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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,3 (1988)

ADDITION OF INITIAL SEGMENTS I
Antonin SOCHOR

Abstract: In the alternatlve set theory, for every real initial seg-
ment RGN there is either with R= §:(3Jce R )ds £ +xtor
¢ & N-R with R={a+< § ;( eR )19~+06<$} where R*z {3 ¢R; (¥t 6 R)W%+
+06+1 @ R}. This result can be used in measure theory. More generally, we ex-
tend addition and subtraction to the system of all initial segments of N and
we investigate properties of these operations. In particular, we describe *
the behaviour of these operations on all initial segments which are real
classe?.]Further properties of these operations can be found in the following
paper [S].

Key words: Alternative set theory, natural number, finite natural num-
ber, initial segment, real class, ®-semiset, &-semiset.

Classification: Primary 03E70
Secondary 03H15

We use the notions usual in the alternative set theory (AST; see [V]),
in particular the symbols N and FN denote the class of all natural numbers
and the class of all finite (in another terminology standard) natural numbers
respectively. A class X is called a 9r-semiset ( 6 -semiset resp.) if there

is a sequence {x ;N6 FNY with
X= 0 ; indFNT (X= Udx sneFN§ resp.).

Complete subclasses of N are called initial segments and cuts are initial seg-
ments closed under the successor operation.

The most important axiom of AST is the prolongation axiom i.e. the sta-
tement

(VY F)((Fnc(F)& dom(F)=FN) —> (3 £)(Fnc(£)&FS£)).
Let us recall that every initial segment which is simultaneously = -semiset
and € -semiset is a set (cf. § 5 ch. II [V]; this statement is a consequence
of the prolongation axiom) and that the sole cut which is a set is the empty
set 0 (this assertion is implied by induction accepted for sets).

The system of real classes defined in [£-V] plays an important role in
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AST. In this paper we need only one property of real classes (proved in the
cited article), namely that every initial segment which is simultaneously a
subclass of a set and real, is either a sr-semiset or a 6 -semiset. However,
let us remind at least that all sets, I -semisets and & -semisets are real
classes and that for every property @(Z,Zl,...,Zn) in which only real clas-
ses are quantified and for all real classes Xl""’xn’ the class

D & X, 00X}
is real, too.
We use letters R, S, T and U to denote initial segments; the letters oc,
3 ... denote natural numbers and the letters k, n and m are reserved for
variables running through finite natural numbers.
Following a Zlatos s idea, we define for every initial segment R

R =R u{R}
i.e. we put R'=R for every nonempty cut and o= o6 +1 for each o @ N. Evid-
ently R” is a nonempty initial segment and we have

6 Rmo0+16R &R={P;(Joc6 R ¥ <o }&(R=5 = R'=5 )&

&(RSS=mRES).

We are going to define addition and subtraction on the system of all
initial segments; to avoid misunderstanding, we use for the operation of sub-
traction the symbol < because our operation extends subtraction defined on
natural numbers, however, it does not extend subtraction defined on the class
of integers (see (2)) which operation is denoted by the symbol - . (Let us
mention that the symbol - is used in AST also to denote the difference of
classes X-Y={xeX;x & Y}.)

For every two initial segments R, S, we define their sum by

Res={;(3x 6 R)(IPB & S)Pcex +B1
and their difference by

ReS={H;(¥PBe S )P+ BeRi=
={B;(VBeS )T eRIf&x &) s x -fBE.

The class R<R plays an important role in our investigation and we are
going to denote it by the symbol R*, i.e. we define (cf. (1) and (3c))

R*= {8e R;(VYor € R)ox +P+1€RYE.
We say that an initial segment R is closed under the operation + iff
(Yec ,fe R)x +(3€R.

If a cut R is closed under the operation + , then R™ is also closed under the
- 502 -



operation + , Gecause 0 = {0} is closed under + ).Let us mention that {0} is
closed under the operation + , however, it is no cut (and {0%’={0,1} is not
closed under + ).

In the following we summarize some useful statements concerning the abo-
ve defined operations starting with the trivial ones:

(1) a) RgR+S and R+SE&ER
because 065  for every S and since

X € R~>(e0<x+1+0&oc+1eR). 1O
b) RCS—>R+S=0
because for (3 € 5 with 3 & R and every & € N we have
$+Bzp¢R&Bes’. O
(2) The operations + and + defined above extend the arithmetical addi-
tion and subtraction and, moreover, for g.é S & N we have
§ = £=0.
In fact for every £, $e N we have
§O;9<§+8F =i¥ Qv £§)AT £ § )P <w+Th=
H0;Qre )3T e P )P<TTI=§ +§,
for every ?ég € N we have
R T IE ST RIS RN S R 2P S
te< §} {8 (Y e§ )BT < FI-f
and the last statement is a trivial consequence of (1b). DI
(3) a) R+D=R=R=0 and 0+R=0-0". I
b) (R+8) "= 4%;(Jw € R3PS IF £k +f3}
(Re5)"={® ;(¥p € §)> + pa R} (assuming SER)
(R") =49 ;(¥x & R} +oc€RY.
The statements are trivial consequences of the definitions, however, one has
to distinguish whether the initial segments in question are sets or proper
classes. O
c) If S<0, then
R+S={P ;(Foc e RI(IPeS)P Lt +f3}
(R+8) = {9; (It 6 R)(IB & )P £x +B+1]
R+S=1>;(VPBe S)P +B+le R}
(R+S) ={-0;(¥B3 & 5) % +BeR}
s'={%;(Ypes)P+p+lest=5+5 O
d) If R£0+%S, then
RS={$; (B e R)(IB e S) P £ +B+1}. 0O
(4) The operation + defined on the system of all initial segments is
associative and commutative because of the associativity and commutativity
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of the arithmetical addition (and because of (3b)). QO
(5) a) S&R'—> R+5=R=R+S
because SSR+ implies by (3b)
(YBeS ) VeteR') B +oveR’
and thus we get
RS & £ R ;(Jet ¢ RDDP <cox =R
and furthermore (3b) implies also the formula
(Yo € R)(VE 6 RN D x +reR. O
b) R*2S—>RcR4S.
We have (R")'c S” and thus there is €& S with B¢ (R")  and by (3b)
we get
(Joc e RDIB +x ¢ R';
this shows R'c (R+S)". O
c) (R'c S&R=# 0)—> R+SCR.
For Be Swith B R* there is o € R (see (3c)) so that oc+@ +1 ¢R

and 8¢ being an element of R is no element of R+ S because (3+1¢5'. a
d) If both R and S are cuts closed under the operation + , then
R+S5=RuUS.

According to (3b) we have
(R+S) "=R°'w S "=(RuS) " because both R" and S~ are closed under the opera-
tion+ . 0O
(6) (R+S)sT=R<(S+T).
The formulae
. HeR=S) =T
(Y2 6 T +ve (R=S)
(YeeT)NVpBeS)P+u+B6R
(¥d e (1+8) ) b +d€ R
Pe(R=(1+5))
are equivalent by (3b). @]
(7) If ReT abd SeU, then
R+SST+U
and
R+UgT+S. a
(8) a) If SER, then RS is the greatest T with T+5ER.
The formulae |,
(R+S)+SgR
(V#G(RTS)')(V(JGS')'& +BeR’
(V2 [(Y fe S')(19~+@e R)—> (Ve 5)P +Re RD1
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are equivalent; assuming
YeTeR& v ¢ RS,
we are able to find pe S” with T+ ¢ R and it is ¥+ B€ T+S because
rle T Rw+B<(w+1)+f .
b) If R0, then R+S is the smallest U with U<S2R.
The formulae
(R+S)+S2R
and
(Ve e XYB € S )X ER) o + B+
are equivalent and the second one is valid (put & =o¢ +1); supposing
S ¢ UkPERSER* O
we can find o € R" and 8 € S’ with
F<ot+ B Koo 0
and then
%-l€R&x-1¢UrsS. D
(9) a) The formulae
R is a cut
R+FN=R
R+ FN=R
are equivalent. To prove this assertion it is sufficient to realize that FN
is the smallest nonempty cut. [}

b) For every g, F +FN is the smallest cut containing § and EfFN is
the maximal cut not containing

These statemen ts are trivial consequences of a) and (l1a),(2),(5d), (6)
and (8). O

At the end of this paper we are going to give some examples of cuts R, S
such that (R+S)+ScR, however, for every R, S if there is T with T+5=R, then
(R¥ S)+S=R; similarly there are R, S with (R+5)+S>R, however, for every R,
S, if there is U with U=S=R, then (R+S5)<S=R.

The statement (10) which is an immediate consequence of (B)) gives us a
description of couples R, S for which the equalities (R=<5)+5=R and (R+S)+-S=
=R are true; the question whether there is a better description of such coup-
les is left as an open problem in this paper.

(10) a) If R+ S 40, then (R < 5)+S=R iff R is the smallest T with

T+ S2R+S.
b) If R #0, then (R+S)+S=R iff R is the greatest U with U+SgR+S. 11

(11) R¥S=§%;(Vy 4 RI(B<pby-8-1¢ st
If S=0, then the assertion is trivial; supposing S % 0 we can use (3c).
If & € R=5 and o 4 R, then #h< y because R €y and the assumption
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o -®-16S would imply - €S’ and thus it would imply
v :19'+(g' -Mer
according to the definition of R¥S. If 19‘# R=<S, then there is p & S with
A+B+1 ¢ R. Evidently
((19+[3+1)-19‘)-1=p€ S
and therefore
Wy ¢ DP<yly-#-1¢5. O
As a trivial consequence we get
(12) R*={3eR;(Vy ¢ V(B <giy-S-1¢r).0O
(13) a) If S¥=0, then

§+5=§1";(3Fe S)'ﬂ‘§§+{3;
and
(§+9)=4H;(3ABesHV<§+Pf3. O
b) Ifscg,then
§ 75 4¢vd;0<IUI 14 5}
and

(§~ 5)'=f§‘o"(f';d'¢ s%.
If &6 €5, then
(vpesHPB<§
which implies -»\9~¢S' and thence
§-B>04g-P-145.
On the other hand if 0<d & -14 S, then (Y3 e S <d” and hence
(g-.—d')y}émaxq& ,§ - (d"—[&))< ?
for every B € S, n
(14) a) R*'e R and R* is a cut closed under the operation + .
Really, if A» ,7 &€ R* and if o¢ € R, then
o +( B+ )+l & (6 + P41+ +16 R
because o¢ +$+1 eR. If R+=O, then it is a cut trivially; otherwise (]aR*L i.e.
{Vo( € R) O+oc+1€R
which implies
(Voc € R)(cc+1)+1€R
i.e. 1€R" and hence R* is a cut. 0O
b) R*=0 iff R is a set.
If R+=0, then either R=0 or there is o¢ € R with o¢ +1 * R and in the
second case it is R=o¢ +1. o
c) If a cut R itself is closed under the operation + , then R=R". OO
(15) S +eR+S—> (B &R v ¥65).
If fﬂ" Rand ¥ ¢-S, then for every e¢ & R™ and every {3 @ 5" we have
o & P& [34xand thus
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«+fBad v
which implies +< ¢r:s. O
Let us note that the implication ~3 @ R+5—» Ay ¢ AL ¢ vz
Zy+d’ does not hold (e.g. let us choose § ¢ FN and put R= §+ FN,S=FN).
However, the following result is available.
(16) If R is a nonempty cut, then
F§ RR—> A7 § R + <P,
To prove our implication let us choose & such that
2 &P 4 2w +1).
Supposing 7t & R we would get < +1 €R which would imply
P4 2(¥ +1)e R+R
and this assertion contradicts the assumption ‘& R+R. O
In particular, if R is a cut closed under the operation + , then the im-
plication
S¢R—Pr g R 2¢ D

is true.

Before we continue our list of properties of the operations + and
we are going to state the main theorem of the paper.

Theorem. If R is a real class, then there is §s N so that
R= § +R" or R=§ = R".
Proof. We are going to assume R+* 0, otherwise there is (by (14)) o¢
with R=o¢ = +R". At first let us suppose that there is a sequence
{9 sneFNFwith
R= N4 »e-n;nerui.
Put
LA
We have R+R'e R g 190 (see (5)) and thus R 5190 = R* according to (8). If
T & R* for all neFN, then for every n we have (cf. (14))
n
> z &R
k=0
For every ¥ ¢ R there is ne FN with ‘3}”157’ and consequently for this n
the equality

n
49‘05‘3"+ k%[‘] "l',‘n

holds. We have proved the implication
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(VneFN) ® _&R"— R- B =R
and therefore we are done under the assumption (V¥ n) ¥ n€ R*. Hence suppo-
sing R is a Jr-semiset we can also assume without loss of generality that
% 4 R* for all neFN.
If ve ﬂ(rn:neFNf, then

(VnerN) B <D -
and thus
(¥y 4 Ry -»-14R
and thence by (12) we get y @ R*. We have proved
R'= Nfx ;neFN}
because we assume
(VnefN) @ _ 4R
Using the last mentioned assumption, for every n& FN we can choose
® &R’ with
dn+ 'l.'n # R . . )
R is supposed to be a 4v-semiset and it is no set because R” # 0, hence R=R
is no &-semiset, which proves
Ui« ;neFNicr.
Therefore we are able to choose ;e R with
(VnefFN) & < §.
Evidently g +R*2 R (we can use (5) and (7)). Let us suppose that there is
o € R with a:.§§+R+. In this case we have
. o-§§R= Nixw ;nefNt
and hence there is n@FN with
«<- £ <,
and furthermore we get
%+ <f+(x-F)=c &R
which contradicts the assumption o+ & R. We have proved our statement
for all gr-semisets.
Now, let us assume that there is a sequence -f'\9'n;n&FN} with
R= UL ,nefN?.
If there is n@® FN with R= «9n+R+, then we are done and thus we can suppose
without loss of generality that for every n &FN,
Oda = -5 ¢R.
For every ¥ € N{ @ ,n6FN} we have
19'n+ Vil & B+ = &n+1
and therefore Y€ R* according to the definition of R* (because R=
= VA '9"n,ne FN}¥). We have proved again

R*'=N4{~x X
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Since we are assuming qn# R+, for every ne FN we can choose ocneR
with
d'n+ fn+1 * R.
R is supposed to be a &-semiset and it is no set because
(Vnery) & <&
and therefore R is no Jr -semiset, which proves
RN fo +x ,nefN}
and thence we are able to choose f* R with
(Yn EFN)E <o + ‘E‘n.

Evidently R=R+R*g g—:R+ according to (5) and (7). Supposing the exi-

stence of 4 ¢ R with

(Ve eRD g+t < §
we would get g uy* R* and hence there would be n@FN with

® & g -7,
however, the relation

o‘n+ 'rns a’+(§'-x)=§
would give us a contradiction (we have of < g~ because o« €R and 3 € R).
We have shown our statement for all 6'-semisets.

If a segment R is a real class, then there are only three possibilities:
either R is a 9r-semiset or R is a @-semiset or R=N. Previously we dealt
with two possibilities only, however, the remaining one is trivial: we have
N*=N and N=0+N*. O

Let us note that the assumption of the reality of the cut R in the just
proved theorem is essential. To show it we are going to construct a (non-re-
al) cut R with R*=FN such that there is no Ec N with either R= § +FN or R=
= g < FN.

Let {19‘,;1’6 S1% be a decreasing sequence with

FN= N4 ; v e}
and let =% be a well-ordering of the universal class V. We shall construct by
transfinite induction an increasing sequence {of_;» € N}and an increasing
function ¥ —>¥ defined on S in such a way that for every v,@,c.Q. we have

> (g
We put e =0. If oy is constructed (refl), then we choose Q%) 38
the smallest natural number o6 (in the sense of the well-ordering < ) such
that there is & € L)L with

(X)) Y<cp—>o, <o <oo”+'\9‘ﬁéocv+a9‘;-
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Xy C<oe iy & 0y + Vg
such a choice is possible because the sequence «t«?;,;vc 03 is supposed to
be decreasing; we define ¥ +1 as the smallest 6 > T with the above p'roperty.
Let & Q be a limit and let the sequence {¢( ,; W €% be constructed
so that (k) holds for each » , @ eTtn. The class ¥ A Q is at most
countable and therefore there is an increasing sequence -h:n;ns FN% with
Ui inefNi= U(TnQ).

By the prolongation axiom there are functions f,gs N2 with
(Yne FN)(£(n)= o, & g(n)= 1;}?»).
Tn n R
We choose % € ) - U‘E?;‘;HCFNf and using (k) there is d'§ FN so tha

(Vo 6d) (Vo & ) (0(w) Z48 & 1)< 1) <1 (@)g(@ )& 1 )+g(»)).
For every ¥ 6t n )l there is n& FN with » < @, and thus

o, < aﬁ,‘n<f(d")< f(d')v% & £(d')+g(d) £ ac,vn+ »0'.?n6 o, + %
i.e. we have shown

e )Y e (¥nl))(ox,, <ovcod +Bp £ o0 +19§,)
and we choose oC,, as the smallest o€ (in the well-ordering = ) with the pro-
perty in question.

Evidently

R=fec;(Iye Q)ot £ eo,‘,?

is a cut because

(Vv en)(ee, <o, )—> (VeC & R)os+1 &R
and furthermore the formula

(Vwell) B, ¢R"

is implied by the condition (s%) and therefore the equality

is true.
The sequences
iwv;veﬂ.’; and {eo,'r q?:;; ye}
are monotonous and the equality

R=fov;(Vy @ Q)oc<oc s 495-5

is a consequence of the condition (%), suitable choices and of the assumption

FN=N{a}, ;v e 3

Thus R "L :0~0 is neither a ar-semiset nor a 6-semiset and therefore it is
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no real class, hence it can be expressed neither in the form §' +FN nor in
the form g <+ FN because all classes expressible in these forms are real.
Our theorem shows that every real cut is either of the form § +R or of
the form ?-r R where R is a cut closed under the operation + (cf. (14)).The
following results dgal with the uniqueness of these characteristics.

(17) Let R, S be cuts closed under the operation + and let R Sf and
SES &R#40%S.
a) If §+R= S +S, then
R5and § + Qe R & §rfeR
which implies -E-:’; 1.
Without loss of generality we can suppose s£ g (which implies S -_-g =
=0eR). Since gg g +R=$ +5 we can fix Be S with
g £S+B.
Under the assumption $5€ the implication
? +R= g +5—>»RES
is trivial. Supposing Re€S we can find L S so that 7# R. Evidently,
§-T4E R,
however, this formula contradicts the formula
§+1 .‘S+ﬂ+36$+5. ,
We have proved R=S and consequently § + § £ B &R.

We want to show further the implication
(fr§ or&kgwgerkragap)—>§ 21
Without loss of generality we can assume (“. s’-g because
g— -] iff -E- =l
¢ ¢
It is g —$ @ R and thus for every n€FN we have
n( g -$)eR
because R is supposed to be closed under the operation + and therefore § 4 R
guarantees moreover
n(g -§)< ¢ -

Thus we get

e NE-8) £ .
06n(-§— L S

which proves % > 1.

b) If §R= $ =S, then
RSand f=§ & R& §wf R
which implies —%—51.
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Again we can suppose § & £ and this assumption and the equality £+ R=

= § =5 imply SER by (13). Assuming ScR we can fix 0<d'aR with g'-1 4 S
and according to (13) we get

§vdesTSgwn
For each o & R we have o¢ +d'e R and then

(g T (Irx)< £
and therefore the assumption Sc R implies S 3 § <+ R which contradicts
$ ¢ § T 5. We have shown R=S. Furthermore we have & § § + R= § + R and
therefore there is « € R such that §é$+e(. i.e. ? -SeR. O

(18) For every E, Se N and for all nonempty cuts R, S closed under the
operation + we have
g +R ¥ S‘.‘ S.
Let us assume R, S are nonempty cuts closed under the operation + and let
g +R= S—.- S. We have £ < S because
fFefwR-{ v skT4g=s.
If RcS, then there is g'€ S with 9" & R. By (13)
ErrefR-§=s
Thus there is pe S with
AN ERE
S is assumed to be closed under + and therefore’ +f8 @ S which implies

§¢S‘.‘S=€+R

- a contradiction.

If ScR, then we can fix o & R such that °‘4 S. In this case
§-wel =5 § R
is implied by (13); however, the last formula together with the assumption R
is closed under the operation + guarantees
§=(R-cc)+ok € £ +R.
We have shown that our assumptions imply S P3 S = S, which is absurd.

We have proved R=S. If g-es R, then § = g +($—§) would be an element
of §+R= § = 5, this proves § - F§ R. Thence we can choose ¥ & R with 2€<
< § - § . Furthermore we have

g +7 & wRs £ R
(because (Vo & R)f+t+d.<f+ ¢ & g+($-§ )= ? ),
this contradicts (13). 0O

The above stated theorem (together with (14)) gives an importance to the
results concerning initial segments of the form ? +R and g-;- R where R is a
cut closed under the operation + (cf. e.g. the following results) because
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investigating initial segments of those forms we deal with all real initial
segments.

(19) Let g , fe N and let R and S be cuts closed under the operation
+ . Then

(E+£)+R if SgR
a) (§+R)+($+S) = < (F+$)+5 if ReS

because using (4) and (5d) we have
(§ +R)+(§ +8)=( +§ )+ (R+S)=(F + §)+(RvS). {1
b) If S€ ¢ , then
R R S
(§+§) =5 if ReS.
For every R we have
(?+R)+( 1 S)e (§+R)+ $ =(§+s )+R by (1), (4) and (7).

We have to prove the converse inclusion under the assumption SCR. Le't

us fix d with

Fés&del&der
(such a choice is possible because we assumed S & S ). We have R# 0 and the-
refore (cf. (13))

(g +§ )+R=44;Fec & R)IFP < £+ ot .
For every ot € R we have (using (3))

§ el L(froc+d)H(§ -8V (E+RI+(§ +S),
because o¢ +d'€ R (and thus § +et+ d'eg+R) and because § -J € (gfs)’
according to (13). We have proved

SCR—> (g+$)+R§(€+R)+(S-.— S).

Now let us assume RS and let
& (gR+(§ = 8.
There are ¢ & (§+R)' and Te(Q~r S)" so that Ah<+% and thus accor-
ding to (13) there are o¢ € R™ and J¢ Swithd & ¢ such that
wLfrclT=¢-J,
however, using (13) again, we get
e g+ TEE+a+(§-)=(f+§)-(F-0)&((£+§) =9,
because d'-o¢ ¢ S (S being closed under the operation'+ ). We have proved
(E+R)+(§ =+ S)S(€+S)TS.

To prove the converse inclusion it is sufficient to realize that for e-
very ¢ with 0 < d'* S we have '(cf. (13); &°-1 # S because S is a cut)
(F+f)vdef+(§ +d&EG(E+R)A(E +d)e(§+5)
and to use (3c). O
- 513 -



c) IfRs? andSs-S , then

__— (F+§)= R if SgR

( R)+( §)=
g-r *s“’ \(E*S)‘-'S if RS S.

According to (4) we can assume R€S and we get
(§+ R+(Ex S)SE+(E = 5)=(f+8)+v S
as a consequence of (3a), (7) and (19b). If J‘Q S, then there is 't:@ S with
2q g4 (cf. (16)) and
§+P)v e (Ere (fra)kfvre(§ra(f+ R &
&(§S+2)e (TS
_follows by (7) and (13). Therefore using (3b) and again (13), we obtain
((§+S)f5)'§((§7 R+(§ =+ S))°

(§+$) 7 S5e(Ex R+(§ +5). o
d If¢ +Ss§+R, then

-— +
(§+R) = (5 +6) =< (§+§ )R 1f.SSR
(P-;—g )+ S if ReS.
Since § & (§+5) 'S (F+R)", we are able to fix o & R” with
S & ? + o .
If A @ (§ = §)4R, then there is oc € R with B < (f + §)+ec and for e-
very (36 S° we have
D +(E+RIK(F T8 )+t +§+BLE +L +at+f3 .
Assuming SGR we get aC + & + 3 & R’which implies
g +of + et +p‘(§ +R)’
and this guarantees
F+(F+p)6 B4R,
We have proved
(§+§ MRE(E+R) =+ (§+5).
The converse inclusion is trivial, since for every 4~ , the formula
(VReS)3c6R)B+§+fB<f+oC
implies
(€ R") '9‘<(F-r? )+ o
and thus the formula in question implies even the formula

l&é(g 1‘? )+R.

Let us deal with the case RgS. By (13) every element of (F-rs )+S is
of the form (g * Q)= Jd where 0< JAJ-1 & S. For such &~ and every
8 & S'we have
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((§=§) T @E+PEE D+ F-RIeg+Z
(it is (A £ d°). We have shown the inclusion
(§+§)~= SS(f+R)+ (£+9).
IfH ¢ (f+§)+S, then there is Be S” with
R T
and thus
++G+pZE .
Choosing of € S with ¥ € R we get
PGBz E g @ E R
Since § +(B +4) & §+5, we obtain
B & (F+R) -+ (§£+5),
thus we have shown the inclusion we had to prove. n
e) If SE§ and if (£ < S)E§+R, then

- ( ? 7—$)+R, if SeR

(E+R) = (& =+ 5)=
f § T (g )4S, if Res.

At first let us prove (assuming Rv S s 0) that there is ¥ € RUS with
§of .
If %< ?&(g —g)# Re S, then there is 13# RuS such that
; ¥ <§
(RS being a cut closed under the operation + ) and therefore for each
[ &5’ we have
g- +19+{§< §+2'9 < S
and hence g+19e( § + 5). Furthermore §+'0' t §+R holds trivially and the-
se facts contradict our assumptions. We have shown that
( f TE G e g +
where 7 & RuS.
For every o & R, fe S” and every d” with J&§ & J ¢S we have

(§ =§ e +@HE-M&(F =@W e -F-ps g rara-(d-@).
Evidently (&'-1)-A Z 0 i.e. §-3>0. If ¥ &R, then +o26R’. Ifx e S,
thecin d’—ﬂ—tZD and therefore in both cases we get

((§ = E)r ek +@)+(§ -F) e(f+RY
and using (13) we obtain the inclusion

(g~+¢ )+(Ru5)§(§+R)T(§-.' S).

If & ¢ (§ =§ )+(RuS), then there is 2§ RS so that
(f=§)2y <t

according to (16) and further we can choose d" > 0 so that
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Jé&sad&s
(because S s;)'and thus we get
'\9‘+(S =d )>( § = §)2y +($—J)Z§ X g +R.
To prove the inclusion -
(§+R)+ (= 9e(E +§)+RuS)
it is sufficient to apply (13). I
f) If ng and if? +5 € g-.— R, then

- (g‘rs ) +R, it SgR
T~(g~§)+s, ifRes.
Under the assumption RvwS=0, our assertion is trivial. Assuming RvS# 0,
let us realize at first that
$+(RVS)2§
i.e. the formula
Yx & R')(V(s'e 5’)§+0(.+ﬁé f
is a consequence of ($+S) € g +R. The equalities
(§+R) 7 (§+8)= E = Re(R+S)=F = (L+(ReS))= § = (§ +(RULS))=
=(€+0)T (L+RUSN=( ? ‘-‘S ) + (RUS)
are consequences of (6),(4),(5d),(1) and (19d). a
g) IfR Sg s SES and if § =S & ?TR’ then

(g-,-—R)f($+S)=

(?"'R)‘-'(?‘-'5>=<(g 8= R,. if SCR
(E=§)+s, itRes.
If SeR, then the equalities
(g-.—R)‘T‘(g'T‘S)= ?T(R+($-.—5))=g-;‘(S+R)=(§-=-U)‘r(s+R)=
=§ +~P TR
hold according to (6),(19b),(1) and (19f). Supposing R€S we get
(f'r R) = (?75)= £~ (R+(S + S))= g-:(? -.-S)=($+0)'r (S‘T S)=

=( f-.'s s

by (6),(19b),(1) and (19e).
We have claimed that there are cuts R, S and R, S such that

(R 5)+5 %R and R+S) =TT,
using the last statement we can construct such cuts quite easily. If T¢ Utg
are cuts closed under the operation + , then putting

R= € +T" 5= € =1
R= ETT 5= g;-r'T
’ﬁ=€ +T ‘§=U
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we have

(R+S)+S#R (R+S) = S=R
(R = 5)+5=R RS+ T+R
(ﬁ7§g$ﬁ (ﬂé?g*ﬁ

In fact, using (19) we get

(R¥ S)}#8=((§+T) = (§ = DI+(E + D=T+(§ v D=¢» T4+ R(R+S) + 5=
(R+S) = S=((§ +T)+(f =)< (g T D=2¢ +T) T (g=T)= § +T=R
R=E((§+ D (f5 T DTe(f= D= = TR
RBD=T(g+DH(E=TN=(§= D=Q=D v (g N=F +TR
® = DHF((g+1) T WW=(F+ V= f= U T
(ReZ) = B=((F+T)+0) = U=(§+0) = U= § +U % R.
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