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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

LINEAR FRACTIONAL TRANSFORMATIONS 

AND COMPANION MATRICES 

Vlastimil PTÁK 

Abstract: With each linear fractional transformation and each positive 
integer n we consider a set of n polynomials of degree *n-l. Simple relati­
ons for these polynomials are established which provide a geometrical expla­
nation of the recent results of B.A. Shane and S. Barnett on companion mat-t 
rices. 

The mapping which assigns to each linear fractional transformation the 
matrix of the coefficients of these polynomials is a representation of GL(2). 

Key words: Companion matrix, matrix representation. 

Classification: Primary 15A03, 15A04, 15A24, 93B25, 94C05 

Secondary 14L35, 46N05, 47A05, 47A67 

Introduction: In inertia theory and in investigations concerning root 

location for polynomials the Cayley transformation is frequently used to map 

the unit disc of the complex plane onto a half-plane; this provides, in par­

ticular, a connection between the theory of automata working in discrete time 

and that of the continuous case. 

More generally, it is possible to consider the general bilinear trans­

formation 

^:A—^(cA+d)" 1 (aA+b); 

if A is a matrix for which cA+d is invertible then the spectrum of the trans­

formed matrix is obtained as the image under <p of the spectrum of A. In an 

interesting paper [13 B.A. Shane and S. Barnett investigate the effect of $? 

when applied to a companion matrix; the image under <p of a companion matrix 

will not be a companion any more in the general case. Nevertheless, Shane and 

Barnett show that there exists, for each n, a matrix Mn(<Jf) depending only on 

y such that, for any companion matrix A for which cp(A) exists 

M(<j>)<y(A)M(^)~l 

is again a companion matrix. The original proof of the authors is based, how-
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ever, on a highly technical computation of the individual entries. In a sub­

sequent paper 123 N.3. Young succeeded in giving a simpler and more direct 

proof of the result; his proof uses an interesting characterization of com­

panion matrices in terms of tensor products. Young also shows that the mat­

rices Mn(^p) may be used to construct a representation of GL(2). 

It is the purpose of the present note to point out a natural interpre­

tation of the result which provides a short and transparent proof. At the sa­

me time this proof explains the geometric meaning of the matrix M ( y ) . 

2. Preliminaries: Given a polynomial f of degree n written in the form 

f (x)=xn-(aQ+a1x+.. -
+a
n iXn"~ ) 

we denote by C(f) its companion matrix 

0 ... 0 aQ 

0 ... 0 a^ 

C(f)=| 0 1 ... 0 a0 

0 J 
It will be convenient, for the purposes of this note, to define C(g) for a 

not necessarily monic polynomial g as the companion of the corresponding mo-

nic multiple of g. In the rest of this note f will be a fixed polynomial of 

degree n written as above. If F stands for the algebra of all polynomials 

with complex coefficients and if H(f) is the ideal of all multiples of f we 

denote by X the quotient algebra X=F/H(f). Let S be the operator of multipli­

cation by x on F. Then H(f) is invariant with respect to S and we shall use 

the same letter S to denote the corresponding operator on X; clearly the po­

lynomials 

1, x,...^- 1 

(more precisely, the corresponding classes modulo f) form a basis of the li­

near space X. Since xn=aQ+a1x+...+a ,x modulo f the matrix C(f) appears 

as the matrix of S taken in this basis. 

As for changes of bases, we shall use the following convention. If W is 

the matrix of the operator T in the basis eQ,...,e ,, in other words Te.= 

= K. w .e , and if anew basis is given by p-= SI m .e^ then the matrix of 
s
 SJ s J r rj r 

T in the new basis is M WM. 

3. Fractional linear transformations: Let A be a fixed two by two matrix 
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We shall restrict ourselves to the case cf=det A-f 0. Define the four line­

ar forms u, v, U, V by the formulae 

u(x)=ax+b v(x)=cx+d 

U(x)=dx-b V(x)= -cx+a 

and observe that 

d u(x)-b v(x)= cfx 

- c u(x)+a v(x)= cf. 

For x such that v(x)=f 0 define ^(x)= ~7^y. It follows from the two for­

mulae above that, for v(x)»f 0 

"<»<*»= $ y 

V(?(x))--gy 

For y such that V(y)*0 define y(y)= ^ y • 

We have then 

1° If v(x)*0 then V(<*(x))= ̂ y + 0 and tf(<y(x))=x. Similarly, 

2° If $ % 0 then, for every A such that V(A)+0, the value z= ^^y 

satisfies v(z)= -j-£-y 4- 0 and <|(z)= ̂ - = A . 

Define the polynomials Pn»***'Pn-i °*
 d e 9 r e e n~l Dv **ne formulae 

Pj(x)=u(x)
j v(x) n" 1" j 

for j=0,l,...,n-l and let us show that they are linearly independent. Suppose 

that 

$0p0+"-+ fn-lPn-r0' 

Consider an arbitrary A for which V ( A ) * 0 and let z= v( i s ; recall 

that v(z)#0 and <y(z)= -̂  , We have then 

Since v(z) + 0 it follows that 

Writing down this relation for n different values of A we conclude that 

£n=...= f ,=0 so that the p. are linearly independent. 

Now consider a polynomial f of degree n 
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f(x)=xn-(a0+a1x+...+an_lx
n~l). 

It suffices to consider the case n$2. 

Suppose that (v,f)=l. We intend to show that there exists a polynomial 

h of degree -In-1 and a constant k such that 

v(x)h(x)+f(x)k=u(x). 

Tt is possible to write down h and k explicitly. 

Tf c=0 then d+0 and it suffices to set h(xV -JJ u(x), k=0. 

Tf c-^0 denote by y the point where v(y)=0. Since v and f are relatively 

prime, we have f(y)+0. Set k= TF7^T and observe that the polynomial u(x)-kf(x) 

will, be zero at y; it follows that -jr̂ y (u(x)-k f(x)) is a po lynomia l . Denote 

it by h so that 

h(x)= v ( x^ ( y ) (u(x)f(y)-u(y)f(x)). 

Since -cu(y)= -cu(y)+a v(y)= cP we have u(y)= - * whence k= - f> K . 

Now consider T=C(f). We have f(T)=0 so that 

v(T) h(T)=u(T). 

Furthermore, it is easy to see that v(T) is invertible. Indeed, if 0 • €f(v(T)) 

we have 0 & fif (v(T))=v(ff (T)) so that v(y)=0 for some y#€f(T) but this is im­

possible since (v,f)=l. It follows that h(T)=^(T). 

Given a polynomial f of the form 

f (x)=xn-(aQ+alx+.. .
+afl_lx

n""1) 

we write g for the polynomial defined by the formula 

g(x)=U(x)n - 2 ^ a. U(x)-1 V(x)n"j. 

We intend to show that g has degree n if (v,f)=l. Indeed, the coefficient of 

jals 

_=.l 

xn in the polynomial g equals 

dn - «|, a, dJ(-c)п
-J. 

If c=0 this expression equals cf
1
 and d is different form zero since ad=<T-|rO. 

If c-#iO we have f(y)#0 since (v,f)=l and v(y)=0. We have then 

d
n
- S a . d J ( - c ) n ^ = ( - c ) n ( - ^ - - - S a . - d l ) = ( - c ) n

 f(y)*0. 
3
 (-c)

n 3
 (-c)

3 

We "shall show now that g(h) is divisible by f. The following two relati­

ons will turn out to be useful to this end. Using the relation u=hv+kf we ob­

tain 

- 282 -



vU(h)=dvh-bv=d(u-kf)-bv= <Tx-dkf 

vV(h)= -cvh+av= -c(u-kf)+av=^/+ckf. 

Using these relations for the products vU(h) and vV(h) we obtain, modulo f, 

vng(h)=(vU(h))n - Saj(vU(h))
j(vV(h))n"j=a>nxn - .Sajt/

jxj<f n"^= ̂ ( x ) 

and, since (v,f)=l, it follows that g(h)=0 modulo f. 

The next step consists in showing that the operator of multiplication by 

h, taken in the basis Pn>•••,Pn i> has matrix C(g). 

First of all, we show that, for 0-frj.frn-2 the product hp. equals p. . 

modulo f. For j-frn-2 we have p.=u^vn" ^ whence 

hPj=uJv
n-2"Jhv=uJvn-2-j(u-kf)=uJ+1vn-2"j-uJvn"2-Jkf 

so that 

hpj=PJ+l m ° d f* 

To compute hp , we need some notation. If G is the leading coefficient 

of the polynomial g we can write g in the form 

g(x)=G(xn - . S g . x j ) . 

Now we intend to show that 

h pn-1 = ^ 9 j p j mod f* 

We argue as follows 

hpn.t - Z g ^ h u 0 " 1 - Zgju\
n-l-J=h.hn-lvn-1 - Z g . h W " l - J = 

=vn"l(hn - £9jhJ)=v
n-l

g(h)=0. 

In this manner we have shown that the matrix of h(S)=<f(S) in the basis 

pQ,p,,...,p , is exactly C(g). If M ( y ) stands for the transformation mat­

rix p.(x)= 2M(<jp) iXS the result just proved may be formulated as follows. 
J °J 
There exists a matrix M(^ ) with the following property: 

If C is the companion matrix of a polynomial f with (v,f)=l then 

C'=M(9)"1^(C)M(y) 

is again a companion matrix. 
More precisely, C'=C(g) where 

g = U
n - j|J a-UJ Vn-J. 

To conclude let us briefly comment on the behaviour of the matrices M(^) 

with respect to composition of the transformations gp • 
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Let n be a given positive integer. For each two by two matrix 

A= •=c з 
we define an n by n matrix M(A) as follows. We begin by constructing a sequ­

ence of polynomials of degree &n-l. 

p
Q
(A,x), p

1
(A,x),...,p

n-1
(A,x) 

and define M(A) by the requirement that 

M(A)y<
r
=Pj(A,x). 

The polynomials p. are defined as follows 

P
j
(A,x)=u(x)J v(x)

n
"

1
"

j 

where u(x)=ax+b, v(x)=cx+d. Let us show now that the mapping A —*» M(A) is a 

representation of GL(2). To see that consider two matrices A and B. It is ea­

sy to verify the relation 

p.(BA)=XM(B). p j A ) . 
j j & ^ 

Indeed, we obser
V
e first that 

U
B A
( X ) =

V A
( X ) u

B
( 9 ) 

v
BA
(x)=v

A
(x) v

B
(9f) 

where y =u,(x) (v.(x))" . It follows that 

p(BA,x)=u
BA
(x)J v

B A
(x)

n
-

1
-

J
=v

A
(x)

n
-

1
 u

B
(

?
)

j
 v

B
(y)

n
-

1
-

J
= 

^ ( x ) "
- 1 p j ( B , y ) = V A ( x ) n - 1 S M ( B ) j r < 3 r

r = . - . M ( B ) j r Pr
(A,x). 

Comparing coefficients of x
r
 on bath sides of this relation we find that 

M(BA).
v
= f M(B)

j s
 M(A)

s v 

whence 

M(BA)=M(B) M(A). 
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