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C0MMENTATI0NE5 MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,3 (1988) 

COMPACTIFICATIONS AND L-SEPARATION 

Eliza WAJCH 

Abstract: In the paper, the notion of L-separation introduced by J.L. 
Blasco is applied to characterizing subsets of C * (X) which generate com-
pactifications of a Tychonoff space X (i.e. sets F c C * (X) such that the 
diagonal mapping ^ f is a homeomorphic embedding). 

ffeP 

Key words: Compactifications, continuous functions, L-separation, ho­
meomorphic embeddings, proximities, functional bases. 

Classification: 43D35, 54040, 54C20 

Throughout this paper, X denotes a Tychonoff space. The algebra of all 

bounded real-valued continuous functions on X is denoted by C * ( X ) . 
Let K(X) be the family of all compact if ications of X. If ocX, ^ X s K ( X ) 

and there is a continuous op: ocX —-*» yX such that g> • ©c = ̂ , then we wri­

te %>X <£oCX. For ocXsK (X ) , let Coc denote the set of all functions f c C * ( X ) 

continuously extendable to ocX. For f s C ^ , let 1°° be the continuous exten­

sion of f to ocX and, for F C C^, let F<*= if <*:f eFj. 

If F c C * ( X ) and the family jocXs K(X):F c C^Jhas a minimal (with res­
pect to the partial order .6.) element s^pX, then ocpX is said to be determin­
ed by F. Denote by iZ> (X) the family of subsets of C*(X) which determine 

compactifications of X. 

Let ^ ( X ) be the family of all sets F c C * ( X ) such that the diagonal 

mapping eP= A f is a homeomorphic embedding. If F e c ^ ( X ) , then the closure 

** f€F 

of ep(X) in Rl I is a compactification of X. This compactification is said to 

be generated by F and is denoted by eFX. If ocX^K (X ) , F e ^ ( X ) and eFX=o<; X, 

then we say that F generates ocX. 

Finally, let ^ ( X ) be the family of all sets F c C*(X) which separate 

points from closed sets. It is well known that ^(X) c *% (X) c £0 (X); however, 
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in general, both inclusions are proper. 

The families <£(X) and £& (X) were considered in [1] - t3j and 173. 3.1. 

Blasco introduced in £43 the notion of L-separation and used it to characte­

rize those functions from C* (X) which are continuously extendable to epX 

where F e ^ f ( X ) . In this paper we apply the notion of L-separation to inves­

tigate the family ^ ( X ) . 

For notation and terminology not defined here, see [53 and [6J. 

Before proceeding to the body of the article, let us recall two more de­

finitions and establish some useful facts. 

Definition 1 (cf. 14}). A set G c C*(X) L-separates a set A c X from a 

set B e X if there exist real numbers a. , . < b . ̂ <£c. .< d. . and functions 
j » K J»K

 J » K J » K 

m n , 
9A L, € G 0 = 1 , . . . ,m; k = l , . . . ,n ) such that A c U H g- ^ ( [ b . . ; c. . J ) and 

J»K
 A_I ^ - j J»K

 J » K J»K 

m n , 
B e n U gT1. ( ( -oo ; a. Jl u [ d . . ; +co ) ) . 

j=l k=l 3 , K J , K J » K 

Proposition 1. Suppose that G c C*(X) and let A., B. be subsets of X 

for i=l,2. 

(1) If G L-separates A. from B., then G L-separates B. from A.. 

(2) If G L-separates A. form B. for i=l,2, then G L-separates A, v A« 

from B, r\ % ' 

(3) Subsets A and B of X are completely separated if and only if C*(X) 

L-separates A from B. 

We omit simple proofs of (1) and (2). To show (3), it suffices to obser­

ve that if C*(X) L-separates A from B, then (cl*x A ) n ( c l / 3 X B)=0. 

Definition 2 (cf. U J ) . A set G c C*(X) L-separates a function 

f«C*(X) if, for any real numbers a < b, the sets f ((- oo;al) and 

f ([b; +oo)) are L-separated by G. A set F c C*(X) is L-separated by G if 

G L-separates any function f & F. 

Proposition 2. A set G c C*(X) L-separates a function f * C*(X) if and 

only if, for any real numbers a<b£c<d, the sets f" (lb; c]) and 

f" ((-oo; aJt/[d; +co )) are L-separated by G. 

Proof. Let a<b6c^d. If G L-separates f ((- «>; al) from 

f"1([b; +oo )) and f_1([d; +oo )) from f~l((-vo ; cj), then, by Proposition 

1 (2), the sets f"l((-oo ; aju [d; +co)) and f_1([b; c]) are L-separated by 

G. On the other hand, since f is bounded, there is a real number r > 0 such 
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that f(X) c [ -r;r] and a,b £ (-r;r). Then ^ ( ( - 0 0 ;aj)=f ̂ [-rjaj) and 
f~ ([b;+oo))=f ((-<» ;-2r3 u lb;+co)), which completes the proof. 

Now, we are in a position to prove the main theorems of this paper. 

Theorem 1. If F 6 2) (X), G c C *(X) and F is L-separated by G, then 
G s3)(X) and oCpX ^cC^X. 

Proof. Let us consider any o&XcK(X) for which G c C ^ , Since C ^ L-se-
parates F, it follows from £4; Theorem 43 that F c C ^ . Hence the set 
Cp= O-tC^ :<XX€K(X) and F C C ^ ? is contained in Cg= f K C ^ :<*XcK(X) and 
G c C ^ . This, together with [1; Theorem 3.1] or £5; Theorem 2.183, imp­
lies that C«€ Sf (X) because Cp€tf(X). Using £1; Theorem 3.13 again, we con­
clude that G clD(X) and <*pX 6 oCQX. „ 

The next theorem can be regarded as a generalization of Theorem 6 of 

Ul. 

Theorem 2. For sets F e % ( X ) and G c C*(X), the following conditions 
are equivalent: 

(1) G c.«*(X) and epX£eGX; 
(2) F is L-separated by G. 

Proof. That (1) implies (2) follows from [4; proofs of Proposition 2 

and Theorem 6J. 

Assume (2). Let A be a closed subset of X and let xcX\A, By virtue of 

the theorem given in [6; Exercise 2.3.DJ, there exist f, f 4 F such that 

n n 
A f4(x)4 cl n A f4(A). We can find 11 > 0 such that 
i=l x Rn i=l x L 

n n 
(TTtf4(x)-ii ;f,(x)+*»3)n( A f4(A))=0. By Proposition 2, for each 
i=l l x l i=l x 

i6-{l,...,nl, there exist functions g. . .fiG and real numbers a. . .< b. . ^A 
1,J»K 1»J»K 1»J»K 

j-*ci,j,k<di,j,k (>-»••-'V k=l,...,mi) such that 

haX^W-t.Ml^ic U A 0i;jfk([bifjfkiclf;Jfk]) and 

n. m. 

<tyeX:|f.(y)-f i(x)|>n}cQ i &*£*,*« ^'ai,j,k^tdi,j,k' •«»• 

To each i6$l,...,n$ assign some 3 ^ {l,... ,n^ such that 
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mi 
X * P , 9 i X i k ( t b i i k*ci -, J ) . Denote k=l i »Ji» K , J i , K 1»Ji»k*' 

g=Aíg. . .: i=l,...,n and k=l,...,mj 
i -1 

V=TT*(ai,Ji,k
;di,3i,k>

! i=l.-.n and k=l j|_ 

and 

n 
Then V is an open subset of Rm where m= I£ m., and g(x)€V. It is easily seen 

i=l 2 

that g(A)riV=0, so g(x) 4» cl g(A). Using the theorem of [6; Exercise 2.3.D}, 

Rm 

we obtain that G e*£(X). Theorem 1 yields that epX^egX. 

For a nonempty set Fc C*(X), let Mp denote the family of all functions 

of the form & « A f where q?fe C*(R'F>) (cf. L23,[3] and [7]). It follows 
fcF 7 

from [7; Remark 1.5 and Corollary 1.123 that Mp is the smallest subalgebra of 

C* (X) closed under uniform convergence, containing F and all constant func­

tions. 

Corollary 1. For sets F e *^(X) and G c C*(X), the following conditions 

are equivalent: 

(1) G ft«i(X) and epX£eGX; 

(2) Mp is L-separated by G; 

(3) F is L-separated by M«. 

Proof. By virtue of 17; Corollary 2.63 (or [2; Theorem 2.33), Mp genera­

tes epX, so the implication (l)-s^(2) follows from Theorem 2. The implication 

(2) "--=>(3) is obvious. If we assume (3), then Theorem 2 yields that M« & ̂ (X) 

and, moreover, the compactification generated by M« is not less than epX. From 

[7; Corollary 2.6] (or [2; Theorem 2.3J) we deduce that (3) •=-=-> (1). 

Corollary 2- For sets F € % (X) and G c C*(X), the following conditi­

ons are equivalent: 

(1) G * *€(X) and eFX=eGX; 

(2) Mp is L-separated by 6 and M« is L-separated by F; 

(3) F is L-separated by M« and G is L-separated by Mp. 

Since M p ^ for any Fa *g(X) such that epX= oc X (cf. [2; Theorem 2.33, 
[3; Theorem 3A 3 or*[7; Theorem 2.123), our next corollary is an immediate 
consequence of Corollary 2. 

Corollary 3. For any F c C*(X) and cxXeK(X), the following conditi­

ons are equivalent: 
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(1) F 6 «t(X) and epX= oC-X; 

(2) F c C^ and C& is L-separated by F; 

(3) F c C ^ and C^ is L-separated by \Af. 

Let = be the equivalence relation on ^(X) defined by the condition: 

F = G if and only if F L-separates G and G L-separates F. The equivalence 

class of = containing F e ^(X) will be denoted by TFl . For F,G € «g(X), put-
L L 

ting t F3. == I GJ, if and only if G L-separates F, we define a p a r t i a l order 

on the set *£(X)/L of all equivalence classes of - . The co rolla r ies from The­

orem 2 imply the following 

Theorem 3. By assigning to any [ FJ. e % (X)/L the compactification e^X 

of X, one establishes an isomorphism of the p a r t i a l l y ordered set 
L 

(*£(X)/L, <-=• ) on"t° tne p a r t i a l l y ordered set (K(X), -*= ). 

Now, we are going to study i n te r re la t i ons between elements of *£(X) and 

proximities on X. 

For ocX€K(X), denote by cT(oc ) the proximity on X induced by ocX; i.e. 

cf(oc) is defined by letting: Acf(oc) B if and only (cl^ x A)n(cl^ x B)+0 

(cf. 16; p. 5613). 

Let F c C* (X). We shall say that two sets A,B c X are close with respect 

to cf(F) if F does not L-separate A from B. 

Theorem 4. For any Fc C*(X), the following conditions are equivalent: 

(1) Fc ^ ( X ) , and d\F) is a proximity on X such that c/(F)= c I^ep); 
(2) Fe^(X); 

(3) cT(F) is a proximity on X. 

Proof. According to the proof of Proposition 2 in 143 , we deduce that 

(2)^(3). 
Assume (3) and let ocXtK(X) be such that cf (F)= <**(oc). By v i r tue of [4; 

Corollary 3j, C^ is L-separated by F. On the other hand, if fe F and a< b 

(a,b€R), then the sets f ((-CO;a3) and f ([b;+co)) are L-separated by F, 

so t h e i r closures in oc X are disjoint. Using [4; Corollary 33 again,we obtain 
that F c C . By our Corollary 3, F € <(X) and erX=<*X; hence (3) —»(1). 

Theorem 5. By assigning to any IF... e Hl(X)/L the proximity cf(F) on X, 
we establish a one-to-one correspondence between elements of *€(X)/L and all 

proximities on the space X. 
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To give another necessary and sufficient condition for F to be in *£(X) , 

we need some notation. 

Suppose that F c C * ( X ) . Denote by JcV the family of all sets of the form 
m n , 

£l Qi fJ.k(CaJ,kibJ,l<3> *here fj,k 6 F and aJ,k-ibJ,k^,k.b3,k'R) for 

j=l,...,m; k=l,...,n (m,n€N)» One can easily check that the family j£p is 

closed under finite unions and intersections; moreover, Zc consists of zero-

sets of X. 

Theorem 6. A set FcC# (X ) is an element of *£(X) if and only if the fa­

mily Zp is a closed base for X. 

Proof. Let A be a closed subset of X and let x€X\A. If Fc *C(X) , then 

from t4; proof of Proposition 23 we deduce that F L-separates A from-(xj; hen­

ce there exists Z c X p such that A c Z and x 4 z» which means that %^ is a 

closed base for X. 

Conversely, if 2c is a closed base for X, then there exist functions 

f. . € F and real numbers a. u=Vb. . (j=l,...,m; k = l , . . . , n ) such that 
J»K J»K J»K 

m n , m n , 
A c U n fT^aa. . ;b. . 1 ) and x e H U t'.\«-tx> ;a. k ) u (b. . ;+ oo)). 

i=l k=l *•'' *•'' ^' i=l k=l « ^ 

To each je$l,...,m} assign some k.6-il,...,n} such that 

l \ ((-cO;a. . )u(b. . ; + c © ) ) . Denote f= A f, k 3,kj( j.kj j.k. j = 1 j,k. 

V= TTt(-cO;a. . )u(b. . ;+oo)3. Then Vnf(A)=0, so f (x) 4 cl m f(A). 
j=l J'kj J'kj Rm 

Applying the theorem given in (6; Exercise 2.3.DJ, we obtain that F6 * £ (X ) . 

Let ocXcK(X) . In [1; p.91 B.J. Ball and Shoji Yokura introduced the 

cardinal number e(oc X)=min 4|F|: F « <£(X) and epX=ocXj. We shall call this 

number the functional weight of oC X. As shown in Cl; Theorem 4.21, if the 

functional weight of oC X is infinite, then it is equal to the weight of ocX. 

It seems natural to call every set generating ocX a functional base for ocX. 

It is worth mentioning that F c C * (X) is a functional base for oc X if and 

only if M p ^ ^ (cf. [2; Definition 1.2 and Theorem 2 . 3 } ) . Our final theorem 

points out that functional bases have some property similar to that of open 

bases for topological spaces. 

Theorea 7. If ocXcK(X ) is of infinite functional weight, then every 
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functional base f o r oc X contains a functional base for oo X of cardinality 
e(ooX). 

Proof. Consider any functional base F f o r ocX. There exists a functio­

nal base H f o r oCX such that |H|=e(ocX). Denote by Q the set of rational num-

2 

bers and let P=£<a,b>6Q :a^bh By Corol lary 2, H is L-separated by F. The­
refore, to each he. H and <a,b>€ P we can assign a finite set F(h;<a,b>) c F 
which L-separates h_1((- oo ;aj) from h^CCbj+e© )). Let G= U 4 F(h;<a,b»:h e 

e H and <a,b>e P}. F i r s t of all, observe that |G| 4s\\\\ and H is L-separated 
by G. Since G c F and, by Corol lary 2, F is L-separated by H, we have that G 
is L-separated by H. Applying Corol lary 2 again, we deduce that G is a func­

tional base f o r oCX and, consequently, |G|=|H|. 

The assumption that e(oc X) is infinite cannot be omitted in the above 

theorem. 

Example 1. Let X=(-l;l), «cX= T-ljlJ and F=-(f1,f2l where 

rO f o r - K x £ 0 , rx for - K x £ 0 , 
fx(x)=< and f2(x)=-i 

I- x f o r 0 c x < l ^ 0 for 0 < x < l . 

Then F is a functional base fo r oC X (cf. [3; Theorem 2.33), e(acX)=l, but 

none of the sets if A, Kf7\ generates OCX. 

Observe that Theorem 4.3 of [1], our Theorem 2 and the proof of Theorem 

7 imply that if oCX, yXeK(X) are of infinite functional weight, ocX^^-X 
and F is a functional base f o r yX, then there exists a set G c F such that 

G e ^ ( X ) , |G|=e(ocX) and ocX-SeGX.£#)<» however, F need not contain any func­

tional base fo r oCX. 
f 

Example 2. Consider the space [0; ox) of ordinal numbers < co, with 
the order topology. Let X=[Q;co,)x{0,l} and 

F= if g C* (Xhf/3 ( <co 1,0» =*- fn ( <c*>1,l»?. Since F* separates points of 

PX, it follows from [3; Theorem 2.3] that F is a functional base fo r /3X. No 

function from F is continuously extendable to the one-point compactification 

of X; hence, no subset of F is a functional base for the one-point compacti­

fication of X. 
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