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0 Introduction 

By a space we mean a separable metric space. 

For a space X let C(X) = {/: X-* R | / is continuous }. If we endow C(X) with 

the topology of pointwise convergence then we write Cp(X) (i.e. we regard C(X) to be 

a subspace of 1RX). We can also endow C(X) with the compact-open topology and then 

we write C0(X). 

In [2J Bessaga and Pelczyhski presented an isomorphical classification of the spaces 

C0(X), where X is a zero-dimensional compact space. In this note we prove that a simi­

lar classification can be derived if we replace C0(X) by Cp(X). 

Furthermore we give a complete isomorphical classification of the spaces Cp(X) and 

C0(X), where X is a locally compact zero-dimensional space. The classification is such 

that for two locally compact zero-dimensional spaces X and Y it follows that Cp(X) is 

linearly homeomorphic to Cp(Y) if and only if C0(X) is linearly homeomorphic to 

C0(Y). In general this is not the case, since in [51 Pestov proved that if Cp(X) is linearly 

homeomorphic with Cp(Y), then dimX=dimK. From this we have Cp(C) is not 

linearly homeomorphic to Cp(l) (here C denotes the Cantor discontinuum and I denotes 

the unit interval). However by Miljutin's theorem ([6, page 379]) we have C0(C) is 

linearly homeomorphic to C0(O-
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1 Preliminaries 

Let X be a space. For every ordinal a we define Xia), the a-th derivative, by 

transfinite induction as follows: 

a) -Y(0) ss X and X{]) = {x € X \ x is an accumulation point of X}. 

b) If a is a successor, say a « ft + 1, then X (o ) = (XW)) (1 ) . 

c) If a is a limit ordinal then JT<«> - ft Xifi). 
0<a 

For every countable compact space X there is an ordinal a < co,, such that X ( a ) »» 0 

[5, page 149]. So for a countable compact space X we can define the scattered height 

x(X) by the smallest ordinal a such that X ( a ) =-0. Because X is compact, x(X) is a 

successor. 

Notice that the isolated points of a countable compact space X are dense in X. 

For every pair of ordinals a, ft let [a, ft]- {y \a $ y £ ft} and 

[a,/8) • {y | a 3 y < ft}, provided with the order-topology. 

We have the well-known [6, page 155]: 

1.1 THEOREM: (Sierpinski-Mazurkiewicz) Let X be a countable compact space. Then 

X m [1, oia *m ] if and only if x(X) » a + 1 and X (a) contains m points (m finite). 

An ordinal a is a prime component whenever a * ft + 5 for ordinals 0 and 6, then 

5 * 0 or 5 = a . 

For every ordinal a denote by a1 the largest prime component which is less than or 

equal to a . 

Well-known facts about ordinals (see [6] and [7]) are formulated in: 

1.2 PROPOSITION: Let a be an ordinal. 

a) a is a prime component iff there is an ordinal n such that a = cA 

b) a**a''n +y for certain n <<a and y < a'. 

c) a m ft + of for certain ft and r with ft**0orft &<aT. 

1.3 LEMMA: Let a and ft be ordinals such that a | u and a £ ft < a0. Then 

«'S0<(a')". 

PROOF: Since a£ft<a<*, there is it € N such that a £ ft < a". Furthermore by pro-
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position 1.2a (a')2 is a prime component, from which we may conclude a' 3 a < (a')2 

So it follows that a' £ 0 < (a')2* < (a')w. D 

For more information about ordinals we refer to [4]. 

2 Compact zero-dimensional spaces 

In this section we derive an isomorpbical classification of the spaces Cp(X), where X 

denotes any compact zero-dimensional space. In [2] Bessaga and Pelczynski derived a 

similar classification for the spaces CQ(X). 

First we fix some notation. Let X be a space and A CX closed. By C^ A(X) we 

denote the subspace of Cp(X) of all functions vanishing on A. 

Let Yx ^ be the quotient space obtained from X by identifying A to a single point, 

say oo. Letp:X~*YXA be the quotient map between X and YXA. Clearly YXA need 

not be separable metric, violating our convention that all spaces are separable metric. 

However if X is compact then p is perfect, so YXA is a space. If it is obvious which 

space X and subset A of X we mean, we simply write Y instead of YXA . Furthermore 

i" Cpt0(YXfA)~ If €Cp(YXtA)\f (oo)~0). 

Finally, if X and Y are linear spaces then the symbol "X ~ Yn means that X is linear­

ly homeomorphic to Y. 

We now come to the following: 

2 A LEMMA: Let X be a zero-dimensional space and let A be a closed subset ofX. Then 

Cp(X)~CPtA(X)xCp(A). 

PROOF: Define Q: Cp(X)-+Cp(A) by ( ? ( / ) * / | A . Notice that Q is a continuous 

linear map. Because X is zero dimensional, there is a retraction r:X~+A (see [3]). 

Define £: Cp(A)-+ Cp(X) by f ( / ) = / • r. Notice that £ is a continuous linear map, and 

t h a t c . | * ^ ( i 4 ) . 

Now define h: Cp(X)-> CpA(X) xCp(A) by 

*(/) = ( / -Se l f ) , (?(/)). 
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We have to prove that h is well defined. Take an arbitrary f €Cp(X). It is obvious that 

Q(f) €Cp(A) and that/ -$Q(f) € Cp(X). Furthermore 

(/ - *«(/)) \A - e ( / - *(?(/» - « ( / ) - QtQif) - <>(/) - <?(/) - o, 

s o / - ^ e ( / ) € C p w 4 ( X ) . 

That h is continuous and linear is a triviality. We show that h is a linear homeomor-

phism. For that define i: Cp>A(X) x Cp(A)~+ Cp(X) by 

! ( / » * ) = / + * ( * ) . 

It is trivial that i is well defined, continuous and linear. Furthermore, i •/* = idc (X) ant* 

h -i = idc (X) x c ^ ) , so h is a linear homeomorphism. D 

2.2 LEMMA: Let X be a compact space and let A be a closed subset ofX. Then 

Cp,A(X)-Cpf0(Y). 

PROOF: For every function f:X~+JR which is constant on A there is a unique function 

f: Y-*JR such that f'p = / . By the quotient topology of Y with respect to p we have 

that / is continuous if and only if / is continuous. 

If / 1-4 -a- 0 then /(oo) = 0, which implies that f €CpA (X) if and only if / € CptQ(Y). 

If we now define <t>: CpA(X)~+ Cp Q(Y) by <p(f) = / , then 0 is a well defined linear bi-

jection. Le t / € Cp A(X),yx,....,yn € Y, e > 0 a n d 

U(<p(f),yi,....,yn,e) ~{g€ CptQ(Y) | |*(y,) - * < / ) ( y , ) | <€ (/ s n)}. 

For every i «g n choose xt €p~l(yt). Then / € V = ^( / ,x, , . . . . ,jcn ,€) (with its obvi­

ous meaning) and <p(V) C U, which proves that <f> is continuous. Finally, let 

/ €CpQ(Y), xx,....,xn€X, € > 0 and for every / | n let yt -p(xt). Then 

f €U~U(f,yx,....,yn,e) and ^ ' ( a ) C K ( f ' ( / ) ^ i ,*„»*)» which proves that 

<£-1 is continuous. So ^ is a linear homeomorphism. D 

From the last lemmas we have the useful 

2.3 COROLLARY: Let X be a zero-dimensional compact space and let A be a closed sub­

set ofX. Then Cp(X) ~ Cpfi(Y) xCp(A).D 
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The next lemma gives a classification of the spaces Y =- r x A if X and A are of a spe­

cial form (cf corollary 2.5). 

2.4 LEMMA: Let X be a countable compact space and let A = X(or) f°r some <*<x(X). 

Then a) for every fig a, p(X(0)) = Y(0), 

b) Y(a) = {oo}. 

PROOF: Notice that for every j8 £ a we have p(X(&)) = X((i)\A U {°°}• 

We prove, by induction on 0, that for every fi $ a, Y(&) = x(fi)\A U {oo}. 

For 0 = 0 this is a triviality, so let 0 < fi & a and assume it is true for every y < p. 

Case J: |8 is a successor, say 0 • y +1. 

Then r ( l° = X (A,4 U {oo}. We first prove that oo e r<*>. Take therefore an isolated 

pointx in A . Since x € X (0\ there is a sequence (xn,n e N in X(y)\A which converges in 

X to JC. This means that ( x n ) „ € N is a sequence in Y(y), wthcu converges in Y to oo, 

from which it follows that oo € Y(0). 

Now Y(0) = (X(>\/4)(1) U {oo} = (X(y))(l)\A U {oo} = X(*)\A U {oo}.. 

Case 2: j8 is a limit ordinal. 

Then r(/3) = f| Y(y) =- f| ( X ( T ) U U {OO}) = ( f) X(y))\A U {oo} =X(fi)\A U {oo}. 
y<0 y<0 y<0 

By a) we have Y(a) = p(X(of)) = p ( A ) « {oo}, so this proves b). D 

2.5 COROLLARY: Let X be a countable compact space and let A =X(a) for some 

a<x(X). Then r » [ l , « a ] . In particular if X **[\to3a-n\ for certain n € N , then 

A = { a l . . . . . , « • « } am/r * [ l ,a ) a l . 

PROOF: This follows from theorem IT and lemma 2.4b. D 

In the following we prove some properties of function spaces of ordinals. We use the 

following notation. For an ordinal a we denote by Cp0([\,a]) the subspace of 

Cp([\,a]) of all continuous functions vanishing at a. 

Furthermore for two spaces X and Y we denote by X © Y the topological sum of X 

and r and for spaces Xt (i € M) the topological sum is denoted by ® J^X,. 
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2.6 LEMMA: Let a and |8 be ordinals. Then 

Cp([\,a +03) ~ Cp([l,a3) X Cp([\>&]) ~ Cp([\M X Cp([l,aJ) ~ Cp([\,& + a]) 

and 

Cp ,o([l ,a+03) - Cp([\,a]) xCp,o([l,03). 

PROOF: Since [1, a + 03 ** [1, a3 © [1,0] we have 

C / f L a +03) ~ Cp([l ,a3® [1,01) - Cp([l,aJ) X Cp([l,0J) 

and 

Cp.oa-," +03) - Cp([l,«3) x Cpt0([l,/3]). D 

2.7 LEMMA: Leta^ta be an ordinal. Then Cp([l,a3) ~ Cp,0([l,a3). 

PROOF: By first applying corollary 2.3 and then lemma 2.6, we obtain 

Cp([l,a3) ~ Cp({a})xCpfi([\,a]) ~ Cp({\}) xCp0([\,a]) ~ Cp>0([l,a3). D 

2.8 LEMMA: Let a £ a> be a prime component and n € N. 7&«t 

C, ( [ l ,a n3)~C p ( [ l ,aJ) . 

PROOF: By proposition 1.2a there is an ordinal fi such that a = uf. Then 

Cp([\tan]) ~ C p ( { a l , . . . , a n } ) x C / , f 0 ( [ l , a 3 ) corollary 2.3 and 2.5 

~ Cp0([\ta]) lemma 2.6 

~ Cp([l,a3) lemma 2.7 D 

2.9 LEMMA: Let a £ « be an ordinal. Then Cp([\ta]) ~ Cp([\ta']). 

PROOF: a * a' *n + 7 for some n < a> and 7 < a' (proposition 1.2b). Notice that for 

every 7 < a ' , 7 + a ' ~ a ' , which implies that 7 + a'*n = 7 + a' +a'*(/i - 1 ) =-a'*#i. So 

Cp([\M) « C p ( [ l , a ' i t + 7 ) ) 

~ Cp([\,y+a'n]) lemma 2.6 

- Cp([lta'n]) 

~ c
p([\,a']) lemma2.8 D 
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We now come to the following result: 

2.10 LEMMA: Let <a%a<<axbe an ordinal and let a % 0 <a(a. Then 

Cp([\,a])~Cp([\,fl]). 

PROOF: By lemma 1.3 and lemma 2.9 we may assume that a is a prime component. By 

proposition 1.2a there is an ordinal n such that a = aA 

We prove the lemma by transfinite induction on # . If j8 = a it is a triviality, so sup­

pose the lemma is true for every ordinal 7 such that of <. 7 < & < aw. Let X • [\,0] 

and A =X ( / t ) . Notice that fi<x(X) because [ l , c / ] C X . In particular A is nonempty. 

By corollary 2.5, Yx A * [ i ,o / l = [ l ,a ] . There is n € N \ ( l [ such that 

<Jf
(n~V<p£<j)/in. So by theorem 1.1 and by the fact that &£ufn, 

A(ft(n-\)) __ [i,/?]^") contains at most one point. Again by theorem IT there is an ordi­

nal 7 such that A * [1,TJ. If 7 >c*r*(n""!), then by the special form of 7 (cf. theorem 

1.1), A^n~l)) contains more then one point, so 7 s o>'l(n~1). Furthermore by corollary 

2.3 and lemma 2.7, 

Cp([\,0]) ~ Cp([\,a])xCp([\,y]). 

If 7 < or* * a then 7 4- a = a, so by lemma 2.6, 

Cp([l,0]) ~ Cp([ l ,7 + «1) - Cp([ i ,a]). 

If 7 £ a/ = a then by the inductive hypothesis, lemma 2.6 and lemma 2.8, 

Cp([\,{3]) ~ Cp([\,a]) X C,([l,aJ) ~ C,([ l ,a-2]) ~ Cp([l ,a]) . D 

Now we can easily derive the following: 

2.11 COROjLLARY: Let w < a £&<<*) j fc ordinals. Tfcen Cp([l fa]) - Cp([\,&]) iff 

|3 < aw. (In particular if a— of and j3 -* ca" with r g* p., then n<v<a). 

PROOF: If j8<aw then apply lemma 2.10. Suppose Cp([l,aJ) ~ Cp([l,&]). By 

Arhangelskii, [1, theorem 2a] it follows that C0([i,aJ) - CO([1,0J). By Bessaga and 

Pelczynski [2, theorem 1J this implies 0 < aw. D 

We are now able to prove the classification we mentioned at the beginning of this sec-
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tion. First we state the classification of Bessaga and Pelczyhski ([2]): 

2.12 THEOREM: Let X and Y be zero-dimensional compact spaces. Then CQ(X) ~ CoOO 

iff one of the following holds: 

(i) X and Y are finite and have the same number of elements. 

(ii) There are countable infinite ordinals a and /3 such that X <* [ l ,a] , Y m [1,/?] 

and max(a,/3) < [min(a,/3)]w. 

(Hi) X and Y are uncountable. 

2.13 THEOREM: Let X and Y be zero-dimensional compact spaces. Then Cp(X) ~ Cp(Y) 

iff one of the following holds: 

(i) Xand Y are finite and have the same number of elements. 

(ii) There are countable infinite ordinals a and 0 such that X * [ l ,a] , Y »* [1,0] 

and max(a,/3) < [min(a,jS)]w. 

(Hi) X and Y are uncountable. 

PROOF: Let X and Y be zero-dimensional compact spaces. 

If Cp(X) ~ Cp(Y) then by Arhangelskif [1, theorem 2a] we have C0(X) - CQ(Y). So 

by theorem 2.12, (i), (ii) or (iii) holds. 

Now suppose that (i), (ii) or (iii) holds. 

Case 1: (i) holds. 

Suppose X and Y both contain m points. Then Cp(X) ~ Rw ~ Cp(Y). 

Case 2: (ii) holds. 

By theorem IT there are ordinals a and 0 such that X * [ l ,a] and Y * IV/3V By corol­

lary 2.11 we have the desired inequality. 

Case 3: (iii) holds. 

It is enough to prove that for every uncountable zero-dimensional compact space X we 

have Cp(X) ~ Cp(C) where C is the Cantor discontinuum. 

CLAIM: For every zero-dimensional compact space X we may assume that X is a closed 

subspace of C such that YCtX * C. 

For take an embedding g: X -* C and let h: X ~* C x C be defined by 

h (x) = (g(x),0). It is clear that this is the required embedding. 

By the claim and corollary 2.3 we have for every zero-dimensional compact space X, 
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Cp(C)~Cp(X)xCpt0(C). (*) 

Now let X be an uncountable zero-dimensional compact space. By the Cantor-

Bendixson theorem we may assume that C is a closed subspace of X, since C is the 

unique compact zero-dimensional space without isolated points. So 

Cp(X) ~ Cp(C)xCp0(Yxc) by corollary 2.3 

~ Cp(C) x CPt0(C) x Cpt0(Yxx) take X « C in (*) 

~ Cp(X)xCPt0(C) 

~ Cp(C) b y ( * ) . D 

REMARK: The proofs of Bessaga and Pelczynski in [2] used properties of Banach 

spaces, for example the fact that if a Banach space B is the direct sum of two closed, sub 

spaces E and F, then it is isomorphic to E xF. However we were able to prove eur 

result for the spaces Cp(X) in a similar way as they did for C0(X), avoiding Banach 

The main difference between the proof in [2] and ours, is that we use transfinite in­

duction. It is also possible to avoid transfinite induction in our proof and follow from a 

certain point the construction of Bessaga and Pelczynski: From lemma 2.9 and the fact 

that for two ordinals a and 0 we have (a-&)' - a' •&', it is possible to prove directly by 

the method of corollary 2.3, that if 0 £ a < c*> x then 

Cp([\,a^)~Cp([\,a\). 

Then we are in a position from which we can derive lemma 2.10 with the same argu­

ments Bessaga and Pelczynski use (cf. the proof of lemma 1 in [2]). However our 

proof seems to be a bit easier. 

3 Locally compact zero-dimensional spaces 

In this section we present an isomorphical classification of the function spaces Cp(X) 

and C0(X) for locally compact zero-dimensional spaces X. 

First we state some definitions and a proposition from [1]. Let <f>: C(X)~+ C(Y) be a 

linear mapping, where X and Y are spaces. For every y € Y, the support of y in X is 

defined to be the set supp(Y) of all x 6 X satisfying the condition that for every neigh­

borhood U of x, there is an / G C(X) such that f(X\U) -= {0} and <Hf)(Y) * 0. For a 
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subset A of Y, we denote (J {supp(y) I?€.4} by suppA. Whenever <t> is a linear 

homeomorphism, we can consider the support of a point in Y with respect to 4> and the 

support of a point in X with respect to #~ ! . In this section it will always be clear which 

"support" we mean. Furthermore <t> is said to be effective if for every f,g€ C(X) and 

y €Y, such that/ and g coincide on a neighborhood of supp(y), $(f)(y) ** <t>(g)(y)-

3.1 PROPOSITION: ([11 Arhangelskit) Let X and Y be spaces, and let <t>: CQ(X)-+C0(Y) 

be a linear homeomorphism. Then 

a) <p is effective 

b) If A is a compact subset ofY, then suppA is compact in X. 

Another result in [1] is that if <f>: Cp(X)~+Cp(Y) is a linear homeomorphism, then 4> 

considered as a map from C0(X) to C0(Y) is also a linear homeomorphism. In the sequ­

el we shall not mention this result, but whenever we have a linear homeomorphism 

between Cp(X) and Cp(Y) we consider it also as a linear homeomorphism between 

C0(X)andC0(F) . 

3.2 LEMMA: Let X and Y be spaces such that X « X, © X2 ©X 3 and Y » K, © F2 © Y3. 

Suppose 4>: C0(X)~+ CQ(Y) is a linear homeomorphism such that suppX, C Yx and 

supp Y2 C X, ©X2. Then there is a linear embedding 0: C0(K2) - • C0(Xi). 

PROOF: For each / 6 C0(Y2) we define / * € C0(Y) by f*(y) - f(y) if y € Y2 and 

/ * ( y ) » 0 elsewhere. In a similar way we define for every g € C^X^, g + € C0(X). 

Define 0: C0(r2)-^C0(X2) by 0(f) = <T!</*) |X2 and *: C0(X2)-»C0(r2) by 

*<*>-*(*+)l-'2. 
Then 0 and ^ are linear continuous mappings. Furthermore for every h € C^Y^, we 

have t(0(h)) • h. Indeed, suppose the contrary, i.e. 4>(0(h)*) | Y2 # h* | Y2. ,This im­

plies 0(h)* |X, © X 2 * <£ ""*(**) |X t ©X2 , since X, ©X 2 is a neighborhood of suppK2 

and $ is effective. Now h* m 0 on Yx, so 4>"~l(h*) ** 0 on X|, since Y{ is a neighbor­

hood of suppXj and ^~ l is effective. Furthermore 0(h)* mO on X-, so that 

©(/i)*--^"1^*) on X,. This implies 0(h)+\X2* <f>-l(h*)\x2. But now we have 

0(h) * 0(h). Contradiction. 

We conclude that 0 is a linear embedding. D 
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3.3 COROLLARY: Let X and Y be zerodimensional spaces such that X » X j ® X2 and 

Y = YX®Y2. Suppose 4>: C0(X)-> C0(K) is a linear homeomorphism such that 

supp Yx C X,. Then there is a linear embedding 0: C0(YX) -> CQ(XX). 

PROOF: Let X, = K, = 0 in lemma 3.2. • 

Let M > 0 be a prime component. We will assign to ft a fixed sequence (hi) i of ordi­

nals. If n = 1, let Hi = 0 for each i € IN. If /- = r • a) for some r, let /-,• = r • / for each 

iGlN, and in other cases let (nf)t be a fixed strictly increasing sequence of ordinals 

such that fii "* **- and 1 ̂  ft, < j* for each i € N . 

We define the following classes of spaces: 

«J /= {X | X =[l,o)M]® [La)1), jit» T prime components, fi £ r ^ 1}, 

d& = {X | X = [La)*), T ^ 1 a prime component}. 

Observe the following: 

(1) if X € of, say X = [1-6/] ® [1,0)*), then since for every i , a) ' is a prime component, 

X = [l ,o/]®[l ,a)T ,]®[l ,a)T 2]® 

(2) i f X € ^ , s a y X = [l,a)r),thenX = [l,a)T,]®[l,a)T2]®. . . . 

Whenever we have X in one of the above classes and discuss a "decomposition" 

X = ® ?liX.-, we mean the decomposition fixed as above. 

3.4 LEMMA: Let r be an ordinal, which is not a prime component. Then there is a decom­

position ® £ , X f of[l9o/)9 such that for every i, Cp(X{) ~ C p ( [ l , o / w ] ) . In particular 

Cpai.o*)) ~ cpai,<*T(a)) 

PROOF: case 1: r is a successor, say r = v + 1. 

Then [1-c/) *[!»</*«) «• ® ~ l [ l , a ) r ] . Since T' = P', we have I»<T' '0 ) and therefore 

o>" < ( / ) " . So by corollary 2.11, 

Cp([l,o)']) ~ C,([l,a)r']) - Cp([l,a)*w]), 

which proves the first part of the lemma. Furthermore, as is easily seen, 

Cp([l,o,0) ~ nC,([l,a)'J) - nC,([l,a)rW]) - ^([1,0)*'")). 
(«l i» l 

case 2: r is a limit ordinal. 

- 587 -



There is a strictly increasing sequence r^r such that r' < r / < r for every i . Further­

more let r0 = 0 . Then 

[L«r) » © [ ! , < / ' ] . 

Since rj = r', by corollary 2 .H, 

Cp([l,</']) - C,([l,«r'D ~ Cp([l,«r'-'D, 

which proves the first part of the lemma. The proof of the second part is the same as in 

case 1. D 

3.5 LEMMA: Let X be a countable space which is locally compact but not compact. Then 

there is a decomposition ©J^jX,- of X and a space Y€d4\J3B such that 

C/,(X/) ~ Cp(Yt) (where Yt is the Ith term in the above decomposition of Y). In panic-

ularCp(X)~Cp(Y). 

PROOF: Since X is a countable infinite space, which is locally compact but not compact, 

there is a limit ordinal a such that X *» [ l ,a) (take the one-point compactification of X 

and apply theorem 1.1). Without loss of generality we may assume that X = [ l , a ) . By 

proposition 1.2c there are ordinals & and r such that <* = j3 + a>T, with r > 0 and j8 = 0 or 

case 1: & = 0, r' = r. Then X = [1, a*7) € & and we are done. 

case 2: /3 = 0, r' # r. Then apply lemma 3.4, which gives a space Y = [l,*/'**) and a 

decomposition for X. Since Y € 3Bf we are done. 

case 3: ft £ wr, r' = r. Then there is an ordinal /- such that |8' = or\ Since 

X » [ l , 0 J © [ l , « r ) and Cp([l,03) - Cp([l,c^'D we can take Y = [1,«*'3© [l.w7) . 

Then K € oi9 since f t ' g T ^ l . That the desired decomposition of X exists is a triviality. 

case 4: 0 £ o>r, r' # r. Again there is an ordinal n such that #' = or*. So if *i' > r' by 

lemma 3.4 and corollary 2.11, we can take Y = [l,*^'] ® [1,«/''") € .J*. If /*' = r' then 

let K = [1, «/'**•) € 3B. By lemma 3.5 we have the desired decomposition. D 

The following definition and lemma can be found in [2]. Two topological vector 

spaces X and Y have the same linear dimension (notation X ®Y) if X is linearly 

homeomorphic to a subspace of Y, and Y is linearly homeomorphic to a subspace of X . 
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3.6 LEMMA: Let o> 3 a 3 /J < o>,. Then 

CQ([\,a]) ~ CO([1,0]) iffCQa\,a])®CQ(U,P)) iffP<otu>. 

In particular if a = a/ and /3 = a/ with j t g i ' then 1/ < jt -a>.. 

3.7 LEMMA: Suppose B: C0([l,a/]) -• C0([l,a>"]) is a linear embedding with n,v&l. 

a) If & is a prime component, then 11 £ v, 

b) if v S ft, then n<vo). 

PROOF: Observe that we have a linear embedding </>: C0([l,o/])-+ C0([l,a/ ']) since by 

lemma 3.6, we have C0([l ,a/]) - C0([l ,a/ ' ]) . 

For a) suppose that v'<fi. Then there is a linear embedding 

tf: CQ([1,a/ '])^Cotfl ,«**]). So C0([l,a/]) 0 C0([l ,a/ ' ]) . So by lemma 3.6, 

v' <fA< vr'03. But this is impossible since v' and n are prime components. So 

fi 3 v' 3 p . 

For b) we can derive as under a) that C0([l,o/]) ® C0([l ,o/]), so by lemma 3.6, 

v & fi< v'o). D 

38 LEMMA: 

a) Let X =Z ® [l,o>) with Z a compact zero-dimensional space and Y = (J) J^Zj where 

each Zf is an infinite compact zero-dimensional space. Then C0(X) and CQ(Y) are 

not linearly homeomorphic. 

b) Let X =Z\®Z2 be zero-dimensional such that Zj is an infinite compact subspace. 

Then C0(X) is not linearly homeomorphic with C0([l,o>)). 

PROOF: For a) suppose that CQ(X) is linearly homeomorphic with C0(Y). Then by pro­

position 3.1 there is n € .N such that suppZ C © "--l-V Again by proposition 3.1 there 

is m € _N such that suppZn +i C Z ® [ l ,w] . By lemma 3.2, there is a linear embedding 

0: CQ(Zn + l ) - * C0([l,w]) = R m . Since Zn+X is infinite we have a contradiction, since 

the algebraic dimension of C 0(Z n + | ) is infinite. 

For b) suppose that CQ(X) is linearly homeomorphic with C0([l,o>)). Then by propo­

sition 3.1, there is w € .N such that suppZj C [ l , w ] . By corollary 3.3, there is a linear 

embedding 6: CQ(Z)-+ C0[ l ,w] = R m . Again we have a contradiction. D 

- 589 -



3.9 LEMMA: Ut X - tl,or*] ® f 1,«) and Y = ll.w'J ® [1,0), w/i*r« jt fc 1 <wd a £ 1 are 

prime components, a jg or* and 0 ^ / . 

(TC0(X) ~ C0(r) , then n^ a 

PROOF: Suppose CQ(X) ~ C0(Y) and j t ^ c W e may assume ii < a. By proposition 3.1, 

there is 7 < a such that supp[l,or*]C [l,ar*]® [1,7]. Since 7 + 0^ = 0/ we have 

[l,or*]® t L 7 l * U*<*?!> Therefore by corollary 3.3, there is a linear embedding 

0: C0([l,a>a])-* C0([l,or*]). Then by lemma 3.7a we have a g jt> Contradiction. D 

3.10 LEMMA: Ut X *-Z,® [l,o>*) and Y *-Z2® [ l , « r u), where Z, and Z2 are compact 

zero-dimensional spaces, h, r are prime components and 1 «£ 5 $ r, 

.Tfcen C0(X) /s not linearly homeomorphic to CQ(Y). 

PROOF: Suppose the contrary. Then by lemma 3.8a, 6 > 1. By proposition 3.1 there is 

n € N such that suppZ, CZ2® fl.co7"V Again by proposition 3.1, there is <5, < 6 such 

that s u p p t l . w ^ t ^ j c Z ! ® ! ! , * ) 4 ' ] . By lemma 3.2 and the fact that 

C0([i,« r" ( l ,"H)]) - C0([l ,a/]) (lemma 3.6), there is a linear embedding 

0: CodUarl)-* C0([ l ,«6 ' ] ) . Then by lemma 3.7a, r $ 6t < 6. Contradiction. D 

3.11 LEMMA: Let X = Z | ® [ l , c * / ) and Y = Z 2 ® [l,o>*), where Z{ and Z2 are compact 

zero-dimensional spaces, and r £ 1 and o&\ are prime components. 

IfC0(X) ~ CQ(Y), then T » 5. 

PROOF: Suppose the contrary. We may assume r < 6. By lemma 3.8a, r > 1. By pro­

position 3,1, there is T < 6f < 6 such that suppZj C Z 2 ® [1,<*>']. 

Let j>i. Again by proposition 3.1, there is rk<t such that 

supp[l,o> i]CZl ®[ l , c / * ] . Notice that there is a linear embedding 

0: C o d l . w ^ D - ^ C ^ t l , ^ ! ) . So by lemma 3.2, lemma 3.7b, we have 6j < T O > . This 

implies r < 6 sg *"*«• So since 6 and r are prime components, we have 6 = r* <a. But this 

contradicts lemma 3.10. D 

3 12 COROLLARY: 

a) Ut X € J* and Y € <4. Then Cp(X) ~ Cp(Y) iffC0(X) ~ C0(Y) iffX = Y. 

b)UtX€mandY€BB. Then Cp(X) ~ Cp(Y) iffC0(X) ~ C0(Y) iffX =- Y. 
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PROOF: a) follows by lemma 3.9 and lemma 3.11, b) follows from lemma 3.11 O 

3.13 LEMMA: Let X - [l.c**] ® [!,«/) 6 oi and Y - [!,«*) € &. 

Then C0(X) is not linearly homeomorphic with C0(Y). 

PROOF: Suppose the contrary. By lemma 3.8, r > 1 and 6 > 1. There is Tk < r such that 

supptLoj'1] C [l ,c/*]. By corollary 3.3 and lemma 3.7b, / t j r ^ r . 

Let j > k. There is 6t < 6 such that supp[1.</'] C [11or*] ® [1,of*'). By corollary 3.3 

and lemma 3.7b, H<TJ <JI-O>. So / i < r 3 /*•«. This implies /*•<*>-* r. But this contrad­

icts lemma 3.10. • 

3.14 THEOREM: Let X and Y be countable spaces which are both locally compact but not 

compact. Then the following statements are equivalent: 

a) Cp(X) ~ Cp(Y) 

b) C0(X) ~ C0(Y) 

c) There are compacta Xt and Yt (i € N) such that X -» <$>~ xX\t Y = ® ~ , Yt 

and for every i 6 W, Cp(Xt) ~ Cp(Yt). 

d) There are compacta Xt and Yt (i 6 N) such that X - ® T»\xi» Y ~ ®T~iYi 

and for every i € N , C0(X,) - C0(Yt). 

PROOF: Apply lemma 3.6, corollary 3.12 and lemma 3.13 to conclude that a) and c) 

are equivalent and b) and d) are equivalent. In both cases the decompositions are the 

same and since for countable compact spaces we have the same isomorphical 

classification (theorem 2.12 and theorem 2.13), c) and d) are equivalent.O 

REMARK: By the obtained classification theorems we have that Cp([\ta)) ~ Cp([\t&)) 

does not always imply C,([ l ,a]) ~ Cp([\tft]) and Cp([\tct]) ~ Cp([\t&]) does not al­

ways imply C, ( [ l ,a ) ) ~ Cp([\t0)). 

For example Cp({lf<a")) is linearly homeomorphic with Cp([l,ci>2)), however 

Cp([\,ojw]) is not linearly homeomorphic with Cp([\tu>2]). Furthermore Cp([\t<a]) is 

linearly homeomorphic with C^Cfl,**2]), but Cp([\t<a)) is not linearly homeomorphic 

w i t h C / f l , * 2 ) ) . 

The same remark applies for the compact-open topology. 

We shall now consider the case of uncountable locally compact zero dimensional 
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spaces which are not compact. 

3.15 LEMMA: Let X be an uncountable zero-dimensional space which is locally compact, 

but not compact. Then there is a decomposition 0 ft , Xf of X consisting of compacta 

such that either every Xt is uncountable orX, is the only uncountable Xt. 

PROOF: Let X = 0 fLiZt be a decomposition of X consisting of compacta (this is pos­

sible because X is zero-dimensional). 

case 1: Only finitely many Zf's are uncountable. 

Let n = max {i | Z, is uncountable}. Let X, = Z, ® .... ® Zrt and X, = Zn + / _ , (/ >2 ) . 

case 2: Infinitely many Z,'s are uncountable. 

Suppose Z( ,Z f , . . . . are uncountable. Let Xn ~Zt + , ® . . . . ®Zt (i0 = 0). Since Xn 

is compact and uncountable we are done. D 

Now we define the following classes of spaces: 

W * {X | X = C ® [1,0)*), C is the Cantor set and r £ 1 is a prime component}, 

gi s {X | X = 0 ~ ,C,., Ct is a copy of the Cantor set}. 

Observe the following: 

If X € # , say X = C®[l,u>r), then X = C ® [1,«T|] ® [1,</2] ® Whenever we 

have X € # and discuss a "decomposition" X = 0 J^jX,-, we mean this fixed decompo­

sition. If X € 0 we have the fixed decomposition 0 ~ , C 

3.16 LEMMA: Let X be an uncountable zero-dimensional space which is locally compact but 

not compact. Then there is a decomposition 0 Jt ,X,- ofX and a space Y € W U 3> such 

that Cp(Xt) ~ Cp(Yt) (where Yt is the i-th component of the decomposition ofY stated 

as above). In particular Cp (X ) ~ Cp (Y). 

PROOF: By lemma 3.15 there is a decomposition 0 ~ , X J such that either Xj is the 

only uncountable space or every X\ is uncountable, 

case 1: Xj is the only uncountable space in the decomposition 0 ^ , X j . 

Since X' = 0 J^^i i s a countable space which is locally compact, by lemma 3.5 there is 

a space K' € *jf U ® and a decomposition 0 ~ ,Zf of X' such that Cp(Zt) ~ Cp(Y\). If 

r €*V, say r = [ l ,<^]®[l ,w r ) , then Cp(Zx) ~ Cp([l,w*]). L e t X , = X J ® Z , and 

X, =Z ( (i ^ 2 ) . Then Cp(Xx) ~ Cp(C) because X',®Z, is uncountable and compact 

(theorem 2.13). If we let Y = C ® [Lw7) we are done. If Y' G J&, say Y' * [1,0)0, then 
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let Y = C ® [1,0)0, * i - X ; and X, = Z,(i £ 2). 

case 2; Every X\ is uncountable. 

Let Y = ©JljCf . By theorem 2.13 Cp(X;) - Cp(C f) , so letX, = X;. D 

3.17 LEMMA: 

a) 1/X,T € <$, then Cp(X) ~ Cp(Y) iffC0(X) ~ C0(Y) iffX = Y, 

b)IfX€W and Y € &, then C0(X) and C0(Y) are not linearly homeomorphic. 

PROOF: a) follows directly from lemma 3.11. 

For b) suppose that X - C ©[!.,«*) and F = © ~ i C , . Suppose C0(X) ~ C0(Y). 

There is n € IN such that suppC C C, © . . . . © Cn. There is / € IN such that 

suppCn + , C C © [ l , o / ' ] . So by lemma 3.2, there is an embedding 

<f>: C0(C)-+ C0([l,</']). Find a copy of [l,o>r w] in C Since [l,a>r *] is a retract of C, 

we have an embedding 0: C0([l,wrw])-> C0([l ,c/']) . But then by lemma 3.7b, 

T'o) < Tt -(a. Contradiction. D 

3.18 THEOREM: Let X and Y be uncountable zero-dimensional spaces which are both lo­

cally compact but not compact. Then the following statements are equivalent: 

a)Cp(X)~Cp(Y) 

b) C0(X) ~ C0(Y) 

c) There are compacta X, and Y( (i € IN) such that X = © ?l1X / , Y = 0 ~ , Y; 

andCp(Xi)~Cp(Yi). 

d) There are compacta Xt and Yt (i € N) such that X = © TL\Xit Y = © £ , Yt 

andC0(Xi)-C0(Yi). 

PROOF: From lemma 3.16 and lemma 3.17 it follows that a) and c) are equivalent and 

b) and d) are equivalent. Since the decompositions in c) and d) are the same we have 

again by theorem 2.12 and theorem 2.13 that c) and d) are equivalent.D 

REMARK: In view of the remark after theorem 3.14 we have the following: Let X and 

Y be spaces as in theorem 3.18. Let X* and Y* be the one point compactifications of X 

and Y. By theorem 2.13 iii, Cp(X*) is linearly homeomorphic with Cp(Y*). This is in­

dependent from the question whether Cp(X) and Cp(Y) are linearly homeomorphic. 

Again the same remark applies for the compact-open topology. 
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We almost completed the isomorphical classification of the function spaces Cp(X) and 

C0(X) of locally compact zero-dimensional spaces X. Therefore we only need to distin­

guish between "compact** and "non-compact" and between "countable" and "uncount­

able ". It is known that for spaces X and Y such that Cp(X) and Cp(Y) are linearly 

homeomorphic, we have X is compact if and only if Y is compact and X is countable if 

and only if Y is countable. However for the compact open topology we need the follow­

ing proposition. 

3.19 PROPOSITION: Let X and Y be locally compact zero-dimensional spaces such that 

CQ(X) and C0(Y) are linearly homeomorphic. Then 

a) X is compact iff Y is compact, 

b) X is countable iff Y is countable. 

PROOF: For a) suppose that X is compact and Y is not compact. Then Y = ® ~ xYt 

where each Yt is nonempty. There is n € N such that suppX C ©",)/";. Lety € Yn +,. 

There are f,g€C0(Y) such that / ( ® J^K,) = £ ( © 7 , 1 - ^ ) = 0 , f(y) - 1 and 

g(y)**2. Then fmg on a neighborhood of suppX. So by proposition 3.1a, 

6~l(f)m4~\g)t which implies f -g. Contradiction. 

For b) suppose that X is countable and Y is uncountable. By a) and theorem 2.12 we 

may assume that X and Y are not compact. By lemma 3.5 and lemma 3.16 we may as­

sume that X € . j / U # a n d K € # U - 2 > . There is a clopen copy of C in Y. Then supp C 

is contained in a clopen copy [ l , a ] in X for some countable ordinal a. Find &>au and 

a copy of [1,/?] in C Since [1,0] is retract of C we have a linear embedding 

0: C0([l, 0]) -* CQ([1 ,a]). But this is impossible by lemma 3.6. D 

Notice that by theorem 2.12, 2.13, 3.14, 3.18 and proposition 3.19 we have as an­

nounced in the introduction that for locally compact zero dimensional spaces X and Y, 

Cp(X) is linearly homeomorphic to Cp(Y) if and only if C0(X) is linearly homeomorph­

ic to C0(F). 

REMARK: It is now natural to consider the class of topological^ complete zero-

dimensional spaces. However this seems to be much more complicated. 
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