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COMHENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (19B8) 

MORREY-CAMPANATO SPACES ON MANIFOLDS 

M. GEISLER 

Abstract; The paper describes Morrey-Campanato spaces on compact mani­
folds. 

Keywords; Function spaces, manifolds. 

Classification; 46E35 

1 . Introduction and notations. Usually, Morrey-Campanato spaces are de­

fined on bounded domains of the Euclidean n-space R (see [ 2 , 3, 4 ] ) . Our aim 

is to extend two scales of spaces to more general underlying structures. Good 

candidates are closed Riemannian or - simpler - compact manifolds. 

Let i l c R be a bounded domain. For 0 < f> , <? £oo , 0 4 ^ < O P , 1£ p< 

<oo , x neR n set o n 

y x o ) = - t x e R n | | x - x o | < p î , - a ? ( x 0 ) = I l л B p ( x o ) , 

,v?•^гŤvv/yv'<'<>đ'<• 

U n«û 
0 

Hereby, for sets A c R , |A| denotes the Lebesgue measure and, for xsR , |x| 

denotes the Euclidean norm. 

For handling on a manifold N there are corresponding counterparts. Let 

d(P,Q) denote the geodesic distance of P,Q*N. On complete Riemannian mani­

folds d(P,Q) coincides with the length of a minimizing geodesic, joining P 

and Q, according to the Hopf-Rinow-theorem. The ball B^(P)= «CQcN|d(P,Q)<£*{ 

is open in the Hausdorff topology of N. Assume N to be orientable. Then we 

can integrate with respect to the standard n-form *̂  = VIdet g.. |dx A...Adx n. 

Here g.. are the components of the metric g in local coordinates x ,...,x . 

Set 
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|A|= j ^ fqr measurable AcN. 

f p '?= l i f ter ^ p ) " 1 ' 

A stands for the closure of A (in a manifold N). We omit cf if <f-ao . 

2. Preliminaries: Morrey-Campanato spaces on domains. For sake of re­

dundance we recall first some usual basic material. 

Definition 0. Let L (XL) be the Lebesgue space on a bounded domain ilc 

M 

c R ,0 ,«ft ,p as above. The Morrey space L A(it) and the Campanato space 
p 

Vl ~(SL) are defined as 
p,**i 

L ^ U l ) - -.f*Lp(IX)| « f I L J ^ J D I :-!" sup <?-^ X o ) | fCx) |P dx] 1 / p < - > • * 

and xnc ft 

Lj>3k(a)-^f*Lp(a)| llf|L^(A)H := lf|Lp(J..)»+ [f1p > a i i<«.? . 

Theorem o. Let i l , p , . ^ be as above. The following assertions hold: 
M r 

(i) L_. *(il), L„ ^( .0.) are Banach spaces. The following imbeddings are 
P»«A P>A 

continuous: 

L J > V ( A ) C L J > A ( A ) for 14p4q<oo, - ^ Q < - ^ [ 1 • 

M 
(ii) For 0 6 A < n and SL with the Lipschitz boundary L„ a(il) and 

r P»<A 
L *(il) are isomorphic, 
P»A 

(i1-) L« -X&) is isomorphic to L ^ ( A ) . There are il with L^ n(il) £ p,n w p,n ~ 

(iv) Let n <A-»n+p, oc = -^~ . If il has a Lipschitz boundary then 

L„ *(il) is isomorphic to C*(il), the usual Holder space with the norm 
P,JI 

l f |C*(£) t t=supJf (x) |+ sup M i h ^ l i . 
xe.5. x,y«Jl |x-y| 

x*y 
For the proof see [3, 41. 

M r 
The spaces L *(il) and L *( .&.) characterize local properties. In fact, 

p,A p,A 
we have the following 
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Proposition 1. Let H,il.'cR , i=l,...,m, be bounded domains, 
_ m i n 
il= U i l ' i l . = i } r \ i l ' <T> 0. Then 

i=l x l x 

(i) Rf |L (Jl)H + [f l - ft . is an equivalent norm in L̂  -,(-0.), 
P P,4,11,0 P»«A 

m « « 
(ii) .£ II f |L„ -J(X1.) II is an equivalent norm in L_ *(il). 

i=l P»A * "»* 
Proof. 

Step 1. Clearly [fl * o j* - IflD ̂  * • On the other hand, 

Lx o4A 

&Wp,A,n,cr+2dr"A/P||flLp( i l ) l1 

by Holder inequality. This proves (i). 

Step 2. We have H . c il and therefore Cf 1 * * 4 tf.L ̂  ̂ . This yields 

r U f l L ^ C J l ^ l U m l l f l L ^ i D l t . 

Step 3. We show that there exists a <? 7* 0, such that for all X6.il and 

£ -< cf one can find a il. with il (x)cil.. 

Assume the contrary. Then we have x. e il and rt>k—>0 such that SL (x.) 

is not contained in one of the il. s. Since il is compact there is an x e H 

with x = lim x. for some proper subsequence. Now x € i l . ' for at least one i. 
k-*eo 

Hence Be(x )c .Jl 4 ' for some & > 0. But for large k we get JCt (x. )cB f(xJ o 

%0 O 1 4>. K O U 

a i l c £L'. r*Xl = il., which yields a contradiction. (This is more or less the 

Lebesgue lemma .1 
So we have Itl^^^^A max L f J ^ ^ * which completes the proof, 

l—i,...,m x 

Renark 1. With obvious modifications the above proposition is also true 

Next we show that Morrey-Campanato spaces are invariant under diffeomor-

foг L ^ C A ) . 

phism. 

Proposition 2. Let ilcR be a bounded domain and gp: il—>Jl'= <p (il) 

be a diffeomorphism, such that 

I y, I and I ¥*, * I are bounded on il , and il', respectively, for 
dx k dyK 

all 1..SJ, k-£n. Then ^p* : f —*-• f * <f is an isomorphism of V* n(-Sl') onto 
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P,* 

c c 
Proof. We prove the proposition for L„ i . Let f4Lrt *(Ji ) . Then 

p, A p , A 
&9'f|L p(a)ll

p=/ a|f( ?(x))|
pdx=J 0.|f(y)|

p^. 1(y) dyic if |Lp( il')|
 p 

by virtue of the boundedness condition. Here "L. , denotes the Oacobian of 

<f~ . From the well-known inequality (see [3]) 

l B - n J . . a - - l 8 U P . f " * ( i n - f lg(x)-clp dx)l 1 / p 
*>*>** 2\í?0*~ (ÍCf 4 r x ) iS<̂ -o|P dx)] 

iclude 

- ^ f W « M j?0*'7-yxo> | f **(x)-s|P d x ) ] 1 / P ' 
-»x>ii 

for an s we fix later 
Our boundedness condition provides a constant c which is independent of 

xQ and f such that y ( & p ( x Q ) ) c A ' (<p(xQ)). Consequently 

1/p, 
^ P ^ A ^ t e o ^ W ) l«v)-sl%^W dyl 

Ly0€Hf 
tng s=f ,. it follows 

?'yo 

Now one can replace <& by <f ~ . The proof is complete. 
M C 

The last propositions enable us to define L * and L * on compact ma­
nifolds via a local procedure. 

3. Morrey-Canpanato spaces on compact manifolds 

Definition 2'. Let N be a'compact manifold, and (U., y . ) , i=l,...,m a 

collection of charts which cover N (i.e. 

m • -1 
N= U U^, U^ open, y. :U. —-» 9i(Ui)cR are tomeomorphic maps, ̂  • <?~ are 

diffeomorphisms, n=dim N). For a function f :N—*R we put y * f := f \^ • <jp7, 

i=l,...,m, and define 

LCa(N):=4f:N-->R| f 1 * - « L ^ ( » i ( U l ) ) , i=l,...,m, 

M 
Analogously for L„ *(N). 

P»* 
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We have to verify that the above definition is independent of the charts 

(IL,^.), especially, that different charts yield equivalent norms. 

Indeed, let (U., <$;), i=l,...,m, (V., y.), j=l,...,k be two collections 

of charts which cover N. Put W..=U. n>V., 4^:= <jp i ° Y ^ • As a consequence 

of Proposition 1 and Proposition 2 we obtain 

£ ft*i -i'-!U<»i<-i»-~ . , 2 »tf £ iLS,* (»i (v>l 'v 

i=l r' 1=1,...,m ' ' u 

j=l,...,k 

~uiX mB*!^?i
f>l*i5 *i(Wij)ll = 

j=l|...|k 

Clearly one can replace "C" by "M". As an immediate consequence of Theorem 0 

we obtain 

Proposition 3. Let N be a compact manifold, 14rp < oo , 0 <-A , n=dim N. 

Then the following assertions hold: 

M C (i) L AN) and L„ *(N) are Banach spaces. The following imbeddings are p,a P,A 

continuous: 

LM ( N ) C LP,A C LP ( N )' 

L$,.. (N )=LP,A ( N ) fQr i*p*q<» . - - f ^ -
M P ( i i ) For 0 - i A < n L„ »(N) and L„ ~(N) are isomorphic, 
P>«A P,A 

M 
(iii) L p(N) is isomorphic to La?(N). 

r 
A more interesting question is the relation of L„ *(N) to the space of 

P» 
Holder continuous functions. 

We recall the fact that the geodesic distance d(P,Q)= "inf of length of all 

piecewise smooth curvesjoining P and Q" makes a Riemannian manifold to a met­

ric space such that the metric topology is equivalent to the original Haus-

dorff topology. Holder continuity can be defined as follows. 

Definition 3. Let Q«< oG & 1 and N be a connected Riemannian manifold 

with geodesic distance.d. The Holder space C**(N) is defined as 

C*(N)={f:N-*R| f continuous, lf|C*(N)l : = 

: = s u p |f(P)|+sup ]£i£}=mL<wim 
P*N P,Q«N d(P,Q)* 

P+Q 
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Clearly C°^(N) is a Banach space. 

For a compact manifold N a function f:N—*• R belongs to C ^ N ) if and 

only if f belongs to C*6 in any chart. More precisely we have 

Proposition 4. Let (V., <?*), i=l,...,m be a finite system of charts 
which cover the compact manifold N such that 

(i) q^.(V.)cR is convex for i=l,...,m, 

(ii) for every V*. there is a coordinate neighbourhood U.alT., i.e. 

(U^,^) is a chart over N. 

Then f*C*(N) if and only if <y*. f€C o C(^ i(V.)) for all i=l,...,m. 

Proof. The proof is standard. We sketch the idea. 

Step 1. N admits a Riemannian structure and, by the Hopf-Rinow theorem, 

t*yo points P,Q*N can be joined by a minimizing geodesic of length d(P,Q). 

According to a lemma of Lebesgue, there is d* > 0, such that all sets with 
diameter less than a are contained in one of the V.'s, 

Furthermore, the eigenvalues of the matrix of the metric tensor in eve­

ry tf^O can oe estimated from below and above by positive constants 

D < C Q A C 1 < oo : 

CQ=inf < <u,| ̂ eigenvalue of gkl(x), x « ^ i ( ^ i ) , i=l,...,mj, 

C,=sup •£ ft| f*=eigenvalue of gkl(x), x c y ^ O ^ ) , i=l,...,m$. 

Step 2. In Definition 3 we can assume d(P,Q) ** <f .Let f c C ^ N ) and 
let the geodesic joining P and Q of length d(P,Q) be contained in V.. The i-
mage of this geodesic is a smooth curve in ^ ( v < ) * Hence 

JKP,Q) k ' 1 1/2 
d(P'Q)=J (okl 5-y-> ^ds^cJ^P)-^)!, 

O T 

because the image of the straight line joining ^ ( P ) and *fAQ) under <f~^ 
is a curve on N. Tr4s yields 

max |cf* f | C f l C ( < y i ( V . ) l Amax (1,C*) I f |C*(N) U . 
i=l,...,m 

Conversely, let <y* f>dCflC(<jfi(Vi)). We have 

col<3pi(P)-^i(Q)|Ad(P,Q) because a geodesic of the length d(P,Q) is 

contained in V.. Hence 

min(l,C*)Hf|C*(N)Umax il/i f |C*( ̂ .(v ))l . 
° i=l,...,m 
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Remark. Condition (i) may be removed by: 

(i)* ^ i ^ i ^ n a s a Lipschitz boundary for i=l,...,m. 

This ensures that two points of <y . (V. ) can be joined by a curve contained 
in *fi(Vj) and with a length that can be estimated by Euclidean distance from 

below and above. 

As a consequence of the R -results respectively (Theorem 0,( iv)) we ha­

ve 

Proposition 5. Let N be a compact manifold, n=dim N and n < A & n + p , 06 = 

= A-^O. . Then LJ? *(N) is isomorphic to CoC(N). 

Proof. It is sufficient to construct a finite system of charts covering 

N which fulfils the assumptions of Proposition 4. This can be done as follows. 

Let P«W, (W, <f) be a chart. Then cjp(W) contains an open ball with the 

centre cjp(P), the image of which under <y , we denote by Vp. Now, the col­

lection cf charts (Vp,y) admits a finite subcovering of N which obviously 

has the desired properties. 

The "local" Definition 2' yields the well-known properties of Morrey-

Campanato spaces on compact manifolds with the help of R -results, respecti­

vely. However, it seems convenient to give a more intrinsic description of 

these spaces. 

First we recall some technical prerequisites. For a P « N and a tangent 

vector X at P let y:R—-• N be the unique geodesic with f(0)=P and tangent 

X at P. Put expp X:= yd), which is well defined at least for small X. The 

map expp is diffeomorphic near the origin of the tangential space at P and 

depends smoothly on P. r„,:= inf sup{r| exppX is infective for g(X,X)<r $ 
N P«N r 

is called injectivity radius of N. Hereby g stands for the Riemannian metric . 

For compact N we have r N>0. Clearly B^(P)=-fexpp X| g(X,X)<ijj
2| f or jo -&rN. 

(A good reference is til.) 

Proposition 6. Let N be a compact orientable manifold and 0 <cf.£a0,p,& 

as above. Then it holds 

0N)=* f*VN)l - ' l& i i ' - f j * *'* J>(P) l
flpn]1/p <«>*» 

Lp*N v * 

L(;>A(N)=if*Lp(N)| I f l L ^ W l j : - Uf|Lp(N)l|+ tf-P)A>N<r < Co \ 

and the norms ! • II are equivalent to the norms H # B , . 
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Proof 
Step 1. By the same argument as in the proof of Proposition 1, Step 1, 

one can assume tt small, i.e. 0<<f<r N. 
m M -

Let N= U B'l (Pi) for a 0 < ^ < Y rN. For every Pi€ N ehoose a basis 

(Y,,...,Y ), the tangential space at P. such that g(Y-,Yk)= <-*".. and put 

expp1 (expp (hx Y1+...+h_ Y^Mh-^,... ,h_). Clearly ( B I ^ ) , exp"1) is a i i 
chart. We prove 

ll ^ * f _ i c 

i 
f1:* (expp1 )*f«Lp>x(B (0)) if llf|Lp A(N)lj_< ao . Indeed, 

^ . . p C t y - ) ) * " - / |fi(x)|Pdx & 

* C K ^ ( 0 )
 Id6t V X ) | " 1 / 2 * / y o ) I ^ W I " ! * * 9 J kCx)|

1 / 2 d x 4 C ftf|Lp(N)l| P 

since F.p(0) is compact and |det g^k(x)| continuous and strictly positive. 
For any a we have 

2 L I p AV0)^lSS«г ^ V ^ o o ІЛУ)-!-«^V/P -
Lx€EL(0) -xcBf(0) 

JL \*Z<S C*S j B ( 0 W x ) l ^ - a P i d e t g ^ l ^ d y l 1 ^ . 
LxiB^(O) J 

Let x=expp P and y=expp Q. Then i t follows (cf. Prop. 4) that / i |x -y |& 
l l 

i*d(P,Q)AeC|x-y| where 

«C=sup {f-u| <«, =eigenvalue of g^k(x), xcB?(0)i, 

p =inf «£ (U-1 ft =eigenvalue of g^k(x), x€ B (0)|. 

P). Consequently 

* T l*_olP«*1 1/P 

Here we replaced s by s/©c# and a by f 

Hence ycB~(0)ABs(x) yields Q*B^ s(
p)- Consequently 

P'*'V 0)'ď )p<s<4fc •'B^CP) J P'*,N 

P,s 
c 

Step 2. Let f€L *(N). Assume that there are Pk€N, A — ^ o such that 

fk k 

Since N is compact, there is a subsequence such that P k — * P € N (conver-
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n N / D N - . „ N gence in the metric topology). For large k we obtain B (PR)C B ^ P ) . This 

implies 

f <?f f 1 N l ( e x pp1 }* f " a | P | d e t 9 U | 1 / 2 d X l 1 / P " k / 2 

I J e < B ? k

( p i < ) p 3 J 
for arbitrary a (cf. the proof of Proposition 2). The same arguments as abo­

ve yield 

K W - ^ Ч " I^P 1 ^-*^*] 1 ^ 2 -c 

which contradicts f . L ^ N ) for a^exp^
1
)* *? B? (exp^))' 

Step 3. The assertions with respect to L *(N) can be proved analogous-
P ,A 

ly but simpler. 

Remark 2. Proposition 6 characterizes Morrey-Campanato spaces on comp­

act manifolds via a very natural translation procedure: all ingredients of 

Definition 0 are replaced by their counterparts on the manifold. 

Remark 3. It is not hard to see that a compact manifold has in some 

sense the "type-A" property. (A domain i l c R is of type A, A > 0 , if 

I i--/p(x)| - Atj>
n
 for all x provided tf>-6const.) Indeed, let (x. ,...,x ) be lo­

cal geodesic coordinates , P *>/(0,...,Q). 

Then ex
P
^(Bj,(P))=ix«R

n
| |x|«.fl, g

i j
(x)-eT

i j +
A

i j
(x), I A ^ M \ 4c|x| 1 

for |x|< a . Consequently 

lB?(P)l = /|x|<f

 d e t ( < V Ay>
1/2«*«-/|x|<p»* A ( x ) ) d x 

with |A(x)|<c'|x| . From th is i t follows that 

c"a-a(9)){>n4|BN

?(P)Uc"a+a(?))pn with a(p)=-fTn /|x|<fIA(x)|dxi 

£ cMl§> . This proves Cx ^ > n * IB1! (P)|-4 C2 £>n for some C1,C2> 0, p < pQ. 
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