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STABILITY OF EIGENVALUES AND EIGENVECTORS OF
VARIATIONAL INEQUALITIES

Jaroslav RESLER

Abstract: There is studied the dependence of eigenvectors and eigenva-
lues of variational inequalities on continuous deformations of the cone. The
lower semicontinuity of eigenvalues for general continuous deformations and
continuity for continuous invertible deformations is proved. .
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0. Introduction. We shall study a variational inequality
uekKns

A, (Au-Au,v-0Z 0V vek,

where K is a closed convex cone with vertex in the origin of a real separable
Hilbert space H and A is a linear, completely continuous, symmetric and posi-
tive operator on H. We denote by (+,+ ) and K« ¥ the scalar product and the
norm in H, respectively, and S= fueH; Hull =1}. A real number A is called an
eigenvalue (and u the corresponding eigenvector) of the inequality (A,K) if
there exists u satisfying (A,K).

It is well known (see [71) that the inequality (A,K) has at least one but
need not have more than one eigenvalue é‘l which can be found as follows:
(2) ()= max (Au,u)

ueKnS
Thus its dependence on the deformations of K can be studied directly.

The existence of the higher eigenvalues of (A,K) can be proved (under ad-
ditional assumptions on A and K) by different methods (see (11,021,[31,14],
151,061,07]). We have chosen the variational method due to E. Miersemann ([3],
[41,051) and we shall restrict ourselves to the existence and continuous de-
pendence of the eigenvalues found by this approach. Thus Section 1 is devo-
ted to the brief description of the sup min principle used for the definition
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of the k-th eigenvalue.

In Section 2.the concept of deformation of the cone K is introduced and
there are proved theorems on lower semicontinuity and continuity of eigenva-
lues.

In Section 3 we deal with the behaviour of sets of eigenvectors corres-
ponding to eigenvalues on deformed cones. These results are valid under more
gneral conditions than in Section 2.

I am indebted to Jana Stard for many valuable advices during my work on
the subject.

1. The sufficient conditions for the existence of higher eigenvalues.
An abstract condition for the existence of higher eigenvalues is given in The-
orem 1. Some assumptions on the cone and the operator A which guarantee that
this abstract condition is satisfied, are given in Theorems 2 and 3.

Denote $ 1.3‘:1 the eigenvalues of A (numbered according to their magni-
tude .7\1 Z}ZZ‘ ...=0) and {uj}‘;l the corresponding eigenvectors. Let L, be
the span of the first k eigenvectors of the operator A and *mk=4' Fec KnS; F
is compact, F is not contractible within H-L‘t} . The class 'mk may be empty;
if it is not the case put

3 c = sup min (Au,u).

k Fs‘mk uefF

Theorem 1 (see [4]). Let 'mk contain a set Fo such that

(4) min (Au,u) ZA Lt
ueF0

for a positive constant n -
Then Gy is an eigenvalue of the variational inequality (A,K).
Remark. Clearly, °k>ak+1' 1f, moreover,
Ker(A , I-A) ¢ K,

then ck<.')Lk. Thus the eigenvalue Gy of (A,K) is not an eigenvalue of the ope-
rator A.

The next two theorems give conditions guaranteeing that the assumption
of Theorem 1 holds.

Theorem 2 (see [51). Let there exist a closed linear subspace?il of the
space H so that fic K¢ H. Let BH—T be the orthogonal projection onto .
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- ~ ~m
Denote 31; e ZRLE .Z D the eigenvalues of the operator A=PAAH. Let
~
VIR, L

Then ¢, is an eigenvalue of (A,K).

Theorem 3 (see [6)). Denote B, = {uch;ﬂu"éK
- L,
. vk-{chk,u+vo.K VueBkzx.
Let there exist vcevk so that
2
A A Ay gl v vy).

Then c, is an eigenvalue of (A,K).

2. The stability of the eigenvalues. The concepts of the deformation or
of the invertible f-deformation are introduced in Definitions 1, 2 and some
examples are given. The lower semicontinuity or continuity dependence of. the
eigenvalue on the deformation or on the invertible f-deformation of the cone
K are proved in Theorems 4, 5, respectively.

Definition 1. Let d'0> 0 and T: <0, Jo) x Kn S—~» S be such that
1) T (w=u VYuckns
2) T is a continuous mapping

3) Kg=41tTg (u);tZ 0, ue KAS? is a convex closed cone for every

Fe<o,8>
Then T is called the (admissible) deformation of the cone K.

Example 1. Let o€ ,a,b>0 be such that 0<a-o , a<b, b+oe <1. Denote
by wl’z((ﬂ,l)) the Sobolev space of absolutely continuous functions with squ-
are integrable derivatives and by % a cone in wl’z((O,D) which does not de-
pend on the set M= a-o ,b+oc)(i.e. if two functions u,ve w1’2(<0,1>) coinci-
‘de on<0,Iy-M, then ue® iff veX). (K can be given as a set of functions
satisfying some unilateral or bilateral boundary conditions.) Define:

Kg = $ueRu(x)Z0 Vxela+d ,b+d?

for Jﬁ(O,%"?.

Then there exists d, &(0, ¥ and a deformation T:<0, &', ¥ x KN S—>$
transforming the cone K onto the cone Ky for every de<0, d'o) .

Remark. The mapping T from Example 1 can be defined as follows:

(x-F g (x))
T, (u)(x)= 2

Tu{x- (€3]] ’
g I Wl 2(<0,1y)
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where P is a continuous differentiable function on {0,1% such that

@ Mra- %‘ ,b+ %)ul,qf([l,l) -(a-o¢ ,b+o¢ )= 0, 9 (x)€<0,1> for every
xe<0,1?7 .

In an analogous way the deformation can be defined for the cones:
Kd-=-(uc?;u'(x)3'0 a.e. on<a+d b+ >}
or (for a measurable set Mc <a,b7)
Kdn={'ua'k'; J‘M u(x+d')dxZ 0%,

etc.
Denote ""ko‘: {Fc Kg 0 S;F compact, F is not contractible within H—L‘t%.
If mkd‘ is not empty, we define:

Cig = _Sup min (Au,u).
Fe mk& uef
Denote Pk:H —iLk the orthogonal projection of the space H onto Lk.

Lemma 1 (see [4]). Let .ﬂl> '?‘k+1' Then the inequality
(Au,u)- A

k+l
Al
1 a\k+1

6) IIF'kul2 z

holds for every ues.

Theorem 4. Let H, A, K, k satisfy the assumptions of Theorem 1. Suppose
JD>0 and T:(O,d‘c,) x KnS—>S be a deformation.

Then there exists d'le(U,d'O) such that for every de (O,d'l)
is an eigenvalue of the inequality (A,KJ) and, moreover,

Ve>03Fe@,d)> VYIc0F>iq 480 -6

Ckd

holds.
Proof. Let &> 0. Let/Fl € M, be such that

min (Au,u).’.ck -P

u(F1
where @ =min §% , %} According to Lemma 1 we have
tpull 2 ki .
k 4A- A

: N . ~
As F1 is compact, we can find 4 > 0 such that:
Vde (0,8> Vuer: liTgwull< @,
- 544 -



N,
~ — . i 3 . : .
where @ =min 42 \/7——3—;4 7‘1"‘;«1 y -%2 1}. Since Pk is nonexpansive, we get

VxeF, Yd 60,37 U Te Wl Z tPul- Ty w-ul>§ .
Thus TA Fl is a homotopy of the set Fl onto the set Ty (Fl) in the space H-L':('.
Hence, Td'(Fl) & mkd" Further it holds
min  (A0,WZ min (Au,u)- maxl(A(TJ(u)—u),u)—(ATd- (u),TJ(u)—u)l >
~
UeT o (F,) uef uef
dt1 1 1
~
(N 7o @ - Zé\le,’; o 2@
and according to the choice of ®©

min (A8, 8)>c, -n ZA,.,-
TeT4(F)) k772 Rk
Theorem 4 implies that %y is an eigenvalue of the inequality (A,Kd-).

From the same estimate (7) we get
cks 2 min  (Au,u)Zc, - 2pacC -€ .
K )
TG kTP
Remark. Particularly, if A, K, k satisfy the assumptions of Theorem 2
or 3 and if T is a deformation of the cone K, then Sd is an eigenvalue of
(A,Kg ) for all sufficiently small positive d° , although the assumptions of
Theorem 2 or 3 need not be satisfied for A, Kd' s ke

Definition 2. Let d’0>0, T: (0,60) x KNS —» S be a deformation of a
cone K. Moreover, let there exist a nondecreasing function f: (O,d'o)—&(ﬂ,w),
continuous in zero, F(0)=0 such that

Vd),d,6€0,d > Yuekns,
tledl(u)—sz(u)ll £ 1(ld- D).

Then we call T the f-deformation of the cone K.
If, moreover, Ty is continuously invertible for every d’e < 0,d,7”,
then we call T the invertible f-deformation of the cone K.

Example 2. Let 26(0,1), k&N, 4 &(0,nin {a,1-a}?. Let KeW"2K0,1)
be a cone indpendent of the set {a- d7,a+ a7 (see Example 1). Define:

K= {u s?;u(a);ﬂ'y
Kg = (ue?;u(md‘); 0%
(or Kg =fueKsu(x)zo V¥ x€a,a+dd}), de(0,d,2.
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Then for any d sufficiently small there is an invertible f-deformation
of the cone K onto Kg with 0LV L being a positive constant).
Remark. The mapping T from the example can be defined as follows:

__u()+g@ () (u(a)-u(a+rd))
Tg (W= G0+ GIua)-ular 81N

Wo2k0,1y)
u(x)+q(x)(u(a)~ ?in u(t))
tea,a+d?
(or T W= YT gGaGE)= min —— GCON )
¥ teda,a+d> W2K0,1%)

where @6 Wk’2(<0,1>) is any function such that

d ,
@/ a- -f—% a+ '—%> =1, @/0,1) -(a-d"o,a+d‘o)5 0

q(x) €017 V¥xa<o,17 .

The next example deals with deformations of halfspace in the Hilbert
space H.

Example 3. Let L be a positive constant, g€ S, d'os_(U, 31—L> .letheH
andfh & L. Define

K= {ueS;(u,g)Z03
Ky = {fueS;(u,g+dh)Z 0% for d € <0, 57

Then there exists f-deformation T transforming the cone K onto the cone Ky for
(&)= (def0,8 2.
Remark. One of the possibilities of defining Td' is the following one:

J (u,h)
U-raC,n 9

T (us= .
] _ (u,h)
flu 1+4§ (g,h g“
For example for H=Wé’2((0,l)), 94 (x)=sinh[x-(a+d‘)|+kld. ex+kZd, e (where

. . 1,2 95" 9%
kig Ko g T uniquely determined so that gdswo’ (€0,1M,hg = —Ld_—

we get the mapping of the cone K= {ue Wcl)’z((o,l?);u(a)zt]}onto the cone Ky =
= fuewy2K0,17; u(a+8)Z 0% .

Theorem 5.' Let the assumption of Theorem 1 be satisfied and let f be a
function from Definition 2. ’
Then there exists d'l e (0, d’u? such that for every f-deformation of the
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cone K and for every d ¢ (O, d'17 » Gcg is an eigenvalue of the inequality
(A,K J') and

(8) WY ck—ZJ\lf(f).
If T is, moreover, the invertible f-deformation, then
(9) |ckd«~ck|£2.?\1f(d')-

Sketch of the proof. Choose 0716 (D,d'o) such that f(d"l) £

£ m1n{ V — s —% %. Let F0 be the set given in the assumption of

k+1
Theorem 1. Accordmg to Lemma 1 we have
: - ul Z -
VueF, Ve, 0P Ts WZPuN- g w-ul l@i’

- (42 72- V 1:"‘,.\“1 . Thus T is a continuous homotopy of the set Fo an-

to the set Ty (Fo) in the space H-L': and, hence, the set Td" (Fo) is compact
and it is not contractible within H- LJk'

We have

min (AT¢ (u),Tp (W) Z min (Au,u)- max |(AT ¢ (u),T o (u)-u)+
ueF J I ueFO u€KnS . o

k+1* 2
Hence, the assumptions of Theorem 1 are satisfied and Cd” is an eigenvalue
of the inequality (AKg ) for d'e (0, d' ).

+(ATg (u)-u),u)(lak+1+q—2 % r:ax lle. (w-ullZ2A

Let g e(0, 16 Q? be arbitrary, F 1S 'mk such that min (Au,wWZ C € -
uef
Lemma 1 implies that 1

3 \]
VuéFlz "Pkung n 7‘_1—'%;?1_ .
Similarly as before we can prove
1 ‘]
nPde- (u)uZ 7‘ —‘rl_—‘%-k—"l- ,
Tewe mk‘,
and
g ® ck-5—25\1f(J).

Since € & (0, %6_ 77 is arbitrary, (8) holds.

Let T be, moreover, invertible. Define the homotopy
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7:(0,3’1) x KFn S—»S for every 3” € (0,6'17
by
~ -lm
T =T T .
FaL F-a'7 ()
~
We prove easily that T is an f-deformation of the cone Kgs onto the cone l&-d"

Let & e (0, %}, Fl & ’mkd, be such that m%n Wz o€ -

similar way as before we prove that Tag (F ) e ’m and Ty ck~ £-24 f(d‘)
Since ¢ « (0, %‘) is arbitrary, the inequality
(10) Ck; 5 —2.'/\1f(d')
holds.
From (8) and (10) we get (9).

3. Stability of eigenvectors. In this section we study the behaviour of
the set of eigenvectors corresponding to eigenvalues on deformed cones. The
results do not depend on the way how the eigenvalues were found and thus more
general deformations of cones are considered.

Definition 3. Let K and T(' be two convex closed cones. The number
d K, K= max {sup inf WuTl; sup inf Nu-GlN3
ueknS UeKnS UeKnS uweKnS
will be called the distance between the cones K and K.

Remark.

a) & is a metric in the space of closed convex cones (it is the Haus-
dorff metric of their intersections with unit sphere).

b) If T is an f-deformation of the cone Ko’ then for every d’'¢ (U,d‘o),
PK,,K ;) ££(8) holds.

Theorem 6. Let Ky, d € €0, 607 be a system of closed convex cones
such that & (K ,K5) —* 0 for &’ —» O+ Let for every d'e (0,d" )7, cy be
an eigenvalue of the inequality (A,Kd- ). Denate by Vg the set of all eigen-
vectors of the inequality (A,Kd-) corresponding to the eigenvalue Cg - Let
cg4 tend to a positive ¢, for o —> O¢.

Then gy is an eigenvalue of the inequality (A,KD), and

lim sup §dist(uye,V );u e vV ¥=0.
S0+ . R A

Lemma 2. Let the assumptions of Theorem 6 be satisfied and let

w .
iud.é k-1 be an arbitrary sequence such that ud.ks Vd~k, ud.k--v- U, € B,Jk_—)m .
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for k—»00 . Then quV'J and ud_k—) Ug:

Proof of Lemma 2. (We write in this proof Ck’uk’vk’Kk instead of cd"k’

ug vy Ky .) Let v  be an arbitrary element of K . According to the as-
sumbtion of ]’ﬁeorem 6 we find ivk}:’zl such that S Ko llvkll =1 Vo I,

by v 4 €20y N @ (K K ). Let M be a positive constant such that |c, |<M
for every ke N. Since c > Cyr € S, u€ B,

lim ¢ (u_,u )Zc (u_,u ).
k*"k’"k oo’ o
It holds

l(ckuk—Auk,vk—vo)lé 2(M+ BA L) Ivoll ) (KD,Kk)—bD for k =0,
(ckuk—Auk, Vu) — (couo—Auo,vo) y

(A ,u ) —> (Aug,u).

Since Gl are an eigenvalue and a corresponding eigenvector of the inequa-
lity (A,Kk), we get
0 € lim (c u, -Au_,v,-u, )= lim [(c _u_-Au,_,v )+(c u, -Au_,v, -v ) -
K00 k'k Tk’k Tk K-» 00 k'k Tk’0 k'k "k’k ‘o
- - Z - - =
(13) (Ckuk Auk,uk)] & (cou0 Auovo)+(Au0,u0) co(uo,uo)
=(cou0—Au0,v0—-uo).

For every u, we find 'ﬁke K, such that ] 'El'k—uk“ &«293 (KyrKy) - Then 'ﬁk—&uo
and since the cone K0 is weakly closed we get ue Ko'

If we put v =2u_ in (13), we prove easily that Iuollz 1. Hence, we get
uoe Vo and Lemma 2 is proved.

Proof of Theorem 6. It follows easily from Lemma 2 that VO#B. Since any

}‘:zl contains a subsequence {uo,n}‘:ﬂ so that u , —= ug tor

sequence u
q { P "'nk

k—>» 00, u_eB, it follows from Lemma 2 for every {u _}%_
s} d’n n=1

lim dist (u
n—-00

and also for arbitrary uy € Vd' ,d >0

PRARY

JL“S*' dist (ud,, ,Vo)=0.

It means
‘;-1:3+ sup Ldist (ud. ,VO);ud, G Vd’ § =0.
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Remark. It follows from Lemma 2 that the set V0 is weakly closed.

Remark. It can be shown that the following assertions do not hold:

a) VueV,3d - 0+3u6.ns Vd,n:ud_n---’-u0

) Ju6V,36>0 VI & (0, 5 yIuge Vg :u—> u, for & —> 0+

The counterexamples can be found in RB.
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