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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,2 (1988)

BOUNDARY VALUE PROBLEMS
FOR EVOLUTION INCLUSIONS

Nikolaos S. PAPAGEORGIOU X)» XX)

Abstract: This paper examines boundary value problems for evolutivbn
inclusions, with nonlinear boundary conditions. Two existence theorems are
proved. One for convex multivalued perturbations and the other for noncon-
vex ones. Finally an example from partial differential equations is presen-
ted.

words: Evolution operator, measurable multifunction, upper semi-
continuity, mild solution, Radstrom embedding.

Classification: 35K35

1) Introduction. In this paper we study boundary value problems for e-
volution inclusions. Our work was motivated by the papers of Anichini [1],
Kartsatos [6]1 and Zecca-Zezza [13]. Anichini [1] considered quasilinear dif-
ferential equations in R", with nonlinear boundary conditions and using a fi-
xed point theorem due to Eilenberg-Montgomery, established the existence of
solutions. Kartsatos [6] also considers boundary value problems for R"-valued
differential equations, but over an unbounded time interval. Finally Zecca-
Zezza [13), extend the work of Kartsatos to differential equations in Banach
spaces.

In this note, the differential inclusion is defined on a compact time
interval and this allows us to weaken considerably the hypotheses on the ori-
entor field F(t,x). Furthermore, to the contrary to Zecca-Zezza [13], here
the linear operator is in general unbounded, covering this way the very im-
portant case of partial differential operators. Also we establish the exis-
tence of solutions for problems with nonconvex multivalued perturbations, a
case which is not addressed in the paper of Zecca-Zezza [131. Finally we
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present an application to partial differential equations.

2) Preliminaries. Let (1, be a measurable space and X a separable
Banach space. Throughout this paper we shall be using the following notations:

Pf(c)(x)= {ASX:nonempty, closed, (convex)} and
P(u)k(c)(x)= {A &X:nonempty, (weakly-)compact, (convex)} .

A multifunction F: QL—» Pf(X) is said to be measurable, if for all z eX

@ —»d(z,F(w))=inf 4 Rz-x0: x ¢ F(w)} is measurable. Other equivalent defi—
nitions of measurablhty of multifunctions can be found in Wagner [12]. By S
we denote the set of L (X) selectors of F(+) i.e. 51 {fe R X):f(w) 6

€ F(w)y.—u e.}. This set may be empty. It is nonenpty if and only if

w —>inf § ixll:x eF(w)} belongs in L1 Usmg S we can define a set valued
integral for F(e), by setting f F= § f f:fe SF .

Next let Y, Z be Hausdorff topological spaces. Let F:Y —» ZZ\ {0} be a
multifunction. We say that F(-) is upper semicontinuous (u.s.c.) (resp. lower
semicontinuous (1.s.c.)), if for all USZ open F'(U)={ye Y:F(y)€U} is open
in Y (resp. F (U)=4{yeY:F(y)nU @} is open in Y).

3) Existence result: convex case. Let T= [0,b]l and X a separable Banach
space. The multivalued boundary value problem under consideration is the fol-
lowing:

(%) )'((t)SA(t)x(t)+F(t,x(t))}
Lx=Mx

We shall assume that the family of linear operators {A(t):t € T§ genera-
tes a strongly continuous evolution operator S(t,s), oé4s#t4b. So by a so-
lution of (*), we shall understand a mild solution. Thus we say that x(s) e
& C(T,X) solves (*¥) if and only if

x(t)=5(t,0)x(0)+ f:s(t,s)f(s)ds, for some fesé("x(_)) and Lx=Mx.

The full set of hypotheses on the data of the problem (* ) is the follo-
wing:
H(A): The family {A(t):t e(0,bl}, generates a strongly continuous evolution
operator S: A ={0&s &t&b} —» &(X) which is compact for t-s>0.
H(F): F:TxX —thkc(X) is a multifunction s.t.

(1) (t,x) —»F(t,x) is measurable,

(2) x—»F(t,x) is u.s.c. from X into X,
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lim 1 ]‘ sup |F(t,x)|dt=0 .
n-,oo

H(L): L:C(T,X) —»=X is continuous, linear. Also if V:C(T,X) —*»C(T,X) is de-

fined by (Vx)(e)=x(e)-S(e O)x(O) then there exists K: X—»ker V continuous,

linear s.t. (I-L K)(Mx-L IO S(t,s)f(s)ds)=0 for all fsSF(. x(»)) and all

x(»)&C(T,X), w1th L “-’ker v

H(M): M:C(T,X) —»X is a generally nonlinear, completely continuous operator
s.t.

L1
I SO

Having these hypotheses, we can now state our first existence result con-
cerning (*).

Theorem 1: If the hypotheses H(A), H(F), H(L) and H(M) hold,
then (*) admits a mild solution.

Proof: For some x e ker Lo consider the multifunction R:C(T,X) —»
— 28T X)\{ﬂ} defmed by:
ROO= £y € CCT,X) sy (D)=x ()+kMx-KL [ S(t,9)8(s)ds+ [ 5(t,9)8(s)ds, te T,

1
FeSeC x(ent-
Because of the hypothesis H(L), it is easy to check that a fixed point
of R(+) is the desired mild solution of (*).
From the definition of R( ) and the convexity of the values of F(e,s)

(and so of Sé(_ x(-)))’ we see that R( e ) is convex valued. We claim that the
’
values of R( « ) are also closed. So let yncR(x), Yo—>vy in C(T,X). We have:

v, (D)= (D)+kmx-KL J§ 5(t,9)1 (s)dss [ 5,901, (s)ds

with £ ‘SF(- x(+))* But from Proposition 3.1 of [9]1, we know that SF(- x())
is weakly conpact in L (X) and by the Eberlein-Smulian theorem is weakly se-
quentially compact. Thus by passing to a subsequence if necessary, we may as-
sume that tn--io ché(. ,x(s)) in Ll(X). Then exploiting the fact that a con-
tinuous, linear operator is also weakly continuous and that

It sct,01, (s)ds 2 [ s(t,9)1(s)0s, we get that
V() o x (Dkmx-KL [T S(t,9)2(s)ds+ [§ 5(t,5)2(s)ds,t €T and
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fosF(, x(eyy” SO V(DX (£ MX-KL JE stt,)ece)iss [ 5(t,9)2(s)ds b
- y €R(x). Hence we conclude R(x)tP o(CCT,X)).

Now we shall show that R(s) has a closed graph (GrR= § (x,y) € C(T,X)x
C(T,X):y «R(x) § = graph of R(+)). To this end let (x_,y.) €GIR, (x
—> (x,y) in C(T,X)xC(T,X). Then we have:

Y (£)=x (£)+KMx KL fg S(t,9)2,(s)ds+ [T 5(t,8)f, (s)ds, with £ e Sé(.,x )"
Let G(t)=conv U F(t,x (t)). Since by the hypothesis H(F)(2),F(t,) i: u.s.c.

nZl
from X into X W’ it maps compact sets in X into w-compact sets. Therefore

n’yn)_‘

ll rQx, ZU} is w-compact .and by the Krein-Smulian theorem we have that
m'mv g F(t, X (t)) is w-compact. So for all teT, G(t)sl’wk (X).Finally from
1

the hypothesis H(F)(3), we see that G( » ) is integrably bounded (i.e.

t —» |6(t)|=sup §UzN:z 6 G(t)}e L ) Hence once again Proposition 3.1 of [9]
tells us that Sé is w-compact in L (X). So by passing to a subsequence if ne-
cessary, we may assume that fn X £ in Ll(X). From Theorem 3.1 of 1101, we
have that:

£(t) & Gonv w-Tim £ (t) &conv w-1im F(t,x ) 8 F(t,x (1)) ¢ .e.,
the last inclusion following from the hypothesis H(F)(2). So fesé.(. x(+))"

Also note that xo(t)+KMxn—KLf[§ S(t,s)fn(s)ds+f[t) S(t,s)fn(s)ds converges we-
akly to

x(D+MKL [ SCt,9)8(s)ds+ [ & S(t,9)E(s)ds=y(1) =b y & R(x) = GIR
is closed.

Next, we claim that there exists r>0 s.t. for Ul xi_ &r =& |R(x)|=
=sup £ byl :y € R(x)} 4 r. Suppose not. Then,lw? can find x lnASC(T X) s.t.
R(x_)
n
llxnllwin and |R(xn)|>n. So we have 1< — . But note that for y_ e

&R(x) we have:
By (Ol < Bx B+ Ukwe b+ Bk JE sct,90f ()ds R+l [T sct,9)8 (s)asl

& Ux o +UKlelUmc K+ Ukk-N jg IF(s,x,(s))|ds+N [§ |F(s,x (s))]ds
where l S(t,s)ll & N. So we have:

RO Uxgl l\ -l F(s,x_(s)]
22 L KU — " + NCIKLB D) [} |—x—as
ol Mx U IF(s,x (s)]
tix m+l l llX +N(lKL|+1)ft——ds.
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Using the hypotheses H(F)(3) and H(M), as well as the above inequality,
R(x.)

we get that 1%lim
n-boo
B,= {x&C(T,X): hxll, frk.

Now we claim that R(B ) is compact in C(T,X). First note that for every
teT, we have:

R(BL) (1) S x_ (£)+KM(B )KL j; 5(t,5)P(s)ds+ j't S(t,5)P(s)ds,

=0, a contradiction. So indeed R:B —-’P (Br)’ where

where P(s)= 1x e X: I x l =sup(|F(s,x)|: UxN & r)=u (s)}. But recall that M(- )
is completely continuous, So M(B ) is compact —D_M(B_') is compact. Also sin-
ce by the hypothesis H(A), S(t, s) is compact for t-s >0 we have that
S(t,s)P(s) e Pkc(x) and clearly s — S(t,s)P(s) is measurable and integrably
bounded. Hence using the Radstrom embedding theorem (see Hiai-Umegaki {51,
Theorem 4.5), we have that j; S(t,s)P(s)dsePkc(X) (note that in the above
mentioned result of Hiai-Umegaki [5], the R.N.P.-hypothesis on X is superflu-
ous, since by the corollary to Proposition 3.1 of [9], ]‘; S(t,s)P(s)ds is
closed). So for all teT, R(B)(t) &P (X). Now, let t’, teT, t<t’. Fory g
. R(Br), we have:

uy(t')—y(t)usus(t',o)xo-S(t,O)xol +IKLU-R j;' S(t",s)f(s)ds-

- [‘ S(t,s)f(s)ds |l + 1l ft’S(t',s)f(s)ds-ft S(t,s)f(s)ds.
0 0 0

Since S(t,s) is a strongly continuous evolution operator, given € >0,
there exists d'l(e)>o s.t. if Wt'-t n<d'1, uS(t',O)xo-s(t,o)x0u< ©/3.
Also note that:

t . t t"é .
U [ s(t’,)f(s)ds- jo S(t,s)f(s)ds)lélfﬂ (S(t",8)£(s)-5(t,8)£(s)ds || +
gt (S(t",8)-5(t, s)2(e)dss [ 5", 91208 .

t-d, t
Because of H(A), from Proposition 2.1 of [11], we have that t—» S(t,s) is

continuous in the uniform operator topology, uniformly in s, for t-s bounded
away from 0. So by choosing d',(&)>0 appropriately small, we have:

lj 2(5(1: ,5)-5(t,8))£(s)ds | + u; (S(t',S)'S(t,S))f(S)dS|+

uj S(t ,s)f(s)dsléj 2llS(t ,8)-5(t, s)lu (s)ds+2N jt-‘ ut(s)ds+
2
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+N It u (s)ds < &/3e , where o =max(1, LKL . Thus for g'=min( &), &), we
t

have for |t-t|<d

fy(t)-y(t)h < & for all y(«)&R(B_) =% R(B.) is equicontinuous.

Invoking the Arzela-Ascoli theorem, we deduce that mis compact in
C(T,X). Since R(¢) has a closed graph and compact range when restricted to Br’
from Theorem 7.1.16 of Klein-Thompson L7) R(*) is u.s.c. and so we can apply
the Kakutani-KyFan fixed point theorem to get str s.t. x€R(x). As we alre-
ady indicated, x(+) is a mild solution of (*). Q.E.D.

Remark. If Lo has a continuous, linear inverse, then H(L) is satisfied.

4) Existence result: nonconvex case. We also have an existence result
for the case where the multivalued perturbation F(t,x) is nonconvex valued.
In this case the hypothesis about F(»,s) takes the following form:

H(F) s F:TxX —»P:(X) is a multifunction s.t.
(1) (t,x)—» F(t,x) is measurable,
(2) x——bF(t,x) is 1.s.c. from X into X,

3) hm I sup |F(t,x)|dt=0.

Theorem 2: If the hypotheses H(A), H(F) ", H(L), H(M) hold with M linear,
¢ then (*) admits a mild solution.

Proof: We have already seen in the proof of Theorem 1 that R(.) maps
the ball B, into itself and furthermore W=conv R(B ) is compact in C(T,X).

Let H:W —»P (L (X)) be the multifunction defined by H(x)= SF( x(e)) Let x —»
— x in C(T, X) Then because of the hypotheses H(F) (1) and (3) we can apply
Theorem 4.1 of [10] and get that H(x)es-lim H(x,, ) = H(+) is 1l.s.c. (see De-
lahaye-Denel £31). Apply Fryszkowski's selectmn theorem [4], to get h: N —
~—-L (X) continuous s.t. h(x) €« H(x), for all xe W. Then consider the follow-
ing problem:

%(t)=A(t)x(t)+h(y)(t)
(€ B1¢D) &

Lx=Mx

Let Q-8 —> Pfc(W) be ‘the multifunction defined by Q(y)= {Set of mild solutions
of (*)(y)}. It has nonempty values by Theorem 1. Let (y»%,)8 6 Q s.t.
(Ypypxy) —> (y,%) in C(T,X)XC(T,X). We have: xn(t)=5(t,0)xn(0)+

+ f; S(t,s)h(yn)(s)ds, an=Mxn. Passing to the 1imit as n—» e and exploiting

the continuity of h(s), we get that:
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x(t)=5(t,0)x(0)+ j‘; S(t,s)h(y)(s)ds, Lx=Mx = x¢Qy).
wp GrQ is closed in C(T,X)xC(T,X).

Since W is compact in C(T,X), we conclude that Q(e) is u.s.c. Apply the

Kakutani-KyFan fixed point to get y € Q(y). Clearly y(s) solves (*). Q.E.D.

5) Application:

We consider the following multivalued boundary value
problem.

0 -
l’%’ﬂ S k2=1 Blyk p(y) alyk uCt,y)+£(t,y,u(t,y)) on TxG

(k=) u(t,y)=0 (t,y) e Tx 3G

u(0,y)-u(b,y)= IGI ® g(t,y,z,ult,2))dt dz
0

.

Here GER" is an open, bounded domain with a smooth boundary @&G. Also
T=[0,b). We assume that g:TxGxGxR =R is a function satisfying the Carathé-

odory conditions, i.e. z —» g(t,y,z,r) is measurable and r —» g(t,y,z,r) is
continuous. Moreover for each k >0 there exist measurable functions
B :TXGXG —» R, and 4 :TxGxGxR—» R s.t.

\g(t,y,Z,l‘)iﬂk(t,y,z) for |r|&k and féjg[sk(t,y,z)dt dQMr and

\g(t,y,z,r)—g(t,y',z,r)\ g"rk(t)Y$y'yZ) for ‘[’\‘k,

lim

. Ib?k(t,y,y',z)dt dz=0 uniformly in y .
y-»y G0

Finally, there exist pa1 and 3<2 s.t. |g(t,y,z,r)| &p(1+|x|®). Also
assume that f:TxGxR-—-PfC(R) is a multifunction s.t.

(a) (t,y)—» £(t,y,r) is measurable,

(b) r —»f£(t,y,r) is d-continuous (i.e. for every zR r—>
—» d(z,£(t,y,r)), is continuous),

(e) |£(t,y,r)| €k()(1+|r|*) D<ec<l.
Set X=L2(G), D(A):wg(g) and on D(A) consider the operator
n
= E -2 p(y) - uy).
kel ¥y

So A(e) is densely defined and it is well known (see for example Martin [81)
that it generates a compact semigroup S(t), teT.

Also let F:TxX—» Pfc(x) be defined by F(t,u)=S%(t’.’u(.)). Clearly be-
cause of the reflexivity of X=L2(G), F(t'U)"Pukc(X)‘ Furthermore note that
for all veX we have d(v,F(t,u))= [ d(v(2),£(t,z,u(z))dz. From the hypotheses

F
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on £(»,*,*), (t,u) = d(v,F(t,u)) is measurable in t, continuous in u, hence
jointly measurable and so (t,u) —» F(t,u) is measurable. Also from Theorem
4.2 of {103, we have that F(t,e) is u.s.c. from X into X, Next let M:C(T,X)-
—» X be defined by (Mu)(y)= f fb g(t,y,z,u(t)(2))dt dz From Proposition

4.2, p. 175 of Martin [8), we have that M(+) is completely continuous. Also
using the growth condition on g, we have
Mu

2
uuu-.o g, X)

Let L:C(T,X) —» X be defined by Lu=u(0, -)-u(b «). Clearly this is conti-
nuous, 11near Furthermore the only solution of d=Au, u(U) u(b), is u=0.
Thus if Lx—L(S( ), T:ix — X is continuous, linear and Lx‘(Id—S(b))x=0 has
zero as its only solution. So t-l exists (Fredholm alternative) =% H(L) is
satisfied. So if we rewrite (**) as the following evolution eguation

(*‘)' L.I(t) .AU(t)"‘F(t,U(t)),
Lu=Mu,

we see that all hypotheses of Theorem 1 are satisfied and so we conclude the
existence of a solution belonging in C(T,L‘(G)).

It is clear that the general existence results proved here, can give us
periodic solutions for the problems of evolution inclusions, extending this
way the work of Aubin-Cellina [2].
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