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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

COMMUTATIVE M0UFAN6 LOOPS CORRESPONDING 

TO LINEAR QUASIGR0UP5 

Petr NĚMEC 

Abstract; Suppose that Q(+) and Q( <+>) are commutative Moufang loops 
with the same underlying set, f and g are automorphisms of Q(+), p and q are 
automorphisms of Q ( © ) and a,b«,Q are such that xy=(f(x)+g(y))+a=(p(x)<£ 
©q(y))C$b for all x,y*Q. Necessary and sufficient conditions are investi­
gated, under which there is an isomorphism h:Q( 0 ) — > Q(+) with hp=fh. 

Key words: Quasigroup, commutative Moufang loop, arithmetical form, 
isomorphism. 

Classification; 20N05 

The class of linear quasigroups, introduced in 1.41 and £53, can be view­

ed as a common generalization of several important classes of quasigroups, as 

e.g. medial, distributive or trimedial quasigroups (see e.g. £61,C2J,£3j). A 

quasigroup is said to be linear if there is a commutative Moufang loop Q(+) 

with the same underlying set, its automorphisms f, g and an element acQ such 

that xy=(f(x)+g(y))+a for all x,yeQ; in this case, the quadruple (Q(+),f,g,a) 

is called arithmetical form of Q. 

This paper is closely related to [ 5]. Whence the main aim of 151 is to 

determine, roughly speaking, the number of possible arithmetical forms of a 

linear quasigroup, the present paper deals with the structure of the corres­

ponding commutative Moufang loops. Namely, several conditions are investiga­

ted, under which the commutative Moufang loops occurring in different arith­

metical forms of a linear quasigroup are canonically isomorphic. 

1. Auxiliary results I. Throughout this section, let Q(+) be a commuta­

tive Moufang loop. For all x,u,v*Q we define [x,u,v3Q/+\=((x+u)+v)-(x+(u+v)), 

1, w(x)=((x+u)+v)-(u+v) and C(Q(+)) to be the set of all acQ such that u, v 

ta,u,v]Q,+,=0 for all u,vcQ. It is well known that i (x)=x+£x,u,v3Q,N and 

iu is an automorphism of Q(+) (see e.g. Cll). 
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Further, let f be an endomorphism of Q(+) and a,c,o€Q. For all x,yeQ, 

put x®y=(x+y)-o and p(x)=(f(x)+c)+a (cf. Section 4 of £5]). Then Q(<3) is 

a commutative Moufang loop with neutral element o. By [5], Lemma 4.1, P is 

an endomorphism of Q( ® ) if and only if 

(1) o=(f(o)+c)+a. 

From now on we shall suppose that (1) holds and we shall find some nece­

ssary and sufficient conditions for the existence of an isomorphism h:Q( ® )—> 

—*Q(+) such that hp=fh. 

Clearly, hp=fh if and only if, for every x&Q, 

(2) h((f(x)+c)+a)=fh(x). 

This implies h(c+a)=fh(0). 

Now, let h:Q(® ) — * • Q(+) be an arbitrary isomorphism and put k(x)= 

=h(x)-h(0) for every xfcQ. Then h(o)=0 and, for all x,ycQ, we clearly have 

h((x+y)-o)=h(x)+h(y), hence h(x-o)=h(x)+h(o) and consequently h(x+y)+h(o)= 

=h(x)+h(y). Adding -2h(o) to both sides of this equality, we see that k is an 

automorphism of Q(+). Moreover, h(x)=k(x)-e, where e= -h(0). Obviously, e= 

=k(o) and (since o=(f(o)+c)+a) we also have 

(3) e=(kf(o)+k(c))+k(a). 

1.1. Lemma. hp=fh if and only if, for every xc Q, 

(4) (kf(x)+k(c))+k(a)=(fk(x)-f(e))+e. 

In this case, k(c+a)= -f(e)+e. 

Proof. Use (2) and the fact that h(x)=k(x)-e. 

1.2. Lemna. If hp=fh then 

(5) e=(k(c)+k(a))+fk(o). 

Proof. This follows immediately from the second part of l.i. 

1.3. Lawta. hp=fh if and only if, for every ycQ, 

(6) ((kf(y)+kf(o))+k(c))+k(a)=fk(y)+((kf(o)+k(c))+k(a)). 

Proof. Using (3), the equation (4) can be written as 

((kf(x-o)+kf(o))+k(c))+k(a)=(fk(x)-fk(o))+k(o)=fk(x-o)+((kf(o)-.k(c))+k(a)). 

1.4. Lema. hp=fh if and only if, for every y«Q, 
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(7) ((f(y)+f(o))+c)+a=k"1fk(y)+o. 

Proof. Since o=(f(o)+c)+a, it suffices to apply k" to both sides of 

(6). 

2. Auxiliary results II. Throughout this section, we shall also assume, 

in addition to the assumptions of Section 1, that f is an automorphism of 

Q(+). 

2.1. Lemma. hp=fh if and only if, for every zc Q, 

(8) ((z+f(o))+c)+a=k"1fkf"1(z)+o. 

Proof. This is clear from 1.4. 

Now, put i=if(0) c and J=i f( 0) + C a- Inen (z+f(o))+c=i(z)+(f(o)+c) and, 

using (1), (i(z)+(f(o)+c))+a=ji(z)+o for every zcQ. Combining these two equ­

ations, we have 

(9) ((z+f(o))+c)+a=ji(z)+o. 

From this, using (1), we obtain 

(10) * 3i(z)=(((z+((o-a)-c))+c)+a)-o. 

2.2. Lemma. hp=fh iff 3i=k"1fkf"1. 

Proof. Use 2.1. 

2.3. Lemma. ji=idQ (the identical mapping on Q) if and only if, for eve­

ry xeQ, 

(11) ((x+o)-a)-c=x+((o-a)-c). 

Proof. Use (10). 

2.4. Lemma. ji=idQ iff y+(((o-a)-c)-a)=(y+(o-a))+(-.c-.a) for every y< Q. 

Proof. Adding -2a to both sides of (11), we get 

((x-a)+(o-a))-(c-a)=(x~a)+(((o-a)-c)-a). 

2.5. Lemma. j i=idQ i f f ((o-a)-c)-a=(o-a)+(-c-a) ancj y+((0-a)+(-c-a))= 
=(y+(o-a))+(-c-a). 

Proof. Use 2.4. 

2.6. Lemma. ji=idQ iff [o,c,aJQ(+)=0 and Iy»o-a,c+aJQ, y0 for every 
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yeQ. 

Proof. This is an easy consequence of 2.5. 

2.7. Lea*a. ji=idQ iff ly,o-a,c+alQ, s=0 for every y*Q- In this case, 

o-f(o)=c+a. 

Proof. If [y,o-a,c+al=0 for every ye Q then, taking y=0, we get 

[o,c,al =0. Then, of course, to,a,c3=0 and consequently f(o)=(o-a)-c= 

=o-(a+c). 

2.8. Lemma. ji=idQ iff [y,o~a,o-f(o)3Q,+N=0 for every yc Q. 

Proof. The direct implication follows from 2.7. Conversely, we have 

[o ,a , f (o) .J=0 and (1) yields o-f(o)=c+a. 

Now we can summarize our results (assuming that f is an automorphism of 

Q(+) and consequently p is an automorphism of Q ( ® )): 

2.9. Lenraa. The following conditions are equivalent: 

(i) There is an isomorphism h:Q(0 )—>Q(+) such that hp=fh. 

(ii) Automorphisms f and jif (of Q(+)) are conjugated in the group 

Aut(Q(+)). 

Proof. If (i) holds then the result follows immediately from 2.2. Con­

versely, suppose that (ii) holds and k%Aut(Q(+)) is such that jif=k fk. De­

fine h(x)=k(x)-k(o) for every xcQ. Since h(x ©y)=((k(x)+k(y))-k(o))-k(o)= 

=(k(x)-k(o))+(k(y)-k(o))=h(x)+h(y) for all x,yeQ, h is an isomorphism of 

Q( 0 ) onto Q(+). Moreover, h(0)= -k(o) and so k(x)=h(x)-h(0) for every xcQ. 

Now we can use 2.2. 

2.10. Remark. ji=idQ, provided at least one of the following conditions 

holds: (i) c+a«C(Q(+)); (ii) 2o+f(o)* C(Q(+)); (iii) o-a*C(Q(+)); (iv) 

acC(Q(+)) and o+f(o)« C(Q(+)). 

2.11. Remark. Suppose that ji^idp and define h(x)=x-o for every xsQ. 

By 2.9 and its proof, h is an isomorphism of Q( © ) onto Q(+) such that hp=fh. 

3. Isomorphism of arithmetical forms. An arithmetical form of a quasi-

group Q is a quadruple (Q(+),f,g,a) such that Q(+) is a commutative Moufang 

loop (on the same underlying set Q), acQ, f and g are automorphisms of Q(+) 

and xy=(f(x)+g(y))+a for all x,ycQ (cf. [53). A quasigroup Q having at least 

one arithmetical form is said to be linear (over a commutative Moufang loop). 
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Throughout this section, let (Q(+),f,g,a) and (Q( 0 ),p,q,b) be arith­

metical forms of the same linear quasigroup Q (we denote by o the neutral e-

lement of Q( © )). Then (f(x)+g(y))+a=(p(x) © q(y))0 b for all x,yeQ. By 

[5], Proposition 5.2, its proof and Proposition 5.1, we see that, for all 

x,yeQ, x 0 y = (x+y)-o, p(x)=(f(x)+c)+a, q(x)=(g(x)+d)+a, c=(o-a)-f(o) and d= 

=(o-a)-g(o). Put i=if(0\ c
= in( 0) d ^

since c-d=g(o)-f(o)c C(Q(+)) by £53, Lem­

ma 3.4) and j=-0_aja. 

3.1. Proposition. Let (Q(+),f,g,a) and (Q(©),p,q,b) be arithmetical 

forms of a linear quasigroup Q. Then: 

(i) f(o)-g(o)eC(Q(+)). 

(ii) p(O)Oq(O)cC(Q(0)). 

(iii) If £x,o,f(x)JQ/-+x=0 for every x«Q (or equivalently 

£x,o,g(o))Q/-+N=0) then there is an isomorphism h:Q( 0 ) — - * Q(+) such that 

hp=fh and hq=gh. 

Proof, (i) and (ii) follow immediately from t5j, Proposition 5.1. As 

for (iii), put h(x)=x-o for every x«Q. Then h(x ©.y)=(x+y)-2o=h(x)+h(y) for 

all x,y«Q and the result easily follows. 

3.2. Proposition. Let (Q(+),f,g,a) and ( Q O ),p,q,b) be arithmetical 

forms of a linear quasigroup Q. The following conditions are equivalent: 

(i) hp=fh and hq=gh for an isomorphism h:Q( O )—*--Q(+). 

(ii) There is an automorphism k of Q(+) such that jif=k fk and jig= 

=k"1gk. 

Proof. By 2.9. 

3.3. Rewirk. We have ji(x)=((x+f(o))+c)+a)-o=(((x+f(o))+((o-a)-

-f(o)))+a)-o for every xeQ. If f(x)-g(x)€ C(Q(+)) for every xeQ (i.e. fg"1 

is 2-central) then jif(x)+(g(x)-f(x))=jig(x). Hence 3.2 (ii) implies 

k(g(x)-f(x))=gk(x)-fk(x) for every xeQ. 
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