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ON EQUIVALENCE RELATIONS ON A DIFFERENTIAL SPACE

WiesJaw SASIN

.

Abstract: In this paper some properties of equivalence relations on a
differential space are studied. Some special examples of equivalence relati-
ons are described.

Key words: Differential space, Hausdorff equivalence relation, differen-
tial structure.
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1. Introduction. In this paper we consider some properties of equivalen-
ce relations on a differential space. In the case of differentiable manifolds
the well-known Godement theorem gives a necessary and sufficient condition
for the quotient space to have the structure of a differentiable manifold. A
generalization of this theorem to the category of differential spaces was gi-
ven by W. Waliszewski [4]. R.S. Palais [1) gave a necessary and sufficient
condition for the quotient space to admit a quotient modulo an equivalence re-
lation in the category of ringed spaces.

In the category of differential spaces the quotient structure always ex-
ists. So we may consider the quotient differential structure in many different
situations even if Godement's conditions are not fulfilled, e.g. in the theo-
ry of homogeneous spaces.

2. Main results. Let (M,C) be a differential space [2],[3]. For an ar-
bitrary mapping F:M~» N from M into a set N let F*¥ :RN——erRM be the map gi-
ven by the formula

F* (o¢)= o« F for o« & RN,

The set (F* )’I(C) is a differential structure on N called the differential
structure coinduced from C to N by the mapping F L[53J.
Now let @ be an equivalence relation on (M,C). A function feC is said

to be consistent with @ iftxpy implies f(x)=f(y) for any x,y&M. We denote
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by Cp the set of all f&C consistent with @ . One can easily show that CI"
is a differential structure on M, i.e. C‘,, =(sc CQ)M [23,051.
Let now M/p denote the set of all equivalence classes of @ and let
:u;,, M—>M/@ , x ->£st° be the canonical map. We denote by C/‘D 1=
= (o )'l(C) the differential structure on M/p coinduced from C by the map-
ping "{n 1 43,05). Evidently, the diagram
idy

M,0) —> M,Co)

% £

M @ ,C/QD )
is commutative. .

, It is easy to show that a-r; [(C/p):G/@ — Cp isan isomorphism of al-
gebras. It follows that (M/p ,C/@ ) has a constant differential dimension if
and only if (M,C;,) has a constant differential dimension [21,(31].

An equivalence relation @ on (M,C) is said to be a Hausdorff equivalen-
ce relation if for any x,y 6 M such that (x,y) ¢ @ there exists a function
fe CS° which separates x and y, i.e. f(x)#f(y) (cf. [11).

It is easy to prove that the following conditions are equivalent:

(a) @ 1is a Hausdorff equivalence relation on M,C).

(b) The topology 't‘c/ in M/@ is a Hausdorfi topology.

(c) For arbitrary x,y &M, if f(x)=f(y) for any fg CP then x @ y.

Now let (M,C) be a differential space and DgC an arbitrary subset of C.
Using D we define an equivalence relation @ D in M by

(1) x@py iff f(x)=f(y) for every feO.
Obviously, S°D is a Hausdorff equivalence relation on (M,C).

Lemma 1. An equivalence relation on a differential space (M,C) is a
Hausdorff equivalence relation if and only if there exists a subset D&C such

that @ = PD'

Proof. If ® is a Hausdorff equivalence relation, then taking D=C§, we
obtain (@ = o

Now we will show that every equivalence relation on a differential space
may be extended to a Hausdorff equivalence relation.

Proposition 1. For any equivalence relation @ ona differential space
(M,C) there exists a unique Hausdorff equivalence relation ®y 2 o such that
CP =C$° . Moreover, if @ is a Hausdorff equivalence relation on (M,C), then

H

- 530 -



TR S

Proof. Let ) be an equivalence relation. We put PP - By (1) we
@

have
XPyy & f(x)=f(y) for every fg CS" .
It i t that @ ¢ and C, € C_ . Now we must show that C ¢ C_ .
is easy to see that ¢ PH (,, PH oy )

Indeed, let & C,‘> . This means that 3 & C and
H

(Vf‘Cc, £00)=£(y)) =& B(x)= p(y)

for x,y€M. Assume that x @ y. Then f(x)=f(y) for any f‘an , and hence 8 (x)=
= 3(y), which means that @ e C$° . This completes the proof.

Corollary 1. A differential space (M,C) is a Hausdorff space if and on-

ly if the trivial equivalence relation g, 0n M,C) (L'xJ‘n ={ x} for any x& M)
0
is a Hausdorff equivalence relation. Moreover, for an arbitrary ditferential

space (M,C) the differential space (MH,CH):=(M/@C,C/¢ C) is a Hausdorff spa-
ce.

Let us observe that C(" =C and hence C@C is isomorphic to C. Every smooth

mapping F:(M,C) — (N,D) determines the smooth mapping Fy:(M,,Cy) ~>(N,,0,)
given by

FH([x]SDC)= [F(x)]{oD for x €M.

The following diagram is commutative:

(M,C) ——(N,D)
N kg

(‘cl £ ls"o
H

(My,C) — (N0

Let M be a non-empty set and @ an equivalence relation on M.

Detinition 1. A subset AcM is called p-saturated if a7, '(an, (A)=A.
It is easy to see that the following conditions are equivalent:

(a) AcMis g@-saturated

(b) A= 7571(B), where BeM/p

() A= U LX)
xeA $

(d) For any x,yeM, if xeA and x @ y, then yeA.
The family of all @ -saturated sets together with the empty set is a to-
pology in M. It is easy to prove
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Lemma 2. Let (M,C) be a differential space and (@ an arbitrary equival-
ence relation on M. Then an arbitrary set U €T is fo—saturated.

Let C0 be a set of generators of the differential structure C on M. It

is known [3] that %, =7 =, =,

C0 scCO (SCCO)M C

We shall prove

Lemma 3. If CO is a set of generators of a differential structure C on
M, then

(2) ? = so = ‘a =

) C0 s&:l’.:[J (scCO)M Pc

where , , are equivalence relations on (M,C), defin-
e, Pscc > Piscty)y £o Lo

ed by (1).

Proof. Let x,ye M and X@e Y. Hence by (1), f(x)=f(y) for any fe Co' Let
gescC,, By definition g= oo(f‘l’,...,fn), where @& C®R™ and £15e0f 600
Therefore g(x)= oa(fl,...,fn)(x)zo)(fl(x),...,fn(x))=m(f1(y),...,fn(y))=g(y).
Hence if xgocoy then g(x)=g(y) for any gescCO, i.e. xf"scCoy' Since the imp-

lication xfosc(:oy - xpcoy is evident, we obtain gncc]: ® . The other equ-

scC0
alities may be proved analogously.

Now let (M,C) be a differential space and (@ an equivalence relation on
M, Observe that the mapping M/® > A —-> g™ (A)CM is a bijection between the
family of ® -saturated sets in M and the family of all subsets of M/;i; .

Denote by mP the family of all © -saturated open sets in 'rC:

- = ol
mgﬁ =l el Mo (M w»}.

It is easy to see that ms, =I(1:C/§a ), where To/@ is the quotient topology
in the set M/S" and “C :1(1»(:/?), where '(C/P is the weakest topology in the
set M/;n and rCP =I(1'C/S-0), where ’fC/P is the weakest topology on M/;a such

that all functions belonging to C/p are continuous.
It is easy to observe that the following diagram is commutative:

I
’fc/go ___»WP

I
TC/@ Cso
From the above diagram we obtain
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Corollary 2. 'cc/ga =rC/¢ G m? = 'l"C(D .

Now we will prove

Lemma 4. For an arbitrary set V sT¢
¢
(Cp (€ v

where ® |V is the restriction of the relation © to the subset V.

Proof. let o« € (CS" )V' Since C_¢ C, we have in particular (C )VCCV
and thus o« ¢ Cv. We will prove that o¢ & (Cv) v Let x,y&V with x @ y. The-
re exists an open neighbourhood U & 't'E of x and a function ps Cf" such
that e« [VaU= g8 |VAU.

0f course Va U & ’c’c and x,y& VAU since Va U is go ~saturated. Hence
o (x)= 3 (x)= B(y)= ec(yg. Therefore

x(@ IV)y = o (x)= ¢ (y)
or equivalently o¢ € (CV)QIV'

We now prove the reverse inclusion. Let eo¢ & (CV) y- Let p &V bean
arbitrary point and {3 € C, a function separating the point p in the set
Ve, ,u.e. there exist V ,W & 7% such that pe Vv, ,3]v0=1, p|w0=0

and WOU V=M.
Consider the function o :M —*R defined by

o (x) B(x) for xeV
""(x)={

0 for x ¢ V
Clearly, ¢ € C, since o+ f3 |wonv=0]w0nv,4wo,v} is an open covering of M

and o+ 3|VeCy and 0&C, . We will now verify that < e Co - Indeed,
o]

let x PYy- Then either x,yew0 or x,yeV.
If x,yqV, then

= (x)= a6(x) P (x)= %(y) f3(y)=L(y)
and if x,ye WD, then
& (x)=0= o€ (y).
Thus for any pé V we have found a neighbourhood Vocv of p, Voe 't’C , and a

function X € C, such that o |V = o IV,- This means that o« € (c‘z, ?v’ which
completes the proof of the lemma.

Now let (M,C) be a differential space and DTC an arbitrary subset. The
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sets 0, scO, (scD)M and C, are sets of functions consistent with the equiva-

(50

lence relation . defined by (1). We have the inclusions

D¢ scDe (scD),, €C, .

Mo,
Moreover, (sc:D)M and are differential substructures of the differential
structure C. Evidently, ri:y definition, the differential structure C_ is the

Py

maximal set of functions consistent with the equivalence relation ©p- We now
show that in general (SCD)M*C{-)D'

Example 1. Consider the differential space (R,C%(R)). Of course the
function f:R—> R given by the formula f(x)=xa belongs to CP(R). This func-
tion defines by (1) the Hausdorff equivalence relation @z on R. It is ea-
sy to observe that the function given by g(x)=x2 is consistent with Pf f;and

g ¢ (sc{ft )g- Therefore C?{ﬂ %+ (scift R

The above considerations suggest the following definition.

Definition 2. Let (M,C) be a differential space. A differential substruc-
ture D of the differential structure C is said to be saturated if D=(i,d .
D

Evidently, the differential structure C itself is saturated because
c=C, .
fc

We will prove

Proposition 2. The mapoing (@ +—> defines a one-to-one correspond-
ence between the set of Hausdorff equivalence relations on a differential spa-
ce (M,C) and the family of saturated differential substructures of the diffe-
rential structure C.

Proof. Let ®, and ‘aé be Hausdorff equivalence relations on (M,C) such

that C_ =C_ . We shall prove that = . Indeed
° P17 Py ’

Xy & (Vf(‘:lign1 f(x)=f(y)) &> (V¥fe C‘b2 E0O=E(y)) &> x P oy -

On the other hand, if DCC is a saturated differential substructure, then
by definition F=C¢ , where g is the Hausdorff equivalerce relation on (M,C)
D

.

defined by (1).

Now we may prove
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Proposition 3. Let [ be a Hausdorff equivalence relation on a differen-
tial space (M,C). Then the quotient differential structure C/{o on M/ is
generated by a set D of real functions if and only if the differential struc-
turE CS" is generated by the set D= :N“,* (D). Moreover, if C/gb is generated
by D then @= PD‘

Proof. Since &, :(M,C) ——-)(M/So ,C/p) is a smooth mapping such that

:W; |(C/gu ):C/p —-‘ﬁ’o is an isomorphism of linear rings, D is a set of ge-

nerators of the differential structure C/© iff D= T(XQ"(TJ-) is a set of gene-
rators of the differential structure Cfo .

Let D be a set of generators of C/go . Then D is a set of generators of

CS“ , i.e. CS“ =(scD)M. From Proposition 2 it follows that @ = PCP . Lemma 3

gives @C? =§°(scD)M=PD' Hence (@ = ®p-

Corollary 3. The quotient differential space (M/@ ,C/e ) is a Hausdorff
differential space generated by a set of n real valued functions if and only,
if there exists a smooth mapping F:(M,C) — (R" ,‘-En) such that CP=(SCF0)M’

where F(J is the set of coordinate functions of the mapping F .

Now consider a smooth mapping f:(M,C)~>(N,D) between differential spa-
ces. The mapping f determines the equivalence relation @ £ in M defined by

xgaiyﬁ? f(x)=f(y), for x,y&M.
The map g:M/;tJ f-+N defined by
3 g(tx]gf)=f(x) for xeM
is a bijection onto f(M).

It is easy to observe that the following diagram is commutative:

%

i
(M,0) —>- (M, ) L > w0

12.\ l’f'/
(M@ ,Cho)

We will prove

Lemma 5. Let f:(M,C) —> (N,D) be a smooth surjection. Then the homomor-

phism £* |D:D—> C? is an isomorphism of linear rings if and only if
f

¢*)Le)=n.
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Proof. &= Assume that (f* >71(C)=D. Since f is a surjection, t* is
an injection. We now show that f¥|D: —» C_ is "onto". Let 4eC, . Ths
Pt 5

o € C and for any x,ye M, if f(x)=f(y) then o~ (x)= * ().

Consider the function 7 :N —»-R defined by 2*(q)= 9 (x) for q& N, where
x&M is any element such that g=f(x). Since ¢ & C(.> , the definition of F is
f

correct. Moreover, 7 o f= 4. Hence 7 € (t*)7L(c) because ¥ € C. Therefo-
re 7& D. We have shown that f"“lD:D-—» CP i¢ an isomorphism of linear rings.
f

The implication == is obvious.

Corollary 4. Let f:(M,C)—>(N,D) be a smooth mapping of a differential
space (M,C) onto a differential space (N,D).

Then the smooth bijection g:(M/pf,C/go ¢)—>(N,D) defined by (3) is a
diffeomorphism if and only if #*)1(c)=n.

Now we will give a sufficient condition for a mapping f:(M,C) —>(N,D) to
satisfy the condition (f* )_1(C)=D. In [ 4] it is proved that if the mapping
£:(M,C)~—>(N,D) is weak coregular, then (f* )'l(C)=D. In particular, we have

Lemma 6. Let f:(M,C)—>(N,D) be a smooth surjection. If there exists a
smooth map i:(N,D)—» (M,C) such that fe i=idy, then (£*)7(C)=D.

Example 2. Let (M,C) be a differential space, (TM,TC) the tangent diffe-
rential space to (M,C), 3r:(TM,TC) = (M,C) the canonical projection. It is
easy to observe that the zero section 0:M—»TM is smooth. By Lemma 6 it fol-
lows that (-n‘*)'l(TC)=C, and Corollary 4 yields that the gquotient space
(TM/g.»,', sTC/pgy ) is diffeomorphic to (M,C).

Now we will prove

Proposition 4. Let f:(M,C) —»(N,D) be a smooth surjection such that
(£*)71(C)=D. Then "'C/(o; C/(Df if and only if f is an open mapping.

Proof. &= Let f be an open mapping. In view of Corollary 2 it suffices

to prove that 9 - <. . The inclusion ¥ . c 9. is evident. Now we
P Cep Coe = “Pr

will show the inclusion Wb, & ¥, . Let Ue %, . By definition U is an
@ Ps Pt

open sof-saturated set. To prove that U & fcs"f it suffices to show that for

any pg U there exists a function f3 € C‘b such that f(p)=1 and B (q)=0 for
f
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qeU. Since f is an open mapping, F(U) is an open set in Ty Let @€ Dbea
function separating the point f(p) in the set £(U), i.e. @ (£(p))=1 and @ (s)=

=0 for s¢ f(U). Consider the function 8= @o f. Evidently, (3 € C;o has the
f

required properties: (3(p)= g (£(p))=1 and B(aq)= ¢ (£(q))=0 for ge U.

=» Suppose 't‘C/g'o £ 'C‘C/Pf. Let Uet;. Since ‘x’of:(M,'zC)ﬁ

—_ (M/gof,’t’c/;of) is an open mapping, it follows that Wsaf(U)e ‘rc/‘of:

= T/ Py
On the other hand, f(U)=g(‘h’P (U), where g is defined by (3). Since g is
f

a diffeomorphism, g(irp w)e Ty Therefore f(U) € Ty and the proof is com-
f
plete.

Now we consider families of equivalence relations given on elements df
some covering of a set M. We would like to give a sufficient condition for
such a family to generate an equivalence relation on M.

Definition 3. Let A and B be subsets of a set M and P1s Lo equivalen-
ce relations on A and B respectively. The relations (] and o, are said to
be compatible on AnB if @ |AnB= @,|AnB.

The following proposition is obvious:

Proposition 5. Let (Ai) be a covering of a non-empty set M and

iel
(goi)iEI a family of equivalence relations given on the sets Ai respectively,
satisfying the following conditions:

(a) Ain Aj is (c)i~saturated in Ai and @j-saturated in Aj for any i,je1I.

(b) goiIAir\ Aj= @jMi"Aj for any i,jel.

Then there exists a unique equivalence relation @ on M such that P|A1=
=0y and Ai is So—saturated in M for i€I.

Proof. Let @ be the relation on M defined in the following way:
(5) xX@y iff there exists i eI such that >(,ysA:.l and x [ TRE

It is easy to show that @ is a unique equivalence relation satisfying the
assumptions of the proposition.

Now we will prove

Proposition 6. Let (M,C) be a differential space. Let (Vi)ieI be an open

covering of (M,"c’c) such that:
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% on each set Vi, i€ I, there is given an equivalence relation @

Vin Vj is Qi—saturated in Vi and ;oj-saturated in Vj, i, JEI,
@ilvin vj= @J.n./invj for 1,3eIi )

v; & cco for any i€ I, where C:= $06 M—>R| ¢ |V, € (cvi gui§.

o]

o o

1
2
3
4

Then there exists a unique equivalence relation @ on M such that @ IVi= @i
the sets V; are (o -saturated in M, C‘o =C, and (Ce )Vi=(VVi)Pi.

Proof. Let (@ be the equivalence relation defined by (5). By Propositi-
on 5, to complete the proof it suffices to show that C =CO.
We first prove that Coc CP . Let ¢ 8§ CO. Since ocIViG(CVi)pic Cvifor

any i& I and (Vi)ieI is an open covering of (M,-rc), it follows that o¢c € C.
We have to verify that e¢ is consistent with the equivalence relation © . In-
deed, if x ey then there exists i@ I such that x,eri and xgvi y. Hence
o< Ivic (Cvi)?i yields (e¢ IVi)(x)=( 7 IVi)(y) or equivalently o¢ (x)=o¢ (y).

Conversely, let o € C‘o . By Lemma 4, e:.lvic (C? )Vi:(cvi)@i’ i.e.

o & CO, which completes the proof.
Example 3. Let (M,0)=(R°\0,(¥,) , ) be the plane with the origin
RAD

removed and with the natural differential structure. Let Vk= {(Xl,xz):xk+0}
for k=1,2. Of course {VI,VZ} is an open covering of (M, 'rc). Consider the map-
ping Fk:Vk--bR for k=1,2 defined by the formulas:

x X
Fl(xl,xz):= ;—i— for (xl,xz)ev1 and F2(x1,x2):= X—l for (xl,xz)s V2.

2

The relations ©,= @ and @,= @ are compatible on V,NV,.
1 2

The mappings i :R—»R?\ 0 and i,:R— R*\ 0 defined by
6)  1)(D=(1,1) and i, (D=(t,1) for teR

are smooth and satisfy F1° il=idR and on iz=idR. By Corollary 4 and Lemma 6
it is easy to see that the bijections

la3 A
Fr:v/@p \Cy /@ ) —>R,%) and Fp: (Vy/@ ,Cy /o )—> (R, %)
1 1 1 2 2 2
defined by (3) are diffeomorphisms and the sets V1 and V2 belong to frc . So
o

there exists a unique equivalence relation @ on M such that [ |Vi= gDFi, the
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sets V1 and V are ® -saturated, and CP C One can prove that the quotient
space (”/¢° C/,p ) is the one-dimensional progectlve manifold P (R ) and the
maps F and'f's are its charts.
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