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MAXIMAL IDEALS IN THE LIE ALGEBRA OF VECTOR FIELDS

Jif{i VANZURA

Abstract: We describe maximal ideals in the Lie algebra ¥(V) of all C®
-vector fields on a C%-manifold V. Further we show that the set Specm (V)
of all maximal ideals in ¥(V) endowed with the Stone topology is homeomorph-
ic with the Stone-Cech compactification AV of V.

Key words: C®-manifold, Lie algebra of C%-vector fields, maximal ide-
al, Stone-Cech compactificatién. ’

Classification: 17B65

1. Maximal ideals in the associative algebra C(V). Let V be a connected
paracompact real C%-manifold, dim V=m, and let C=C(V) denote the commutative
and associative algebra of all real C%-functions on V.

For feC we define the zero-set Z(f) of f by

2(£)=4peV;f(p)=0}.
Z(f) is a closed subset of V. We recall the well known fact that every closed
subset of V is the zero-set of some function from C. We shall now consider an

ideal I¢C. (Ideal in C will always mean proper ideal.) But first we introdu-
ce

Definition 1. A nonempty family ¥ of closed subsets of V is called
z-filter on V provided that

i) ¢ 7

(ii) 2,7« F=> 2Znal'c ¥

(iii) Ze®, Zc2’, 7" is a closed subset of VepZ ¢ ¥,
By a z-ultrafilter on V we shall mean a maximal z-filter, i.e. one not cont-~
ained in any other z-filter.

In the same way as in [1] we can prove the following

Proposition 1: (i) If I¢cC is an ideal, then the family

ZI13= §2(£);fe 13
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is a z-filter on V.
(ii) It ¥ is a z-filter on V, then the family

I¥[F)= $5;1(D) e F3
is an ideal in C.
It is easy to see that for any z-filter & , and for any ideal I there
is
2Uz*LF)=F and 7°[2(11]1> 1.
The last inclusion may be proper. (Take V=R, and let I=(x2) be the principal
ideal generated by the function x2. Then € [zL131 =(x). If an ideal I satis-

fies Z¥[Z[I1] =1 we shall call it z-ideal. Obviously every maximal ideal is
a z-ideal.

Following again [1] we get the next two propositions.

Proposition 2: (i) If McC is a maximal ideal, then Z{M] is a z-ultra-
filter on V.

(ii) If A is a z-ultrafilter on V, then Z¥ [ A} is a maximal ideal in

(iii) The mapping Z* is one-one from the set of all z-ultrafilters on
V onto the set of all maximal ideals in C.

Proposition 3: (i) Let McC be a maximal ideal. If Z(f) meets every
member of ZIM), then fe M.

(ii) Let A be a z-ultrafilter on V. If a closed set Zc V meets every
member of A, then Z ¢ A .

Let IcC be an ideal. We shall call I fixed ideal if N Z[Il$@, and
free ideal if N Z{I) =@. We shall now describe fixed maximal ideals in C.
Let McC be a fixed maximal ideal. We denote S= N Z[{M}. Obviously Mc{fe&C;
£]5=0%, where the latter set is a (proper) ideal in C. Hence M= {f&C;f|S=03.
But because for any two closed subsets Sli 52 there is

{feC;t|s;=0} 3 {feC;135,=0%,
we can see that S contains just one point, i.e. S={ p}. Then M= $fe C;f(p)=0}.
Conversely, for any point peM the set
Mp=‘{foc;f(p)=0}

is an ideal in C. Moreover, it is a maximal ideal, because the factor C/Mp -4
&R is a field. We have thus proved the following
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Theorem 1. The fixed maximal ideals in C are precisely the sets
Mp= {feC;f(p)=0%, peV.
The ideals M_ are distinct for distinct p.

Before proceeding further we shall need

Proposition 4: If a manifold is compact, then every ideal Ic C is fixed.

Proof: Let us take a finite number of functions fl,...,fkcl. Then

k
{51 2(£)=1( El ff):l-ﬂ (otherwise &, ff would be an invertible element).

This shows that the family Z[I1 of closed subsets has the finite intersecti-
on property (i.e. every finite subfamily has a nonempty intersection). But V
is compact, which implies NZ[I)a4d.

As an immediate consequence of Th. 1 and Prop. 4 we get

Theorem 2: If a C®-manifold V is compact, then the correspondence
pr—-»Mp is one-one from V onto the set of all maximal ideals in C.

This theorem describes the maximal ideals in C=C(V) for V compact. We
shall now focus our attention to the case when V is only paracompact. Every
paracompact topological space is completely regular, so that we may use res-
ults from Chapter é of [1]. Let B3V denote the Stone-Cech conpactifica'tion of
the manifold V (considered as a topological space). Let & be a z-filter on V.
We shall say that § converges to the limit p & 3V if every neighborhood (in
pV) of p contains a member of ¥ . Let us recall that every z-ultrafilter A
on V has a unique limit p €@V, and that p is a unique point such that p &
Z?A CI[WZ’ where c v denotes the closure in AV. Moreover every point p €
qzv is a limit of a unique z-ultrafilter A on V. In this way we get one-one
mapping from 3V onto the set of all z-ultrafilters on V. The unique z-ultra-
filter having the limit ps pV we shall denote by AP, There is

AP={2;ZcX is closed in X, pecl,Z}.

lav

If peV there is even a simpler description:

AP-17;7¢cX is closed in X, pe Z}.

Theorem 3: Let V be a paracompact C®-manifold. The maximal ideals in C
are precisely the sets

MW= {feC, pe clﬁVZ(f)}, pefv.

The ideals MP are distinct for distinct p. If peV, then Mp=Mp.
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Proof: Let McC be a maximal ideal. Then according to Prop. 2 ZIM] is
a z-ultrafilter on V. Therefore there exists a unique p & f3V such that Z(M] =
= AP. Now we have

M=Z+[ZIM1) =Z*TAP) = {f€C; Z(£) e AP} = §faC; peclpVZ(f)f =M.
Conversely, if p¢pv is any point, then
W= {6C; pecl Z(N} = iteC, ADeAP} 2 IAP),

which shows that MP is a maximal ideal in C. The rest of the proof is obvious.
Furthermore we get easily

Theorem 4: Let V be a paracompact C%-manifold. Then the correspondence
[ M is one-one from BV onto the set of all maximal ideals in C. This
correspondence maps V¢ AV onto the set of all fixed maximal ideals in C.

As usual we denote by Specm C the set of all maximal ideals in C. (It is
called maximal spectrum of C.) We provide Specm C with the Stone topology.
Namely, we take the family of all sets {MgSpecm C; feM}, f€C as a base for
the closed sets. Along the same lines as in [1] we get

Theorem 5: The correspondence p M is a homeomorphism from f3V onto
Specm C.

2. Maximal ideals in the Lie algebra X(V). Let us denote by X =%(V)
the Lie algebra of all C%®-vector fields on V. We recall the well known fact
that £ can be naturally identified with the Lie algebra of all derivations
on the algebra C.

We shall now consider an ideal Ic C. Following [2] we define for any
neN¥=Nu{0}

I(n)= {feI; Yk(Yk-l("‘(Ylf)"‘))‘I for any Y;,...,Y, ¢ & and
k=0,...,n}
Obviously there is I=I(0) 2 I(1) 3... . It can be easily checked that for any
ne€N* I(n) is an ideal in C. For any peV, feC, and ne N*u{oo} we denote

by jg(f) the n-jet of the function f at the point p. Further we define the
n-jet zero-set Zn(f) of f by

N
Z(D)={peV; Jp(f)=0}.

Obviously Zo(f)=Z(f). Zn(f) is a closed subset of V. But it can be shown that
every closed subset of V is the n-jet zero-set of some function from C. (We
recall that ne N*u{oo} is arbitrary.) Let ¥ be a z-filter on V. Then for
any ne N*u {@} we define
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2C1F] = ifec; 7, (D e 7§ .
It can be easily seen that Zn*' (F1 is an ideal in C. We are now going to
prove the following proposition.
Proposition 5: Let ¥ be a z-filter on V. Then for any ne N¥* there is
(CANE 3] )(n)=Zn“£5’J .

Before starting the proof of Prop. 5 we shall introduce on V certain
special functions and special vector fields which will be needed several ti-
mes in the sequel. Because dim V=m, we can find (see [3]) m+l families ’lLu,
ul,...,um of open subsets in V

U= U5 we Xy, o6idmi

with the following properties

m
i () =
(i) igo «E Ui =V

(ii) For any 0%ifm, and any o , B € Zi, oo # f3 there is Ui P Uip:

s X . (i) (iec)
(iii) Each Uios is a domain of a chart (x1 yeeer Xp ).
Furthermore we can find open subsets Vi“ , Ofig m, & € Zi such that

(iv) clvvuc in

m
(W) =

(v) 1K=J0 «€E, Vi =V-
Now it can be easily seen that there exist functions fij‘ C and vector fi-
elds Xij €% ,0%iém, 1€374m such that

for any oc € Zi and any peV, . there is
_ (i) - 9
fij(p)‘xj (m, Xij(p)— -a__(x_-i_“') (D).
J
Proof of Prop. 5: Let fe Zn"[?] , i.e. Zn(f)c % . For any Yoo
oY e X, 04 k£n we have

{pev; (v (v, ,C ..(Ylf). - IN(P)=0322Z (f),

and thus {peV; (Yk(Yk_l(...(Ylf)...)))(p)=0} e ¥ . From this follows
Y1 G (D)) €20 F] . We have proved that Z ¥ (F]c (Z€[F)(n).

Conversely let £ e (Z* [%1)(n). We denote by io the finite subset of
% consisting of the vector fields X; 35 Oki€m, 14 j%&m. If peV and g&C,
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then jg(g)=o if and only if
(Y (Y1 o (Y18)...00)(p)=0
for any Yl,... Y € ’£ 04 k£ n. Obviously

Z(g)= Fo Y, k. x, fpeV; (Y (Y, C..(V)@)...0))(p)=08.

Using this formula we find easily that for f¢ (Z*[%3)(n) there is Zn(f) e
¢ 7 . Thus we have proved that (Z<[F])(n)c Zn"IQ'J .
Again following [ 2], for any ideal IcC, and any ne N* we define

.[‘I‘= {X¢ ¥ ; XfeI(n) for every f¢ C§.

Furthermore we define
L2 A oL "
I~ nx0" I

It can be proved (see [2)) that of rI1 for any ne N*, and consequently £ f?
is an ideal in the Lie algebra % . As usual for any pgV, X €« € , and
neN*u {0} we denote by jS(X) the n-jet of the vector field X at the point
p. Similarly as for functions we define

-N
zn(x)= {peV; Jp(x)=oi.

Proposition 6: Let 3 be a z-filter on V. Then for I=Z* L[] and any
neN* there is

LT-{XeX; X (NeF}.

Moreover
L7=4XeX; X (X)e ¥ for every neN*3.

Proof: Let X € ¥ be such that z (X) e & . Then for any feC we have
Z(Xt) > Z (X), which shows that .Z (xf) ¢ % . By virtue of Prop. 5 there is
Xf eI(n), and thus Xe.CI We have proved that {X ¢ £; Z (X) 6 Fic ‘GI

m
T\O 3=1 n(xL 3
But X;J:';, which means that Xf. jeI(n) for any 0&i&m, 1&jsm. By virtue
of Prop. 5 it follows that Z (Xfij) ¢ ¥ for any 0&i$m, 14 j%m. Using the
above formula we can see that z (X) & # . We have proved that .cI.:{x €
e X ; zn(x) e F. The assertmn concerning <1 I is now obvious.

Conversely, let Xg.c'?. Obviously there is Zn(X)=

We are now going to describe maximal ideals in the Lie algebra & .
(Ideal in £ will always mean proper ideal.) First we shall state a fundamen-
tal result by Grabowski (see [21):
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(6) Let o ¢ X be an ideal. Then there exists an ideal

IOCC such that for each prime ideal I containing IU there is of ¢ of- I”.

Keeping the above notation let us assume that o =% ¢ ¥ is a maximal
ideal. We take I=M, where McC is a maximal ideal containing the ideal IO' We
denote A =Z[M]). It is an easy consequence of Prop. 6 that -L'": c X is a
(proper) ideal. Thus for the maximal ideal @t c .[ﬁ we have 7= J: . This
means that there is

M={XeX; Z (X)e A for every neN¥},

where A is a z-ultrafilter on V. Now it is natural to introduce

Definition 2: Let 3 be a z-filter on V. We define
¥ (Fl={Xe&; X (X)eF for every ne N*j.

It is easy to see that ¥*[ F] is an ideal in the Lie algebra X . Us-
ing this notation we can formulate the above result as

Theorem 6: Let 91 ¢ ¥ be a maximal ideal. Then there exists a z-ultra-
filter A on V such that @#1= Z¥ (A1,

Our next goal will be to prove that any ideal of the above form is in
fact a maximal ideal. But first we shall establish the existence of maximal
ideals in & . Here we have at least two possibilities how to proceed. We ha-
ve chosen that one which fits better into our setting.

Proposition 7: Let o ¢ X be an ideal. Then for any X g« we have
X (X)#@ for any neN*.

Proof: Let IocC be the ideal described in (G). We take any maximal ide
al McC such that M:)IU. According to (G) there is o ¢ {‘,‘4’ . Denoting A =
=Z*[M] we have by virtue of Prop. 6 &£ c T [ Al . Thus for any X €« and
any ne N* we have Z (X) € 4 , which implies Z (X)+8.

Theorem 7: let o« ¢ ¥ be an ideal. Then there exists a maximal ideal
M c X such that L ¢ 777 .

Proof: First we shall prove that there exists a vector field Y ¢ % such
that ZI(Y)=B. For this purpose let us take a Morse function f6¢C (i.e. a
function with nondegenerate critical points), and let us choose an auxiliary
riemannian metric g on V. We define a vector field Y € & by the equation

g(*,Y)=df.
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It can be immediately seen that 31(Y)=ﬂ.

By virtue of the previous proposition the vector field Y cannot belong
to any (proper) ideal. Let us consider now a family {«{; o"e = §of (proper)
ideals in X , each of which contains the ideal «£ , and let us assume that
this family is totally ordered with respect to the inclusion. The union
crL‘)Z.,C;,- is obviously an ideal in ¥ (possibly improper). But because for

any J°e = there is Y ¢ oL, , we have Y QJ%JZJJ , which shows that

JL‘)z ol is a proper ideal. Thus by virtue of the Zorn ‘s lemma there exists
a maximal ideal M ¢ ¥ such that o ¢ WT.

Let us consider an ideal of ¢ £ , and let 9 ¢ ¥ be a maximal ideal
such that « ¢ @ . Let A be a z-ultrafilter on V with the property #t =
= Z€[A], which exists by virtue of Th. 6. The family

{Zn(x); Xe€ol , n€N*3

of closed sets in V is a subfamily of the z-ultrafilter A , and therefore
has the finite intersection property. Consequently it generates a z-filter on
V.

Definition 3: Let o ¢ £ be an ideal. The z-filter on V generated by
the family {Zn(X), X e , NeN*} we shall denote by Z [L] . We shall call
o lfixed ideal if NZ(«L I %@, and free iceal if NZ [«L ]=Q.

Let L ¢ ¥ be a fixed ideal. It is easy to see that pe N [«L] if and
only if j;"(x)=0 for every X 6 of .

We recall that any family of closed sets with the finite intersection
preperty in a cempact tepological space has a nonempty intersection. From
this fellews easily

Proposition 8: If a manifold V is compact, then every ideal « ¢ ¥ is
fixed.

Proposition 9: For any z-filter ¥ on V, and any ideal £ ¢ & there
is
ZIZ¥[F])=F and ECLZ[LII L.

Proof: The inclusions ofc Z€LZLL1] and ZLZ*[F1) ¢ F are obvi-
ous. It remains to prove the inclusion Fc ZL(Z*[F]] .letZ e bea
closed set. There exists a function f € C such that Zu(f)=Zw(f)=Z. Obviously
for any O0&i&m and any ne N* there is Zn(fxil): Z, and thus % (fX;,) € 7.

This shows that fX;, & Z<L7¥] for every 0£i% m. Moreover there is
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1)50 Zu(fxi1)=z, which proves that Ze ZL X[ F1].

Theorem 8: Let A be a z-ultrafilter on V. Then ®1=Z*[R] is a max-
imal ideal in ¥ «

Proof: We know already that @@ is a (proper) ideal. According to Th.
7 there exists a maximal ideal M ¢ X such that % ¢ MM . Furthermore
by virtue of Th. é there is a z-ultrafilter A’ such that @'=Z*[A']. We
have therefore Z¥ (A1 e Z<LA'), which implies ZLZCLARNCZLZC[A1].
From this, using Prop. 9, we obtain & ¢ A' . But A isa z-ultrafilter, and
therefore A = A’ . Now we get ML= 9’ , which proves that @ = X€[A)is
a maximal ideal.

We recall that for any p € 3V we have denoted by A P the unique z-ult-
rafilter on V having the limit p.

Theorem 9: Let V be a paracompact C%-manifold. Then the correspondence
p —» Z%[AP] is one-one from BV onto the set of all maximal ideals in %.
This correspondence maps V¢ 3V onto the set of all fixed maximal ideals in X.
If peV, then

ZCIAP) = ix e x5 320004,

Proof: Using Th. 6 we can easily see that the mapping pt——» Z" [ A.p]
is surjective. Let us consider two points p,q € 8V such that Z<IAP) =
= Z*[A%. By virtue of the first formula in Prop. 9 we get AP- RY, and
consequently p=q. This proves that the mapping p I—-»Z"[A p,] is injective.

The equality Z*[AP}:-{xeX; j;°<X)=0} for peV is obvious. (We
recall that for peV ./lp is the family of all closed subsets of V contain-
ing the point p.) This shows that the mapping pr—aZ¥*[A p} maps V into the
set of all fixed maximal ideals in % . Conversely, let # =2¢{A] be a
fixed ideal. Then S=NZ[A] is a nonempty set. Obviously

Beci{XeX; j;’(X)=0 for every qe S§,

where the latter set is a proper ideal in ¥ . Now the maximality of @l imp-
lies
M={Xe X; jg"(x):O for every qe€S§.

But because for any two closed subsets Sl,Szc V satisfying Slg 52 there is
{Xe X% ; j;'(x)=0 for every qeS;} FiXex; jg’(x)=o for every g5},

we can see that S contains just one point, i.e. S=£{p}. Then W= {XeX;
j?(X)=0}, which finishes the proof.
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We denote now by Specm £ the set of all maximal ideals in the Lie alge-
bra & endowed with the Stone topology. Let us recall that this topology has
the family {1 ¢ Specm X ; X € 1}, X ¢ ¥ as a base for the closed sets.

Theorem 10: Let V be a paracompact C®-manifold. Then the corresponden-
ce p r—-»z"[.n.pl is a homeomorphism from B3V onto Specm & .

Proof: If Z¢ V is a closed subset, we denote ?= {pepv; Z lA.p}. We
recall that the system of all sets of the form ?, where Z¢V is an arbitrary
closed set, represents a base for the closed sets in the Stone-Cech compacti-
fication V.

We denote the mapping p > Z*LAPJ by v . First we shall prove that
t is continuous. Let X &« € be arbitrary, and let us denote AX= {MNe

eSpecm £ ; X € %t} . Obviously it suffices to prove that L—l(AX) is closed
in @BV. But for p € BV there is (p)= Z*[AP], and L(p)u\x if and only

if X6 2= LA P1. This means that zn(x)gnp for every ne¢ N® . We can now see

that
£

%
n=0 Tn

-1 2 p
A= D ips vy Z (0EATE =
is a closed subset in f3V.

Next we prove that + is a closed mapping. Here it suffices to prove that
for any closed set Ze¢V ¢ (‘Z\) is a closed set in Specm ¥ . Let 9% ¢
¢ Specm X . We can see that @ ¢ g(?) if and only if Z e ZL2t] . Similar-
ly as in the proof of Prop. 9 let us take a function f & C such that Zo(f)=
=2 go(£)=Z. We shall prove that

7 ZLW] ¢y £X;, @ WL for O&ifm.
It Z¢ LM, then % (£X;))3Z for every n&N*. This implies Z (fX;,)e
e ZLWN] for every ne N*, and consequently X ¢ 97t . (Notice that by vir-

tue of Th. 6 and Prop. 9 there is ZH(Z{91] =XC[ZLZCIAII] = T*IR]-
= 9l .) Conversely let X, e L for 0&i%sm. Then zo(fxn).ztml. we

m
can see that Z= g !O(fxn) ¢ ZLM] | Now it is obvious that
A
v (D)= ’;;% {Mg Specn X ; X, & W}
is a closed set in Specm & . This finishes the proof.
Let us assume now that the manifold V is not compact. We denote by %X c

the subset of ¥ consisting of all vector fields with compact support. ﬁc is
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obviously a free ideal in % .

Theorem 11: Let V be a paracompact C®-manifold which is not compact.
Then the intersection of all free maximal ideals in & coincides with %, .

Before starting the proof of Th. 11 we recall some facts. A z-filter &
on V is called prime z-filter if it has the following property: if 2',Z" &
€V are two closed sets such that Z'wZ "€ ¥ , then either Z'¢ ¥ or
7" ¢ ¥ . Every z-ultrafilter is a prime z-filter (see [1])). We call a z-
filter free or fixed according as the intersection of its members is empty or
nonempty. Obviously an ideal &£ ¢ ¥ 1is free (fixed) if and only if the z-
filter L€ [L] is free (fixed). A closed set Z¢V is compact if and only if
it belongs to no free z-filter (see [1}).

Proof of Th. 11: Let X ctc, and let ¥ ¢ £ be a free maximal ideal.
Further let A = £¥LF] . For any ne N* we denote

supp, X=c1,{p & V; J0(X) #0},
where clv denotes the closure in V. Obviously
supp, X vE (X)=Ve A.

A is a z—ultrafiltef, and therefore a prime z-filter. Consequently either
supp X & A or Zn(x) e A . But supp Xesupp X, and this implies that
supan is compact. Therefore suppn)( ¢ A because R is a free z-filter. Thus
we have zn(X) e A for every na N¥*, which means that X ¢ 99T . We have pro-
ved that xc is contained in the intersection of all free maximal ideals.

Conversely let us assume that X ¢ £ belongs to all free maximal ide-
als. Then ZD(X) belongs to all free z-ultrafilters. If ZD(X)=V, then X=0
and X & ¥.. Thus let us assume that Z,(X) § V. It suffices to prove that
supp X is compact. Let us suppose that this is not the case. Then it is not
difficult to see that there exists a closed noncompact set ZeV - ZO(X). (To
see this it suffices for example to embed V into a euclidean space.) Because
Z is not compact, there exists a free z-ultrafilter A such that Z €« A . We
get therefore ﬂ=Z'nZO(X) « A , which is a contradiction. This contradicti-
on shows that supp X is compact. We have proved that the intersection of all
free maximal ideals is contained in xc.
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