a useful intermediate step we introduce the following notion: a prenucleus on 

a frame L is a map k :L~~*>L such that, for all x,yeL: 

x£k Q(x), ifxfiy then k0(x)=^ko(y), kQ(x)A y^k^x Ay). 

It follows easily from the first two conditions that K=Fix(k ) is a closure 

system, and the associated closure operator is then given by 

k(x)= At(x 6t,teK). 

Now we have 

Lefima 1. The closure operator k is a nucleus such that the frame homo­

morphism k:L —* K is universal among all frame homomorphisms h:L — * M for 

which h(x)=h(k (x)) for all xeL. 

Proof. As a first step, we have to show that k(xA y)=k(x)/\ k(y). For 

.this, consider 

E= Aa€L|x.4.a«k(x),a/\y ^k(xAy)£, 

for any x,yeL. Then x e E trivially, a<=E implies k (a)eE by the properties 

of k , and for any non-void X s E , V X £ E by the distribution law of frames. 

Hence, in particular, t= V E & E , that is, E has a largest element t. Then 

k (t)£t, hence k (t)=t, and sir 

k (x )Ay - .k (x / \ y ) , and therefore 

k (t)£t, hence k (t)=t, and since X i~ t .=k (x ) we have t = k ( x ) . This says that 

k(x)Ak(yHk(xAk(y))4k2(xAy)=k(xAy) 

as desired. 

For the second part of the lemma, since k(k (x))=k(x) for all X G L by 

the definition of k, we have to show that the given condition on h:L —> M im-
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plies that h(k(x))=h(x) for all xeL. To this end, let 

F=-£ceL|xAc&k(x),h(c)=h(x)$. 

Then xe F trivially, ce F implies k (c)c F by the hypothesis on h, and for 

any non-void X£F, v'XeF. As before, it follows that F has a largest elem­

ent s, and then kQ(s)=s, implying that s=k(x). Thus h(k(x))=h(x), as claimed. 

Remark. The above k can also be described as the stable transfinite 

iterate of k , and then the lemma can be proved by transfinite induction. 

Our approach avoids this use of the ordinals. 

When considering quotients of a compact frame L, one is often interes­

ted in those which are again compact. Since quotients of frames are conveni­

ently described by nuclei, it is useful to have conditions for nuclei that 

ensure the compactness of their associated quo t i en t s . We call a nucleus k on 

L codense if k(x)=e, the unit (=top) of L, implies x=e, and finitary if 

k(VD)= VkCDJ for any updirected D S L . Note that the latter condition is e-

quivalent to the requirement that Fix(k) be closed under directed joins in L. 

The desired result now is 

Lemma 2. For any codense or finitary nucleus k on a compact frame L.the 

frame Fix(k) is again compact. 

Proof. Recall that, for any XSFix(k), its join in Fix(k) is k(VX) whe­

re V means join in L. Now, if D^Fix(k) is updirected then, for codense k,e= 

=k(VD) implies e= V D and hence e e D by the compactness of L, showing that 

Fix(k) is compact. Similarly, for finitary k,e=k(v'D) implies e= V'D since 

always k(V*D)= V'D, and thus again the desired result eeD. 

2. Preframes. A preframe is a p a r t i a l l y ordered set A in which all fin­

itary meets and all updirected joins exist, and for any x€A and updirected 

D£A 

X A V D = V x A t ( t e D ) . 

Note that an updi rected set is by definition non-void, and thus a preframe 

need not have smallest element although it does have a largest one, the meet 

of the empty set. 

Examples of preframes abound: to begin with, every frame is a preframe, 

every filter in a preframe is a subpreframe, every algebraic lattice is a 

preframe and so is, more generally, every continuous lattice. 

A preframe homomorphism is a map between preframes preserving all fini­

tary meets and all updirected joins. The resulting category will be called 
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PFrm. The category Frm of all frames and their homomorphisms is then a (non-

full) subcategory of PFrm. 

For any preframe A, let ru A be the frame of all jown-sets in A, that is, 

those X £A such that x £ z and zeX implies xeX. Also, recall that in any par­

tially ordered set with updirected joins, a subset is called Scott closed if 

it is a downset closed under all updirected joins. Particular Scott closed 

sets are always the, principal down-sets 4 a consisting of all elements be­

low or equal to a. For any preframe A, ^ A will be the closure'system of all 

Scott closed subsets of A. Then ^ A £ (#A, and & will be the closure opera­

tor on OTA corresponding to ^ A . Also, 4 :A —.>3TA will be the map taking 

a£ A to 4a. 

Now we have 

Proposition 1. For any preframe A, & is a nucleus and hence ^TA a fra­

me, and the map 4 :A —^ffiA is the universal preframe homomorphism from A to 

frames. 

Proof. Define &Q: r^A — > A9V\ by 6,Q(x)= 4 V'D|D£X updirected^. This 

is indeed again a dowp-set: if a ̂ V D for some updirected D £ C then 

-fa /\t|t G U)c x and also updirected, with join a A V D = a by the properties of 
preframes, and therefore a €6* (X). Further, since any {xs is updirected with 

join x, X c e ^ X ) , and ff (X)=X iff X e^TA. We prove that ff is a pronucle­

us which will imply that 6* is a nucleus by Lemma 1. Of the remaining two 

conditions to be checked, the preservation of the partial order is obvious, 

and so we turn to the last one. If a e 6T (X)nY for some X,Y « n^A then a= 

= V D with some updirected D9X and aeY. Since t^a for each t€D the latter 

implies tcY, hence D £ X n Y and therefore a 6 6 (XnY). 

Next we have to show that 4 :A — > '-TA is a preframe homomorphism. As to 
meet, J, e=A for the unit e of A so that I preserves the units, and since 

i(aAb)=(4a)n (4-b) for any a,b€A, it also preserves binary meet. This 

shows all finitary meets are preserved. For join,if D £ A is any updirected 

set then 

V (4t)=6 f U Ut)1r4(VD) 
t*D k teD ' 

since D £ y (*tt)(tcD), and this implies equality, the reverse inequality 

being trivial because t * V D . 

Finally, we have to verify the universality of ^ :A — * ^ A . Let f:A—>L 

be any preframe hcjmomorphism from A into a frame L. Then, as a familiar pro­

perty of OT'A, there exists a unique frame homomorphism g: fjir-A —* L such that 
gi=f; in fact, g(X)= Vffx3. In order to see that g factors through 
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tf; rcrA —>^TA, it suffices (Lemma 1) to show g€f0=g, that is 

Vf Cer0(x))= VffxV 

Now, for any updirected D£X, f(VD)= Vf[D'3, hence f(VD).€VffXl, therefo­

re f t .#o(X) .3 is bounded above by VffX], and consequently Vff^g(x)] £ 

tr Vf\x$. This proves the desired identity because the reverse inequality is 

"trivial. 

For any family (A.). T of preframes, let A e TTA. consist of all those 
a= l j i e l whose support spt(a)= ̂ i G.l|a.<: e-i, e. the unit of A., is finite. 

A is closed under finitary meet and d i rected join in TTA. and hence a sub-

preframe of the l a t t e r . Also, the maps k.:A.—*-A defined by 

( x (j=i) 

l ej ( J + ^ 

are preframe homomorphisms. Their significance lies in 

Proposition 2. A is the coproduct of (A.). J in PFrm, with coproduct 

maps_ ki:A.—>A. 

Proof. Given any family h. :A.—»- B (i€l) of preframe homomorphisms, we 

can define h:A — * B by 

h(a)x A h.(a.). 
iespt(a) l l 

It is a f a m i l i a r fact, but in any event easily checked, that h preserves all 

f i n i t a r y meets and hk.=h. fo r each ie I. Further, if D <~A is updirected we 

may assume without loss of gene ral i ty that it has a least element c, and fo r 

E=spt(c) we then have 

t= A k.(t.) 
ieE x x 

for each'teD since c £ t and hence spt( t ) Sspt(c). Therefore 

V h(t)= V A h.( t . )= A V h . ( t . ) 
teD teD i<~E 1 x icE tt.0 x x 

= A h.( v t . )= A h.(vD).)=h(VD), 
ieE l teD x ieE 1 1 

where the second equality holds since D is updi rected, the t h i rd because 

it. |taDl{ is updirected and the fou r th by the fact that joins in A, as in 

TTA,, are componentwise. 

It follows now that h:A —**B is a preframe homomorphism, such that h.=hk. 

for each iel, and since the k. are preframe homomorphisms as already noted, 
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this proves the assertion. 

Now we have the following compactness result: 

Proposition 3. Coproduct and frame reflection of preframes preserve 

compactness. 

Proof, Take the coproduct as given in Proposition 2, assuming each A. 

compact, that is, its unit e. is compact - meaning it can only be a directed 

join fo r trivial reason. Now, let DcA be updirected, with least element c, 

and E=spt(c) . Then e= V D implies e.= Vt.(tf D) for each ieE, hence there 

exist t e D such that e.=t^ , and since E is finite we have some t£t 

(ie E) in D. Then t=e because t.=e. fo r ie E by the choice of t.and t.=e. 

anyway for j$E. Hence the coproduct A is compact. 

Concerning the compactness of ^ A fo r compact A, we have that rt̂ A is 

obviously compact so that it will be enough (Lemma 1) to show that the nucle­

us & on tĴ A is codense. For this let 

X ̂  = H a e A | if c £ a is compact then c e X i 

for each X 6/^A, We claim this is Scott closed: c l ea r l y , it is a downset, and 

if c is compact and c £ V D for some updirected 0£X + then c£t fo r some t€D 

by compactness, and thus ccX since t e X + . Also, X £ X ^ and hence 6>(X)iSX^ . 

Therefore, 6'(X)=A, which means e e6*(X) , implies eeX^ , and if e is compact 

this in turn implies e€.X, that is, X=A. 

3. The frame coproduct. It is clear that any reasonable category con­

taining Frm as a reflective subcategory can be used to describe the coproducts 

in Frm as a quotient of the reflection into Frm of the coproduct f i r s t form­

ed in the larger category; moreover, it is also quite obvious that PFrm is a 

category of this type. 

In order to be able to analyze the last step in this procedure we give 

the following detailed desc r ip t ion : 

For any family ( U L - T of frames, let A £TTL. be their preframe copro­

duct as described above and k. :L. — r A the preframe coproduct homomorphism. 

Then, let *£ S 3TA be the closure system defined by the following condition 

on X e^TA: 

( # ) For all a€A, iel and finite Z£L., if aAk.(t)eX fo r each teZ then 

aAk.(VZ)eX. 

Further, define %Qi Qfk — * T A by 

\(X)=€f«aAki(VZ)|adA, i«I, finite ZSL i, a A k ^ O s X fo r all tcZj). 
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One easily checks that the indicated set is a down-set in A so that this de­

finition makes sense. Also, X Q ̂ Q(X) since we may take aeX, i d arbitrary 

and Z= -(e. ]. 

Clearly, s6=Fix(;A ). Hence the closure operator A associated with «& 

will be a nucleus and 5& itself a frame if we show that !X is a prenucleus. 

Obviously, \A preserves inclusion, so that we only have to check the more 

subtle third cond i t ion . For any X,Y c*2TA, let S be the downset given above 
such that % (X)= #(S), and note first that 

^Q(X)oY= 6(S)nY= # ( S ) A * ( Y ) = £ ( S n Y ) . 

Now, for any aA k ^ V Z ) ^ SnY of the kind involved, aAk.(t)eY for each t€Z 

since aAk. (t) £aAk. (v Z), hence this element belongs to X A Y so that 

aAk t(vZ) e A (XnY). This shows S A Y & A Q ( X A Y ) which implies X ( X ) A Y 

g. A ( X A Y ) by our first observation. 

It follows that we have a frame homomorphism A : <^A — .»s£ , and this 

is indeed the required quotient map by 

Proposition 4. §6 is the coproduct of CLi>i j in Frm, with coproduct 
.'Mki:Li-^ A —-"?TA -* $6 • 

C 

maps 

Proof. To see that these maps are frame homomorphisms we only have to 

check that they preserve finitary joins since they clearly preserve finitary 

meets and updirected joins. Now, for any finite Z£L., 

V %i k.(t)= A I ' V 4 k.(t)l = - U f U t k,(t)]3/Uk,(VZ), 
teZ x I teZ l > \> teZ x / x 

the second equality by the definition of join in ^ A . This proves that 

V A4k,(t)= A 4 k,(VZ) 
teZ * l 

since the reverse inclusion is obvious. 

To obtain the universality of these frame homomorphisms, consider any 

family h.:L. 4 M (ie I) of frame homomorphisms. Then we have the following 

diagram 
k i + ^ 

L. „Д ^ s y д - ^ ^ 

h i 

M 

where TT:A —* M is the unique preframe homomorphism, provided by Proposition 

2, such that "hk.=h. for all ie I, and h the unique frame homomorphism such 
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that rT1 =h~ given by Proposition 1. The question now is to see that ft factors 

through > : that will establish the desired universality. For this, it will 

be sufficient (Lemma 1) to show that Ti(X)=h( *Q(X)) for each X € *TA, the non-

trivial part of which is that 

Ti(A0(X))6rt(X). 

Since Ti is already defined on all of ^ A , factoring through "f A in virtue 

of the condition h # =h on r:iM, we have 

h(0vQ(X))=h(S)= VVUS, 

for the downset S introduced earlier. Thus we have to prove that h(X) is an 

upper bound of h(S]. Consider then, any aAk.(VZ)eS where aeA, iel, Z£L. 

and finite, such that aAk.(t)cX for each t€Z. Then 

h(aAk.(VZ)=h(a)Ah.(vZ)= V h(a)Ah.(t) 
1 x t€Z x 

= V h(a Ak.(t)£VhLX3=h(X), 
teZ 2 

which establishes the desired result. In all, this shows that the % i k.:L. —•+ 

— + £ (ie.1) are indeed the coproduct maps. 

Next, we establish a general property of the nucleus A : 

Lewna 3. For any family (\-\)\cr of frames, the nucleus \ is finitary. 

Proof. It has to be shown that t£- is closed under directed joins in 

T A . Let, then, *£ s X be updirected. Its join in -TA is <~ (H) for H-ui*. 

and by the finitary nature of the condition (*0 defining ££, H is a downset 

in A satisfying (ic). We have to derive from this that ~*(H) also satisfies 

(#.). For this, consider the set 01 of all X c O>A such that HsXc<r(H) and 

(* ) holds for X. Then we have that H € Ol- , and that the union of any chain 

in VL belongs to Ul , again by the finitary nature of (-*). We claim that, 

further, # (X) € 01 whenever X € t# . It is sufficient to verify (4c) for 

the special cases Z=0, and Z=-{u,v}. For Z=0, the condition is clearly satis­

fied by 6 Q(X) since X s ^(x) satisfies it. Now, take any a A k ^ u ) - V D and 

aAk^(v)= V E for updirected D,E£X. For any xeA, put 

x= A k.(x.)„ 
j+i J J 

Then x=xAk.(x. ) , and for any t eD 

a A t A k i ( t . A u)=aAtAk.(u)6 X, 

- 654 -



and similarly a A S Ak.(s. A V ) 6X for each seF. It follows that 

aAt A S Ak.(t.A u), a A ^ A § Ak.(s. A v)e X 

and from (* ) we obtain that 

a AtAsAk.((t.Au) v(s. A V ) ) <=X, 

for all teD and seE. Now, this is an updirected set since 0 and E are, and 

hence its join belongs to 6f (X). Further, because directed joins in A are 

taken componentwise and directed joins in L, are preserved by k., this join 

a A V D A V É A k . (((VD). A U ) V ( ( V E ) . A V ) 1 

and comparing the components for i and each j 4= i one sees this is 

aAki(u vv). It follows that €f (X) € Ol . 

In all this establishes that Ol , partially ordered by inclusion, has 

the property that every chain in CA has a join and Ol is mapped into itself 

by & such that XS ef (X) for each X e Ol . Hence &„ has a fixpoint in OL o o o 

by Bourbaki's Fixpoint Lemma tl). But the only fixpoint of & between H and 

6(H) is 6(H), thus e (H) e Ol , and therefore 6(H) satisfies (*). 

Now we are in the position to give the promised proof of 

Proposition 5. The coproduct of any family of compact frames in compact. 

Proof. For any family of compact frames, the preframe coproduct A and 

its frame reflection ^ A are compact by Proposition 3, and hence the frame 

coproduct, which is ££• by Proposition 4, is compact by Lemmas 3 and 2. 

Remark. Although the above arguments are not constructive, the only non-

constructive step required is the disjunction x=y or x 4=y for all elements 

x, y of some of the sets arising. This clearly enters into the treatment of 

the preframe coproduct, but it is also used in the proof of Bourbaki's Fix-

point Lemma. Hence, what is presented here is valid in any Boolean topos. It 

may well be, though , that a different treatment of the preframe coproduct and 

some alternative proof of Lemma 3 can be given which are entirely constructi­

ve, like the proof of the localic Tychonoff Theorem as a whole in Vermeulen 

C5.1. We did not pursue this question at this point. 
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