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Let L be a lattice and V(L) the poset of its prime ideals not containing the trivial prime 

ideals L and 0. The poset V(L) is ordered by the set theoretical inclusion C . Nachbin has 
proved ( see [1, Theorem 11.1.22]) that a distributive lattice L with 1 ^ 0 is a Boolean lattice 
if and only if the poset V(L) is unordered. As well known, a lattice is distributive if and only 

if its every ideal is an intersection of all prime ideals containing it. By combining these two 
results, we obtain a theorem, the generalization of which we will prove for graphs-

Theorem 1. A laiiice L wiih 1 ^ 0 is a Boolean laiiice if ani only if iht following iwo 

coniiiions hoii: 

(i) every Heal of L is an inierseciion of all prime Heals containing ii; 

(ii) the posei V(L) is unorierei. 

The graphs satisfying the analogies of the conditions (i) and (ii) above constitute the 
class of Boolean graphs, as it will be shown in Theorem 2. We introduce first some graph 
theoretic concepts. 

The graphs G = (V,X) considered here are finite, undirected and connected without 
loops and multiple lines. The set V is the set of points of G and X its set of lines. The graph 
theoretic concept corresponding to convex sublattices ( and thus to ideals, too ), is the convex 
of a graph. A pointset A C V is a convex of G, if A contains all points on every shortest a — b 

path ( a - 6 geodesic ) for any pair a, b € A. The least convex containing a pointset A C V is 
denoted by [A] = f){G | C is a convex of G and A C C}\ [a, b] is the brief substitute for the 
complete expression [{a, 6}]. The sets V and 0 are trivial convexes. A convex B is prime if 

also the set V\B is a convex of G; the convexes V and 0 are trivial prime convexes of G. We 
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denote by V(G) the poset of nontrivial prime convcxes of a graph G; this poset is ordered 

by the set theoretical inclusion. A graph G is a prime convex intersection graph ( or has 

the prime convex intersection property ), if its every convex is the intersection of all prime 

convexes containing it. 

A graph G = (V>K) is a Boolean graph if the following conditions (A), (B) and (C) 

hold: 

(A) Let 6 be an arbitrary point of V. An order relation •< can be defined on the set V such 
that 6 is the least element with respect to •< and the Hasse diagram graph IT of the 
ordered set (V, X) is isomorphic to G under the mapping / : f(v) = v for every v € V. 

(B) The ordered set (V, -<) of (A) is a lattice If satisfying the Jordan-Holder chain condition 

( i.e. a graded lattice ). 

(C) Any two lattices IIi and II2 derived from G in (A) are order isomorphic. 

In [2] the graphs satisfying (A) and (B) were called highly symmetric covering graphs 
of finite lattices (or briefly, highly symmetric graphs). Such graphs are single cycles of even 
length, the covering graphs of finite Boolean lattices, and the products of these two kinds of 

graphs. The main result of this note is the following theorem which, by Theorem 1, motivates 
the name Boolean graphs. 

Theorem 2. A graph G is a Boolean graph if and only if the following two conditions 

hold: 

(i) G is a prime convex intersection graph; 

(ii) if P ^ V, 0 is a prime convex of G, the graphs G(P) and G(V\P) induced by P and 

V\P, respectively, are isomorphic under the mapping <p : G(P) —• G(V\P) such thai if 

x € P and y G V\P are adjacent in G, then <p(x) = y. 

Let G be a graph satisfying the conditions (i) and (ii) 

of Theorem 2, and consider the condition (ii). If P 

and Q are prime convexes of G such that P C Q and 

P,Q ± VX ^en | P |< | Q |= | V\Q |< V\P |, and be­

cause | P |= | V\P |, we obtain the equality | P |= | Q |, 
which implies that P = Q. Hence the poset V(G) is 
unordered, and thus the analogy of the condition (ii) 

of Theorem 1 is contained in (ii) of Theorem 2. In fact, 
the condition (ii) of Theorem 2 holds for Boolean lat­
tices, but it is not necessary to present it in so strong 
form as above. On the other hand, one cannot sub­

stitute (ii) in Theorem 2 by the condition nV(G) 

is unordered". A counterexample G is given in the 
figure: this graph has the prime convex intersection 
property and its V(G) is unordered, but by putting 
the point a the least element, one cannot obtain a lat­
tice. Note that in this graph | P \±\ V\P | for all 

prime convexes P. 
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One can easily see that a graph J is a prime convex intersection graph if and only if 
there is for any pair C,x, C is a nonempty convex of J and x £ C a point of J, a prime 
convex P of J separating C and x i.e., C C P and x £ P. In the proof of theorem 2 we need 
a lemma, which we present first. 

Lemma 1. The convex [a, 6] of a prime convex inierseciion graph G consists of points 

on o-6 geodesies for every pair a, 6 € V. 

Proof. Let a and 6 be a pair of points such that the convex [a, 6] contains at least one 

point t; which is not on any a—6 geodesic. This implies the existence of two points x and z, x is 

on an a —6 geodesic and z is on another a —6 geodesic, such that no point X\,..., xm of an x — z 

geodesic x = XQ, X \ , ..., xm, xm+\ = z is on any a — 6 geodesic. Clearly a and 6 can be chosen 

such that every convex [u, w] with d(u, w) < d(a, 6) is the set of all points on u — w geodesies. 

We may assume further that d(a, 6) > d(x, 6), d(z, 6) > d(x, b), and that x and z are as near to 
6 as possible. Let us consider the point x\. Because d(a, x) < d(a, 6), the convex [a, x] consists 

of points on a — x geodesies, and thus a?i $_ [a, x]. The prime convex intersection property of 

G implies now the existence of a prime convex P separating [a, x] and x\ : [a, x] C P and 

x\ € V\P. Because a:i € [a,6], we have a?i,6 € P. Let x = 60,6162,...,6*-. 1,6* = 6 be the 

points of an x — 6 geodesic. Because x and z are as near to 6 as possible, a*(2,6) > d(a:,6) 

and d(x\,z) > d(x\,x) = 1, then a 6,- — x\ geodesic goes over x, % = l,...,k. This implies 

that there is no prime convex separating [a, a:] and X\, which is a contradiction. Thus the 

assumption is false and the convex [a, 6] consists of points on a — b geodesies for every pair 

a, 6 € V, and the lemma follows. 

Proof of Theorem 2. Assume that G is a Boolean graph. We should show that G 
has the properties (i) and (ii) of the theorem. 

(i) Let C T£ V, 0 be a convex of G. There exists a line xy with x £ C and y € V\C. 

Because G is a Boolean graph, we can make up a lattice Ly with y as the least and ly as 

the greatest element. Because ly is the unique point for y such that [y, ly] = V [2, Thm. 

6], the point y is not on any x — ly geodesic, and thus y $. [x, ly] and [x, \y] £ V. Consider 

an arbitrary point c of C. Because V — [y, ly], the point c is on some y — \y geodesic, and 

because c,x € C and y & C, the point y does not locate on any x — c geodesic. Assume that 

c is not on any ly — x geodesic. This implies that no ly — c — y geodesic contains the point 

x. Thus d(c, y) < d(c, x) + 1. On the other hand, all points of any c — x geodesic belong to 

C and cannot contain the point y, whence d(c, x) < d(c, y) + 1. These inequalities imply that 

d(c, x) < d(c, y) and d(c, x) < d(c, y), whence d(c, x) = d(c, y). Because d(x, ?/) = 1, the points 

of c — y and c — x geodesies and the line xy contain now an odd cycle, which is absurd by [2]. 

Hence the assumption is false, and the point c is on some ly — x geodesic. The point c € C 

was an arbitrary point of C, and thus the convex C is contained in the convex [ly, x] ^ V, 0. 

Let C ^ V, 0 be a a convex, q a point, q £ C, and xy (x € C, y € 1 r \C) a line on a 
q — c path giving the minimum value to the expression {d(q, c) | c € C}. Consider now the 
convex [a?, ly] constructed above. We saw that C C [x, ly] and y & [x, ly]. If q € [x, ly]t then 
also y € [*, ly], because y is on a q — x geodesic; a contradiction. Hence q $. [x, ly], and thus 
[x, ly] is a convex separating C and g. The prime convex intersection property of G follows if 
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[ar, l f ] is a prime convex. 

Because (7 is a Boolean graph, there is, by [2], a unique point ti such that [utx] = V. 

Then the point 1„ is on some u — x geodesic, and because [a?, l f ] ^ Vt we have ti # [*,l f] . 
Because, by [2], every point of the convex [a?, l f ] is on some x - l f geodesic, there is a point 

z of a u - x geodesic such that z & [ly,x] and z and ly are adjacent. Obviously, ti = zt 

and because y is on ti — a; geodesic and d(xt y) = 1, every point p ^ x adjacent to y is on a 
u — y geodesic. By the symmetry, we see that every point r ^ u adjacent to l f is on a \y — x 

geodesic But then [ l f , x] (1 [ti, y] = 0 and [ly,x] U [ti, y] = V, whence [ly, a;] is prime, and the 
prime convex itersection property follows. 

Let P ^ V, 0 be a prime convex of G and V = [vt u] with v € P. Because P «fc Vt then 
ti % P, and by [2], the point ti is unique. Thus there is for any point p € P a unique point 

q € V\P such that [ptq] = V, whence | P |< | V \ P | . The set V\P ^ Vt 0 is also a prime 

convex, and by applying the proof above to V\P we obtain | V\P |< | P | . Accordingly, 

| P |=r| V\P |, for every prime convex P £ V,0 of G, and thus V{G) is unordered. As in the 
proof of (i) above, the prime convex P -fi Vt 0 is contained in another prime convex [x , l f ] . 
Because | V | = 2 | P | = 2 | [ x , l J | , we see that P = [xt ly ], and thus every prime convex 
P ^ Vt 0 has an expression P = [a, 6] for some a, 6 € P. 

(ii) Let P -j-= V,0 be a prime convex. As in the proof of (i), we see that P = [a!, l t ] and 

V\P =- [yt k]t where kly and yx are two lines of G. On the other hand, G = [yt l9] = [xt k]t and 

by the condition (C), the lattices Hi (where y is the least and l f the greatest element) and II2 

(where x is the least and k the greatest element) are order isomorphic. This order isomorphism 

implies now that the sublattices of [yt k] and [xt lv] are also order isomorphic, and because, 
by [2J> th* Hasse diagram graph of Hi contains exactly the lines of G, this latter isomorphism 

implies" the Isomorphism of the graphs G([a?, !„]) = G{P) and G{[yt k]) = G(V\P). By the 
symmetry (every two lattices IIi and II2 are order isomorphic), one can always construct an 
isomorphism satisfying the demands of the theorem, and the first part of the theorem follows. 

Conversely, let G be a graph satisfying the conditions (i) and (ii) of the theorem. By [2, 
Thm. 6], a graph G is a symmetric covering graph of a finite meetsemilattice if 

(1) the relation ti € [«»y] implies that u is on an x — y geodesic in G; 

(2) every cycle of G is even; 

(3) there is for any three points ptxty E V a. point v € V such that the equation [p,x] f) 

b> y] = [i°> *) h o W s-
By [2, Thm. 6], G is a graph satisfying the conditions (A) and (B) of Boolean graphs if G 
satisfies the conditions (l)-(4), where 

(4) every meetsemilattice derived from G is a lattice. 

We will show that the conditions (1)~(4) and (C) hold for Gt which proves the converse part 
of the theorem. The condition (1) holds by Lemma 1, and so we concentrate on (2)-(4) and 

(C). 

(2) Assume that G contains an odd cycle. This implies that G also contains a minimal 
odd cycle Q : if x and y are two arbitrary points of Q, then one x — y geodesic goes along the 
arc of Q. Trivially, Q contains at least three points xty and z with xyt yz € X. The points 
x and y constitute a convex not containing the point z, and thus there is a prime convex P 
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separating {x, y} and z: {x,y} C P and z £ V\P. Because Q is a cycle and zy € X, there is 
a line vu in Q such that the z - u geodesic of Q is contained in V\P and the y — v geodesic 
of Q is contained in P. Because Q is a minimal odd cycle, d(y, v) ^ d(u,z). This is absurd 

because, by the isomorphism <p of (ii), <p(y) = z and <p(v) = u. Hence G cannot contain odd 

cycles and thus (2) holds for G. 

(3) Choose an arbitrary point p of G. If (3) holds for all pairs x, y £ V, we are done, and 

hence we assume that there exists at least one pair x,y such that at least two points z\ and 

z2 are needed to generate the convex [p, x] fl [p, y] (i.e. [p, z\, z2] C [p, x] fl [p, y] and there is no 
point w such that [p, *,-] C [p, w] C [p, a?] O [p, y], t = 1,2). If there are several triples p, x, y, 
we choose that one for which the sum d(x,p) 4- d(y, p) is the least. Let a ^ y be a point of a 
y—z\—p geodesic closest to y. By the choice of the pair x, y, z2 is not on any a — p geodesic, 
and thus z2 £ [a,p]. Because G is a prime convex intersection graph, there is a prime convex 

P containing [a,p] but not z2. If y £ P, then z2 as a point of a y — p geodesic belongs to P, 
which is absurd. Similarly we see that x £ P. Accordingly, x,y £ V\P, and because we can 
substitute z2 by z\, we see that n o i - y geodesic contains either z\ or z2. 

Let ki be a point on a y — *,- — p geodesic adjacent to p, t = 1,2. The relation z\ # [y, k2] 
holds, because otherwise p can be substituted by k2 and we obtain a triple k2,x,y with 
d(k2, x) -f- d(k2, y) < d(p, x) 4- d(p, y), which is a contradiction. The prime convex intersection 
property of G implies the existence of a prime convex P2 containing [y, k2] and not *i. If 

p £ P2, then z\ as apoint of a y — p geodesic also belongs to P2, which is absurd, and thus 
p € V\P2. If x £ V\P2, then z2 as a point of an x - p geodsic belongs to V\P2, which 
is a contradiction. Hence x £ P2. Accordingly, [x,y, k2] C P2 and z\,p £ V\P2. Let a, 
be a point of a y — Z{ — p geodesic adjacent to y and 6,- a point of an x — Z{ — p geodesic 
adjacent to x, i = 1,2. If b\ £ P2, then either d(b\,k2) = d(b\,p) and G contains an odd 

cycle, or a&i — z\ — p — k2 path is a 6i — k2 geodesic and z\ £ P2. Both alternatives lead to a 
contradiction, whence &i € V\P2j similarly we see that a\ £ V\P2. 

By repeating the consideration above for [y, k\], we obtain a prime com ex Pi containing 
x, y and k\, and its counterpart, the convex V\Pi, contains the points a2,b2 and p. If d(x, z\) = 
d(b2, z2), then d(x,z2) ^ d(b\,z\) and by the isomorphism of (ii), the triple h\,a\,p does not 
satisfy (3) although d(b\,p) -\-d(a\,p) < d(x,p) -I- d(y,p). A similar contradiction is obtained 

also in the case d(x, z\) =fi d(b2, z2), and thus the original assumption is false. Hence (3) holds 
for every triple p,x,y £ V. 

Let p be an arbitrary point of G. As mentioned above, the conditions (I )-(3) imply that 
G can be translated into a meetsemilattice Sp with p as its least element and with the order 
relation: a < b <=> [p»<*] C [p, 6]. Now we must show that every meetsemilattice Sp is a 
lattice Lp. 

(4) Let x and y be two maximal elements of Sp without an upper bound. We choose from 

all pairs x,yoiSp the pair, for which the sum d(xAy, x)-\-d(xAy, y) is the greatest. There is a 
cycle containing y and p; if not, then the cutline of G divides G into two pieces the separation 
of which by means of prime convexes produces certainly two nonisomorphic subgraphs. Let 
Q be a minimal cycle containing y and p and R a minimal cycle containing x and p. Note 
that Q ^ R, because the element x Ay exists in Sp. Assume that the number of points n(Q) 
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satisfies the relation: n(Q) < n(R). Let an xAy-y geodesic be x A y = 20, *i. *2> •••, *m = y. 
Because n(Q) < n(R), we have d(x Ay}y) < d(x Ay> x). Let P be a prime convex containing 
p, x and a? A y but not z\. Then, by the isomorphism of (ii), there is in V\P the image 
u = <p(x), and clearly x Au = x Ay, d(x A yy u) + d(x Ay,x) > rf(a; Aj / , 2 )+ ti(a, A y, y) and 
there is no upper bound for x and 11. This is a contradiction, and thus the property (4) holds 
for G. 

Let q be a point of G, k -̂  q a point adjacent to g, and P a prime convex separating g 
and k (q € P and k # P). Then the isomorphism of (ii) guarantees the order isomorphism 
between the lattices Lq and I*, and thus every two lattices La and Li derived from G are 
order isomorphic, if a and 6 are adjacent. Let the least element of II! in (ii) be a, that of If2 

be 6, and let a = c(1), c(2), ...^c(m) = 6 be an a — b geodesic in G. By the observation above, 
Lc(,) is order isomorphic to Lc(,-.fi) for t = 1,..., m - 1, and thus H\ = La is order isomorphic 
to Lb = II2. This completes the proof. 

Every Boolean graph is a highly symmetric graph as the conditions (A) and (B) show. 
An open problem is, whether the condition (C) is dependent of (A) and (B) (i.e. is every 
highly symmetric graph a Boolean graph)? We have not yet found any highly symmetric 
graph without the Boolean property (C). 
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