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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

REMARKS ON THE STRUCTURE OF tt-DEGREES BASED ON 

CONSTRUCTIVE MEASURE THEORY 

Osvald DEMUTH 

Abstract: Based on some results in constructive measure theory, classes 
of sets of natural numbers being of some interest from the point of view of 
both constructive mathematics and recursion theory are introduced and possi­
bility of mutual tt-reducibility of their members is studied and, moreover, 
an arithmetization of the Lebesgue measurability of sets of reals is propo­
sed. 

Key words: Recursion theory, constructive mathematics, measure theory, 
tt-reducibility, T-reducibility, constructive function of a real variable, 
Lebesgue measurability, B-measurability. 

Classification: 03D30, 03F65 

In [22] we showed that tt-reducibility of sets of natural numbers (NNs) 

can be studied (thanks to the well-known correspondence between sets of NNs 

and reals from £ 0 , 1 ] ) with the help of 0-uniformly continuous constructive 

functions of a real variable. In t7],£9J,£lO] and £12J constructive theory of 

the Lebesgue integral and Lebesgue measurability was created (for a summary 

and bibliography see [ 1 1 ] ) . Later, this theory was relativized and the re­

sults were used in the study of properties of Oini derivatives of construc­

tive functions of a real variable. Some classes of reals interesting in this 

connection were introduced in 116]. Classes of sets of NNs corresponding to 

them turned out to be of some interest from the point of view of recursion 

theory, too. Some results on one of these classes (the class of NAP-sets stu­

died by Kueera and Demuth) and the corresponding bibliography can be found in 

[20] and [21]. Other classes of such kind are introduced here. We use const­

ructive measure theory to get a few results on mutual tt-reducibility and T-

reducibility of members of these classes. 

The Lebesgue measure on the class of all sets of NNs introduced by Sacks 

[6] is called the classical measure here. We introduce a hierarchy of relati-

vizations of the constructive Lebesgue measure being equivalent to the cla-
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ssical measure. We already introduced the notion "a class of sets of NNs of 
B-measure zero" for any set B of NNs in 1221. 

We use the notation and terminology of £221. In particular, the symbols 
(J and V are variables for words in the alphabet 3 ; s, t, u, v, w, x, y and 
z (also with subscripts) are variables for natural numbers (NNs), i and j for 
integers, a, b and c for rational numbers (RtNs), jo , C and f for strings 
(of O s and I s ) , A, B and C for sets of NNs, X and Y for reals and, finally, 
S and T for 0-constructive real numbers (0-CRNs). The set of all words in 
2 being NNs (or, as the case may be, RtNs, binary rational numbers, strings 
or 0(x)-GRNs) is denoted by N (or Q, Q°, St, DLxl, respectively). We introdu­
ce several new notions. Let «D denote the finite set with (canonical) in­
dex x [5, p. 701. Note that y c 3 ) x «--• y< x holds for any NNs x and y. For 
any set E of NNs (or, of strings) let Card(E) be its cardinality. 

Let k be an NN, 24k. % x,x2...xk <x-,x2,...,xk> k denotes a primitive 
recursive one-to-one mapping of the set of all k-tuples of NNs onto N intro-

k k k duced in £51, p. 64, and ar,, *r2,...,jjrk primitive recursive functions of 

one variable such that <sr !^(z),m2(z),... ,ark(z)>k=z and ar^(z)*i«z hold for 
any NNs z and i, l*i-*k. We shall write <...> instead of < ...> k where­
ver possible. We denote by (f the partial recursive function of one variab­
le with index x, by Wv its domain and by W

s the finite subset of Wv enumera-
A 

ted after s steps. Analogously, for any set A of NNs, <? denotes the parti­
al A-recursive function of one variable with A-index x and W the domain of 
<*\ The notation y* has the usual meaning (see, e.g., C201). W x

, s is defi­
ned in £22}. We denote ¥x«y1»y2»-••»*£»<)

 by 9x ( yl , y2 , , , , , yk ) and' ana" 
logously, Vx^vh9'"*^^ by 9 x(yl,y2,,,,,yk) for any set A of NNs* 
For any NNs m and n, 14m,n, sJJ denotes a recursive function of m+1 variables 
being an "s-m-n-function" for our indexing of partial recursive functions and 
for that of relativized partial recursive functions, i.e. fulfilling the con­
ditional equality 
^(v1,v2,...,vm,y1,y2,...,yn)^?J

 ( yl , y2 , , , , , yn ) 

V x , vl , , , , , vm ; 

and the analogical equality without superscripts A at <& for any NNs x,v,,... 
...,v ,y,,...,y and any set A of NNs. Note that -fit means: both sides are de­
fined and equal, or both are undefined. 

For any sets or classes of sets E, and E 2 E,.4 E 2 denotes the symmet­
ric difference of them. 

Note that £*(*&) denotes classical measure of *& for any classically 
measurable class *£• of sets of NNs. There are an 0-algorithm ft~ of the type 
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(N — > Q b ) , a recursive function sd ("symmetric difference") of two variables 

and an NN en ("enumeration") such that fi^Ms < * « 5 > x > ),< 2>scj(x>y)>
 is 

a set of mutually incomparable (with respect to S ) strings, 

A 6 < asd(x,x)> E«=* A * ( < a > x > E . 4 < S > y > E ) , !^ n(x,y) and 2) « £ " 
?en(x,y) 

hold for any NNs x and y, any bi-infinite set A and any set B of NNs. 

Definition 1. Let A be a set of NNs. A real X is said to be 
a) A-computable if it is A-recursive (i.e. Set(X)*4j A holds); 

b) weakly A-computable if there is a (fundamental) A-sequence of RtNs 

converging to X; 

c) monotonically weakly A-computable if there is a monotone A-sequence 

of RtNs converging to X. 

Remark 2. Let A be a set of NNs. 

(i) A real is A-computable if and only if there is a canonically funda­

mental (or, an A-fundamental) A-sequence of 0-CRNs (in particular, of RtNs) 

converging to it. 

(ii) According to the relativized Limit Lemma I43, a real is weakly A-

computable if and only if it is A'-computable (i.e. A'-recursive). Any A-com­

putable real is, naturally, monotonically weakly A-computable. Moreover, a 

real X is A-computable if and only if there exist a non-decreasing A-sequence 

of 0-CRNs and a non-increasing A-sequence of 0-CRNs both converging to X. 

(iii) We can easily construct a recursive function nds such that, for 

any set B of NNs, ^ n d s C x ) ^ is a DOundecl non-decreasing B-sequence of RtNs 

for any NN x and, in addition, a real X is monotonically weakly B-computable 

if and only if there is an NN y such that the B-sequence ^^nde'v)-' conver­

ges either to X or to (- X). Thus, the class-|C:r« is a sum of a finite num­

ber of monotonically weakly B-computable reals J is, obviously, of B -measure 

zero. 

Sacks noted in £63 that, for any set M of reals from £0,13 and any real 

X, M is Lebesgue measurable and X is measure of M if and only if the class 

|A:r.c MJ of sets of NNs is classically measurable and X is its measure. We 

use this fact in the following definition. 

Definition 3. Let B be a set of NNs. 

1) A class ttt of sets of NNs is said to be (Lebesgue) B-measurable and 
a real X is called B-measure of 0t if there are a B-recursive function g and 

a class *£. of sets of NNs of B-measure zero such that WL is B-measurable by g 
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+«o +ao 
and < i , i.e. Vxy(tu0(sd(g(x),g(x+y)))^2"x) andflkAOJ n <3& , <>)&% 

v=0 w=v 9 W 

hold, and the canonically fundamental B-sequence i/tt»0(g(x))} of RtNs con­

verges to X. 

2) A set M of reals from 10,1] is said to be (Lebesgue) B-measurable 

and a real X is called B-measure of M if the class {A.r.dMl is B-measurable 

and X is its B-measure. 

Remark 4. Let B be a set of NNs. It is easy to show the following. 

1) .Any B-measurable class fctof sets of NNs is, naturally, classically 

measurable and £t#(flt) is a B-computable real being a B-measure of Itl . 

Relativizing (to B) [12] we get results on B-measurability. 
B B 

2) For any NN v, the bounded monotone B-sequence i ^nty m(v >v))} w 

of RtNs converges (and, thus, B'-converges) to classical measure of the (evi-
R F 

dently classically measurable) class < W ° > of sets of NNs. Consequently,the 

real ^ « W^ > ) is at least B'-computable and the class < W y > is B'-measu­

rable. It is B-measurable if and only if its classical measure is a B-comput­

able real. These results hold uniformly (effectively) in B and v and in B, v 

and a B-index of a canonically fundamental B-sequence of 0-CRNs (in particu-

lar, of RtNs) converging to ^u-«W°> ), respectively. 

On the basis of relativized Specker's example we can construct an NN vQ 

such that <«*« W > )=rR' and, thus,<W > is not B-measurable. vQ B vQ 

3) Let Vt be a classically measurable class of sets of NNs. According 

to well-known results on Lebesgue measurability of sets of reals and on sets 

of reals of the type G^* (see, e.g., £1, p. 661) there is a set C of NNs ful­

filling tt4(<(C)2x>
E)^2"*x, « S < ( C ) 2 x + 1 >

E
 fi aftu<(C) 2 x>

E and, conse-

E x 
quently, <K,( #t)-*,<*( <(C) 2 x + 1> )-* (tt( Wt)+2 for any NN x, where, for each 

NN z, (C)z^f*{y:<z,y>cC}. Using 2), we can easily show that ait is C'-measu-

rable. 

In Remark 4 we proved the following statement. 

Theorem 5. The class Wt of sets of NNs is classically measurable (i.e. 

Lebesgue measurable) and a real X is its classical measure if and only if the­

re is a set C of NNs such that flt is (Lebesgue) C-measurable and X is its C-

measure. 

Relativizing results from [10] and £12] we get the following. 
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Theorem 6. Let B be a set of NNs and dft a B-measurable class of sets of 

NNs. Then there are two recursive functions gQ and g, of one variable and two 

B-recursive functions p of one variable and k of two variables such that, for 

any NN v, 
D 

(a) EcfQ (V)-B is a canonically fundamental B-sequence of RtNs conver­

ging to (u.(<Vr , s > E ) which is less than 2"V; 

(b) for any set A of NNs fulfilling A + <W® (V)>
E, A € W t <s-4> 

<«# A € <«Dg/> N > holds and, moreover, A is a point of density for Zft , if 

A e t/t holds, or a point of dispersion for W. , if A $ W , and, in both 

cases, the B-recursive function flx(k*(v,x)) is a corresponding modulus. 

On the basis of this theorem we can get a strengthening of £22, Theorom 

41. 

Theorem 7. For any string x , any sets B and C of NNs and any B-measu­

rable class ttl of sets of NNs fulfilling (**(tti)< ^<tfJ E) there is a set A 

of NNs such that A e ( i ? r l E \ m ) , A * T ( B © C) and C -*T(B © A) hold (in 

fact, we have C .•• +.A). 

Remark 8. Let B be a set of NNs. According to Remark 2 and Theorem 7 

the class -tA:A-*TB| of sets of NNs is of B'-measure zero, but any B-measurab­

le class containing it has necessarily B-measure 1. Consequently, by Remark 

4, {A:A4TB$ cannot be B-measurable. 

If B is non-recursive then the class «CC:B.£TC| is of (B 3 0')-measure 

zero L22] and, consequently, by Remark 4 we get Sacks result £6}: the class 

of all sets of NNs T-comparable with B is of classical measure zero. 

Thus, any class of sets of NNs of classical measure zero can contain all 

sets T-comparable with a given non-recursive set, but if we have, in addition, 

information that the given class is of C-neasure zero we can construct C-re-

cursive sets which are not its elements. 

We introduce some notation. Let Tot=«fv: Vx(!« (x))J and let Lim be a 

partial 0 -recursive function such that Lim(v)aclim ^ v ( x ) holds for any 
x-*+o» 

v «Tot. Note that v«Tot *$ s?(v,y1,y2,...,yfn)«Tot is valid for any NNs m ^ l , 

v,yp...,ym. 
Let v be an NN such that 

(1) v«TotfcVx(!Lim(s*(v,x))) 
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and 

(2) Vx(4i«W . > E ) 4 2~X) 
Lim(sJ(v,x)) 

hold. Then, according to Remarks 2 and 4, for any NN x, the classes 

<W , K and LJ < W - > are 0'-measurable and their 0 -
Lim(sJ(v,x)r t=x Lim(sJ(v,t)) 

measures are not greater than 2~x and 2~x , respectively, and the class 2T , 

where T ^t C\ U < W , > L , is of 0'-measure zero (cf. Cl6]). 
v w=0 t=w Lim(s*(v,t)) 

Let, for any NNs v and w, Sn(v) denote the conjunction of (1) and (2) 

and let S(w,v) denote: w,v*Tot, 

Vx(Card(4y:^v(x,y) + ?v(x,y+l)i) 4y w(x)) and (2) hold. Notice that 

S(w,v) *fr Sp(v) is valid. 

Definition 9. Let z be an NN. A set A of NNs is called 

(a) an AP-set if there is a recursive function f such that A € <Wf/ *> 

and ft,(<Wf/xx> ) .<2~ x hold for any NN x (the term "effectively approximab-

le by £ , classes in measure" was introduced by Kucera in £2]); 

(b) an NAP-set if it is not an AP-set; 

(°) a z-WAP-set (z-weakly approximable ...) if there is an NN v such 

that S(z,v)feA€ r v; 
(d) a WAP-set if it is a y-WAP-set for some NN y; 
(e) %* NWAP-set if it is not a WAP-set. 

Let us notice that classes of arithmetical reals corresponding to these 

types of sets were introduced in Cl6]. Importance of these concepts for theo­

ry of differentiability of constructive functions of a real variable was de­

monstrated in £14] ,£15],£18] and [193. Here, being in a situation quite 

analogical to that described in £16], we shall remember a few results and 

introduce some notation used already in Cl6] and £17]. 

Rawrk 10. 1) In C20, p. 74] and C21, p. 92] a characterization of the 

recursive function e is given. The TT 3 class tf*T<W r s> (°* 0 -measure 
1 x=0 e w 

zero.) is just the class of all AP-sets. For any NN x,<W , %> is a proper co-

vering and <t*(<W / x> )<2 holds. By definition, any class of 0-measure 

zero contains AP-sets only. 
2) There are NNs 44 and 4£ such that S(-y-,*)0 holds and, for any set A 
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of NNs, A fulfils the formula (1) from £22, Theorem 2J if and only if A f 

4 3fL holds (we use notation from £17, Theorem 61 here). 

3) a) There are recursive functions A Q and JL such that for any 

NN z 6Tot we have S(.%Q(z), X,(z)) and any z-WAP-set is contained in the class 

TTj / x of 0'-measure zero £16, Remark 8 and p. 4601. 

o) There is an NN 4& such that ̂ (-t*) is valid and any WAP-set is con­

tained in the class 3 ^ of 0'-measure zero 116, Remark 81. Thus, 0'-almost 

any set of NNs is an NWAP-set. According to £16} and [17J the class of all 

WAP-sets is both a J,' 0 class and a £ * class being neither a IT* nor a 

r r O 0 ( x ) 

iT,,p class for any NN x. This class and its complement are everywhere 

dense. According to 2) and to Theorem 2 from £221 A'i»T(A © 0') holds for 

any NWAP-set A. 

Tneorea 11. Let f be a recursive function fulfilling ^ff^M^SFy^^ 
for any NNs v and x. Let z be an NN and A and B sets of NNs such that A is 

both an NAP-set and a z-WAP-set and A* TB holds. Then B is an f(z)-WAP-set. 

Proof. It is sufficient to use Theorem 18 from £211. 

Tneorea 12. 1) For any index y of the recursive function Ax(2 x + ), 

any set A fulfilling 0'.*TA is a y-WAP-set. 

2) For any set A of NNs fulfilling 0'*TA there are an NAP-set B and an 

NWAP-set C such that C'*J TB a ^ . 

Proof, a) There is an NAP-set L from an r.e. tt-degree for which r, is 

a monotonically weakly 0-computable real £20, Remark 201. L is, obviously, a 

v-WAP-set for any index v of the recursive function Ax(2 x). By Theorem 11, 

part 1) of our theorem is valid. 

b) Let A be a set of NNs, 0'aWA. By Kucera £2, Theorem 71, there is an 

NAP-set B such that B * TA. To the class Y^ (from the part 3b) of Remark 

10), the empty string and the set A we apply £22, Theorem 4j. We get an NWAP-

set C fulfilling C'*tT(C O 0') (Remark 10), C ̂ T(A © 0'), A4 T(C © 0') 

and, consequently, C'auA. 

In the sequel, we shall use constructive concepts and notation introdu­

ced in 1221 frequently. The following statement gives us some information a-

bout connections between 0-ucf-reducibility and (much stronger) mf-redueibi-

lity. 

Tneorea 13. Let F be an 0-uniformly continuous c-function and let, for 

any real Y, 
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\j) • V»Y> «Y» *^Y* Y* Y 

be classes of sets of NNs, where, for any sign A from the list < , <& , » , 

>,> , 3Y^4A:RCF.Kr A)* YJ. 

1) Let Y be a real. The classes 3* and 3* are of the type<W t
e t ( Y )> E 

and, consequently, (Set(Y))'-measurable. Thus, any of the classes (3) is 

(Set(Y))'-measurable and ^(3*)= p,(3* )- ^ ( 3 * ) holds. If ( u O * )= pOf) 

is valid then the classes (3) are even Set(Y)-measurable and the class 3Z is 

of Set(Y)-measure zero. 

2) There are 0-CRNs U« and U, being respectively the infimum and the 

supremum of the values reached by F on 0-CRNs from O A I and a non-decreasing 

(and, thus, 0-uniformly continuous) c-function G for which G(0)=0, G(l)=l and 

VXZ(0tiX-61«cU0*Z-*U1»^ (RiGKX)=Z «••• <*(3-f ) . 4 X ^ ^ ) ) ) hold. Thus, 

for any real Y from UnAU, and any set B of NNs, we have 

(Set(Y)*0_ucfB via F ) * * 8*3*, (Set(Y) « m fB via G ) * * <tc(3* ) . ^ r B * (tc(3y6) 

and, consequently, if (H-Ow^O holds then Y is an 0-computable real and the­

re is a rational segment a A D such that V X ( X t a A b « * RlGl(X)=Y). 

3) Let Y be a real, YcUpAUj. 

a) Let Y be 0-computable. Then 3Z is a non-empty TT? class. 

If (U(3Y)=0 holds then the class 3Z is of 0-measure zero and, consequ­

ently, it contains AP-sets only. 

If ^i(3w)>0 then the class 3Z contains 0'-recursive NWAP-sets and sets 

from r.e. tt-degrees being both NAP-sets and WAP-sets. 

b) Let Y be not 0-computable. Then |M»(3Y)=0 holds, the set A, where 

A & Set ( { * ( 3 * ) ) 9 is non-recursive, Set(Y) «§TA, 

(A is an AP-set) && Oy contains AP-sets only), 

Vz((A is a z-WAP-set) -m+ (3y contains z-WAP-sets only)) and 

(Set(Y) is weakly 1-generic) --•(3^ is of 0-measure zero). 

The following remark will help us to prove this theorem. 

Rework 14. 1) Let comp be a recursive function of two variables such 

that, for any NNs t and s, 4 a c o m p , t > s ) > is a set of mutually incomparable 

(with respect to fi) strings which are'incomparable with strings from 4 w | > 

and, in addition, the class < a
c o r n p(t, s)>

Ea < W ^ > E contains any set of NNs. 
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2) Let H be an 0-uniformly continuous c-function. There is a recursive 

function f such that Vxzab(f(x)*lh(cfz)&a,b*Seg( #z)~* |H(b)-H(a)| 4 

^ 2 ~ x ) holds. We use 122, Remark 63 and the s-m-n-theorem and construct re­

cursive functions UL, n^, p H and E, of one variable and a recursive predicate 

PM of three variables such that, for any NNs t, s and z, we have the follow­

ing: 

a) W ¥ t ) M x : R C H K S e g ( # x ) ) f i *°(t)i, W ^ £ W ^ , 

Wj5(t)=ix:3y(yeWm(t)gcH(E1(^(y)))<E1(*(x))<Er(i»(x))<H^ 

(for m see £221), Ŵ  ( t ) = 4 x:3y Vv(v € ^c^x^)"* RWl(«Tv)a*(x)--0)J 

and, consequently, 

( i ) A G O , ( t ) > E « * R£Hj(rA )c^°( t ) and Ac<Wn ( t ) > E 4 - > 

^ -#RlH](rA ) t tW t} hold for any set A of NNs (for £Wt3 see £22]); 

( i i ) i f H is non-decreasing then {B:R£HKrB)=XistWrj^tJ * •# Xc£W-. ^ 

holds f«r any real X C H ( 0 ) A H ( 1 ) and, thus, <W^ / - ( t ) ) * £^W > E is valid; 

( i i i ) i f <W. > is a proper covering then, for any real X from 

H(0)AH(l),-iB:R£H3(rB)=Xifi<W t>
E4-^ X«CWg.(t)3 holds and, thus, 

< \ (V t ) )> E « < W t > E l 8 f t , l f i l l 0 d ' 
b) PH is used as a selector, namely, P.,(t,s,z) implies 

(4) »(s)«Sfr°(t)&lh( ifz)=f(x0), 

where 

(5) xQ -. fix(2"
x< min(Er(^t))-Er(^(s)),E1(^(s))-E1(id<t)))); 

if (4) and (5) hold, then we have: PH(t,s,z) -#> R£H3(<fz)fc#P(t), 

lPH(t,s,z)«^R£H3(d
#
z)ASft(s)=0 and, consequently, 

< \ ( s ) > E e <^:PH(t,s,z)J>
E
S < » ^ ( t ) >

E is valid. 

Proof of Theorem 13. Part 1) of the theorem follows immediately from 

Remarks 2, 4 and 14. According to £83 and £13, Lemma 13, there are 0-CRNs 

IL and U,, being respectively the infimum and the supremum of values reached 

by F on (0-CRNs from) Q A I , and two 0-sequences 4VJ J andlM *!J of 0-CRNs 

such that the first of them is everywhere dense and, for any NN x, the class 

3y is 0-measurable and M is its 0-measure. Because of monotonicity of Vx 
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measure and*of 0-uniform continuity of F we have Vx* V «fr Mx*M , V X # U Q * * > 

^ V 0 ' U l < V x a i # , M x 5 : l » u n < V x < V y < U l " * 0 < M x < M y < ] L f o r a n y NNs x a n d y* 

We construct an 0-sequence tG i x of non-decreasing polygonal c-functions 

such that, for any NN x, there is. an increasing f in i te sequence 

i S x , i * i * 0 o f *-CRNs ft**inin9 Sx,Cf°> Gx(Sx,0)=U0> Sx,kx
=1> Gx ( Sx,kx

) = U l and> 

for any NNs i and z, 3y (S x i
=My« tGx(SX)i)=Gx+z(Sx>i)=Vy), i f 0 < i < k x holds, 

Gx is linear on the segment Sx %&$x i + 1 and 0 *G x (S x i + 1 ) -G x (S x 1 ) <2~ x is 

valid, i f 0 4 i < k holds. There is a non-decreasing (thus, 0-uniformly conti­

nuous £22, Remark 6!) c-function G being a limit of the canonically uniformly 

fundamental 0-sequence *GX*X of c-functions (consequently, Vxi(0 4 i £ k x =*& 

*&• G(S .)=G (S . ) ) . The described properties of G and monotonicity of mea-
X , 1 X X, X 

sure imply 2). 
According to 2) and Remark 14 

holds for any NN x and, thus, 

<8> f-«wnF(pr(t))>
E)'-^<wt>E) 

and f b 

(9) Set( <*(;)«)). < W t >
E - ^ D ; S 4W-,F<:pG(t))>

E 

are valid for any NN t and any non-0-computable real Y from U n 6 U r 

Let Y be a real from U Q 4 U r By 1), 3y
 is a non-empty TTj,Set(Y)class, 

f t O ^ M - < w » « ^ e t ( Y ) > E ) , where k is an NN such that 3*v ->£ = <W S e t ( Y )> E. 

a) Let Y be 0-computable. 

If 4U»(Jy)-0 then the TT? class 3y is of 0-measure zero. 

Let f*(j^)>0 hold. There are NNs i and j fulfilling ^ ( 4 ^ e t ( Y ) > E ) < 

<l-2~ i + 1 and < W j >
E = < W e ( i ) >

E ^ < W S e t ( Y ) > E . By Remark 10, < W j > is a pro­

per covering containing all AP-sets. We apply (i) Theorem 7 to the empty 

string, the 0'-measurable class<W.> ^ f^ of 0'-measure less than 1 and 

any 0'-recursive set (see Remark 10) and (ii) Theorem 33 from £201 to < W . > 

and any T-complete 0-r.e. set (see Theorem 12). The proof of part 3a) is fi­

nished. 
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b) Let Y be non-0-computable and let A & Set(fc(3*)). Then 0<TSet(Y), 

UQ<U1, RlGKrA)=Y and, hence, by £22, Theorem 153, Set(Y) * TA. On account 

of (8) and (9) we can limit ourselves to the following: (i) Let Jy contain 

AP-sets only. Then, by Remarks 10 and 14 and by (7), for any NN x, we have 

^s<We(x)>E> A*<«nG(q-F(e(x))f
E "* tli\<.V«*»^* P****?* 

<2~*. Thus, by definition, A is an AP-set. 

(ii) Let Set(Y) be weakly 1-generic [33. We construct an 0-sequence 

UJlzl of 0-CRNs contained and dense in UgVU, and such that no Tx is equal 
to a value of the c-function G in a rational point. For any NNs x and y, 

4̂,(3-*)= fiOf) and, hence, we can construct NNs s , t and vx fulfil-

lin/T x«*°(s X ) y), *<8 X f y).«P(t X f y), ^ « W - ; ( V y ) >
i ) < 2 - x - y : i and 

UM = '(z«pc(tv w,sv w,z)} (see Remark 14) and, consequently, by Remark 14 * v w
 r x»y x»y x,y 

-x-y-1 and (6), <lfe( >>'• O > ' and ^ ( v ^ X : 
r x,y x,y 

Thus, the open set t-£z: Jx(z=sx )13 of reals is dense in Up^Up con­

sequently, it contains Y (because of weak 1-genericity of Set(Y)), and the 

+• F _v 
0-measurable set KJ O > of 0-measure less than 2 ' contains 3Y *

or 

z=0 vz,y 
any NN y. 

Hence, 3Z is of 0-measure zero and the proof is finished. 

" Rework 15. 1) Let C be an SBI-set and let N ^ H ^ C . Then according 

to 122, Theorem 93 and Theorem 13 (parts 2 and 3b, where Y *§»• rM) there is a 

set A of NNs fulfilling M4fflfA (and, thus, M*ttA, if M is an SBI-set), 

M «TA, (A is an AP-set) scs> (C is an AP-set), Vz((A is a z-WAP-set) -•--• 
«ss> (C is a z-WAP-set)), (M is weakly 1-generic) «-^(C is contained in a class 

of 0-measure zero (and, thus, C is an AP-set)). 

2) According to 1223 any NAP-set and any bi-infinite (in particular,non-

recursive) set of the type B Q B are SBI-sets. 

Theorem 16. 1) No weakly 1-generic set is tt-reducible to an NAP-set. 

2) If a non-recursive set B is tt-reducible to an NAP-set C then there 

is an NAP-set A such that B.fittA 4--B and Vz((A is a z-WAP-set) « • (C is a z-
WAP-set)) hold. 

Proof. It is sufficient to use Remark 15 and C22, Remark 83. 

Definition 17. A property of sets of NNs is said to be valid for B-al-

most any set (or, equivalently, B-almost everywhere) if there is a class 19& 
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of sets of NNs of B-measure zero such that any set A of NNs fulfilling 

A 4. TBtl has the property. 

Theorem 18. For 0'-almost any set A of NNs we can construct an 

(A © 0')-recursive set B being both an NAP-set and a q-WAP-set, where q is 

any NN such that 

(10) y q= Ax(3
2 x) 

is valid, and fulfilling A-§0_uc:fB and A -i^B. 

, Note that 0'-almost any set of NNs is an NWAP-set (Remark 10). 

Proof. Let M denote the set {z.l-Sz *3 X{ and Lfcx,yl the segment 

(y-l).3~x4y.3~x for any NNs x and y. 

1) We construct a partial recursive function TT of two variables and an 

0-uniformly continuous c-function F such that, for any NN x, (i) the set M« 

is the domain and M the range of the function .fty Tt(x,y), T ! ( l , 3 . ( v - l ) + t ) . a r v 

and 

?.(x+l,32x.(3.(v-l)+t-l)+y)^ 

and, consequently, Card( \ z:n(x,z)aCw J)=3X hold for any v and t from M,, any 

y*M 2 x and any wcM x; 

(ii) F(0)=0, F(l)=l, 0 * F 4 1 hold and F maps the segment LC2x,z] onto 

Ltx,rT(x,z)J for any z«M 2 . 

For any NNs x and s, where 9 *il , we denote by l£x,sj the union 

U L{x,H(x,w)3, i.e. the F-image of \J LC2x,wl. 

wc2Ds
 w € ^ s 

2) For any NN k, let {a. + * D k -3+ ̂ e an 0~secluence of mutually non-o­

verlapping rational segments with binary rational end points enumerating the 

set ^Se9(<Jf
t):t*Wnol(e(2k+4))i (see I.22J and Remark 10). 

w 
The predicate v*wl% £ |a„ + 4 b , +AL£2X,V.1|.43 . |Lt2x,yl| of variab-

t=v ' ' 

les u,v,w,x,y, and z is denoted by Pn, the predicate Vs(v^s *•# 

«a^Pn(u,v,s, x,y,z)) of variables u,v,x,y and z by P and the predicate 

( V t ) t i v 5 i ^ a u t=i,3"2x*bu t=^,3"2X) o f v a r i a b l e s u » v a n d x ° y R - L e t u s 

note that P(k,0,o',l,k+2) holds'for any NN k. 

We construct a recursive function gn of six variables and an 0'-recursi­

ve function g of five variables such that, for any NNs k,u,v,x,z and t, where 

l & v * 3 feu.£x holds, we have 
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\(k,U,W,tf ^ : V ' M 2 x & ( 3 w ) ^ x ^ f.s<n(X,s)*wfcL£2x,slftLC2u)vl&. 

oVPQ(k,0,t,x,s,z)vs=3
 x+l))i and g(k,u,v,x,z)£-Uim gn(k,u,v,x,z,s) and, 

s->+oo 

consequently, the following, where (for brevity) we replace "k,u,v,x,z" b y * . , 

(i) Card(£Dg (* t))-* 3
X~U, Card(«£s:g0(*,s)-i.g0U,s+l)})-;3

2-(x*"u) and 

t € ® g ( * ) * * ( 3 w ) w € M (t^^y^(x,y)^wo\LC2x,y]fiLC2u,v]8cP(k,0,x,y,z)); 

(ii) *{LCx,n(x,w)l :w c S) n /_. +\i is a set of non-overlapping segments 
9fj ' 

and, thus, <u(I Cx,gQ(* ,t)l)=3~
x.Card(S)g (# t ) ) ; 

(iii) if p and r are NNs fulfilling p£z&P(k,0,u,v,p)&P(k,r+l,u,v,2z.& 

&R(k,r,x) then Card(Q) (j|t))i3
x""u.(l-3",:Hl) and, hence, fi(l C x,g(* )J) 2; 

£(l-3~p+1).|LCu,n(u,v)_| hold. 

3) We suppose to have a fixed enumeration of all finite sequences of NNs 

such that any index of a finite sequence of NNs majorizes all members of the 

sequence. We shall construct a recursive function h of two variables. Let x 

be an NN. We shall distinguish two cases. 

a) There are an NN m and two increasing finite sequences •fn.$?mn*
2 and 

•IxJT 0 of NNs such that x =x and, for any NN j, 0-*j-»m, the sequence 

*ni*i=0 nas index xj and R(n0 , n2i+l , n2i+2 )^ , (^ < m s =^ xi < n2i+4 ) nolds# For any 

NN t, we construct a finite sequence is. JT_ n of NNs fulfilling s+ n= 

=g0(nQ,0,l,x0,n0+3,t) and 

a st,j+i = w i $ Q
 S D 9 0

( n 0 ' x j ' w ' x > r r b + > 4 ' t ) 

St,j 

for any NN j, 0* j<m, and we put h(x,t)=s. . 

b) In the other case we define h(x,t)=0 for any NN t (SL=0). 

Thus, Card(-Ct:h(x,t)»^h(x,t+l)})-i32x holds for any NN x. Let 

H 5g* X x(lim h(x,t)). Then H is an 0'-recursive function and according to 

t-M-OO 

2) <C4.( ij LL2x,wl)6 3~x holds for any NN x. Hence, for any NN q and any 
w**H(x) 

set B of NNs such that (10) is valid and the set *x:rB - * KJ Ll2x,w2| is 
w**>H(x) 

infinite, B is, by definition, a q-WAP-set. 
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10 
4) Let k be an NN. We construct increasing 0'-sequences i r v , + i t and 

and {xk t j J of NNs such that r̂  Q=k and r̂  1=f*w(k<wftP(k,w+l,0,1»2(k+3))) 

is valid , and, for any NN s, "1/23+2° ̂ ' V 2 s + l < z & R ^ , n k 2 s + l , Z ^ h o l d s» 

the f inite sequence^ £\IQ2 has index xk Q and r̂  2s+3=(tcw(xk s < w 8c 

feVy(y4 3 H ( x ) - *P(k ,w+l ,x k s>y,2(k+s+4)))) is valid. Then, according to 
K.%S 

2) and 3 ) , for any NN s, 

(11) Vy(y € % x ) ^P(k ,0 ,x k > s ,y ,k+s+3) ) 

holds, I tx k Q,H(xk Q)1 is contained in O A I and i ts measure is at least 

(1-3-X-1), I t x k > s + 1 , H ( x k s H ) U l tx k j S ,H(x k ) S ) l and 

< u ( I t x k , s + P H ( x k , s + l ) } ) 2 : a " " r k " S " 2 ) - < , A ( U x k ,s» H ( x k ,s ) 1 ) I***' Consequent­
ly , the class 

(12) r T iCx k s ,H(x k s ) l 

of reals being of the type O a l \ Ew!j } is contained in Onl, its measure is 

at least (l-3"k) and 0'-computable and, hence, (12) is 0'-measurable. 

5) Let k be an NN and A a non-recursive SBI-set such that rA is in (12). 
Then, according to 2), for any NN s there is just one NN wg fulfilling 

(13) ws« ̂ (Xj^^^A^^^^^k.s^s^ 

and, thus, Ltfx|< s+it
w
s+i-*-*

LC2xk s»
w
s-*

 holds for anv m s- Moreover, &s(wg) 

is, obviously, an (A © 0')-recursive function. Hence, there is an (A 6> 0')-

recursive set B fulfilling r0ftLE2xk s,wg3 for any NN s. This together with 
3) and validity of (11) and (13) for any NN s gives us: B is a q-WAP-set, whe­
re (10) holds, A* 0 - | J c fB by F and B 4 < W e ( 2 k + 4 ) >

E hold. To finish the proof 
it is sufficient to use Remark 10, 122, Theorem 93 and to notice that 0'-al­
most any set is a non-recursive SBI-set (Remark 8 and £22, Remark 8]). 
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