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S(n)-SPACES AND H-SETS 

L. STRAMACCIA 

Abstract; Let X be an S(n)-space, n«N. By means of the 8 -closure ope­
rator, introduced in £DG3, we define certain subspaces of X, called S(n)-sets, 
and study their relationships to H-sets and 8-closed sets. 
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Classification: 54D25, 54B05, 54010 

Introduction. A Hausdorff space X is said to be H-closed if it is clo­

sed in every Hausdorff space in which it can be embedded. Such a property is 

productive but, in general, it is neither hereditary nor closed hereditary. 

For an account on H-closed spaces see tPTJ and CDPJ. A subset M of a topolo­

gical space X is an H-set if every cover of it by open sets of X has a finite 

subfamily which covers M with the closures of its members. The concept of H-

set was introduced in £V3 and, independently, in £PTJ under the name of H-clo­

sed relative to X. An H-set of an H-closed space need not be H-closed as a 

space. 

Closely related to the study of H-sets is the 8-closure operator, also 

defined in IV3. The 8-closure of M in X is the set clQM= -Cx cX:vY»M#0, for 

every open neighborhood V of xj. M is 8-closed iff M=clQM. 

The following results are well known: 

(a) Every 8-closed subset of an H-closed space is an H-set CVJ. 

(b) If X is H-closed and Urysohn, then McX is 8-closed iff it is an H-

set £DP1. 

(c) M is an H-set of a space X iff, for every filter If on X, which 

meets M, Mnadg^*4-0, where adg . f= fUclgF:f « f\ £Haj. Recently, Dikranjan 

and Giuli £DG3 have introduced a 8n-closure operator, ncN, for the study of 

S(n)-closed and S(n)-8-closed spaces. The S(n)'s, n€N, form a class of quo­

tient reflective subcategories of the category of topological spaces, which 

includes that of T--spaces (n=0), Hausdorff spaces (n=l) and Urysohn spaces 
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(n=2). In tPVj S(ot)~spaces were firstly defined, for every ordinal oc . In 

the present note we study H-sets, 8-closed sets and related concepts in the 

above categories. In particular we give the notions of S(n)-set by means of 

special filters and covers, and give the correspective of statements (a), 

(b) and (c) in the categories S(n), n#N. 

1. Preliminary notions. Let X be any topological space and let McX. The 

8n-closure of M in X £DG3, n>0, is the set cl M defined by the following . 
8 n 

property: if x « X , then x^cl M means that there exists a finite sequence 
8 n 

u\,...,U of open neighborhoods of x, with 

(a) B.jCU^p i=l,...,n-l. 

(b) TJnnM=0. 
In such a case x and M are said to be S(n)-separated in X. For n=0 one puts 

cl M=fJ, ordinary closure in X. Note that the 8 -closure coincides with the 8-
« n 

closure defined in the introduction. 
M is «n-closed iff M=cl M. Every 8n-closed subset of X is closed. Cor-

8 

respondingly, there is a notion of 8 -interior defined by int M=X-cl (X-M). 
8 n 8 

The form of S(n)-separatedness between two distinct points x,y«X may be 

simplified as follows IDG1, 1.4(b): 

x and y are S(n)-separated in X, n > 0 , iff there are open neighborhoods U, V 
of x, y, respectively, such that U#iV=0 and ycint ,V. A topological space 

8 
X is an S(n)-space if every two distinct points of X are S(n)-separated. 

2. Results 

2.1. Definitions. Let X be any topological space, M a subset of X, and 

let n£0. 

(a) A filter & on X is an S(n)-filter with respect to M if M o ad & = 

=Mnad n t? , where ad nf = Aid F:F « *l. 
8 8 8̂  
(b) A cover iUjlj of M by open sets of X, is an S(n)-cover with respect 

to M if McU<int U. : i€ l l . 
8n x 

(c) M is an S(n)-*set of X if every closed S(n)-filter w.r. to M,which 

meets M, has adherent points in M. 

The former two definitions are taken from EDO, but relativized to the 
subset M of X. The definition of S(n)-set is clearly inspired to that of 
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H-set and this will be clear later on. 

Let m > n £ 0 be integers. It is easy to realize that, for a subset M of 

X, one has cl Mccl M, hence int MCint M. From this observation it fol-
8n gm gm Qn 

lows that every S(m)-cover (resp. S(m)-filter) w.r. to M is an S(n)-cover 

(resp. S(n)-filter) w.r. to M. Then, every S(n)-set of X is an S(m)-set. 

The S(0)-sets of X are exactly the compact subsets. Hence, a compact sub­

set M of X is (an H-set and) an S(n)-set of X, for every n>*0. 

2.2. Proposition. M is an S(n)-set of X, n«?0, iff every S(n)-cover w.r. 

to M has a finite subcover. 

Proof. Let M be an S(n)-set of X, nZO, and let CU^j be an S(n)-cover 

w.r. to M which has no finite subcover. For every finite subset 06 c I, let 

f. =X-.<*J U.. The closed filter & generated by the F^ 's is then a closed 

S(n)-filter w.r. to M which meets M and has no adherent points in M, in fact 

Maad$r=Mnad n ^ = 0 , since Mnad g = M n ( Q c l F , )=M/\(Acl n(X-.UU.))= «n gn cc «n <* m „n if*c 1 

- M A ( 0 . (X-int^ £ U 1 » e M r . C £ ( X - ^ i - y ^ - M - t C X - tfinyi.)-*. 

Conversely, suppose that $ = -CF.lj is a closed S(n)-filter w.r. .to M 

which meets M and such that Mnad n 9 =0. Let us define U4=X-F., for every 
8n 1 1 

i ft I. Then 4U.)j is a cover of M by open sets of X. Moreover, it is an S(n)-

cover w.r. to M which has no finite subcover. 

The following results give the relations of the concepts of H-sets, S(n)-

0-closed and 8n-closed subsets of a given space. 

2.3. Proposition. Every H-set of a space X is an S(n)-set, for every 

n*0. 

Proof. Let M be an H-set of X; by the remark above, in order to prove 

the proposition, i t i s suff ic ient to show that M is an S(l)-set of X. 

Let i U j I j be an S(l)-cover w.r. to M. For every xeM there is an index 

i ( x ) c l such that x ^ i n t g U ^ v . Then x and X - i n t g U ^ ) are S(i)-separated in 

X, hence there is an open neighborhood V*/x\ of x with ^ w \A(X-intJLL/ 0 = 

=0, that is ^ ( x ^ i n t g U ^ ) . Since M is an H-set, the c o v e r i V ^ . I x<fvJ of M 

admits a f i n i t e subfamily i V i ( x ) f . . . , V i ( x ) i with Mc J ^ V ^ T " ) . I t follows 

that i U ^ x $kOl i s a f i n i t e subcover of iu^ lp so that M is an S(l)-set of X. 
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2.4. Proposition. Let M be an S(n)-set, n > 0 , of a space (X,f). M is 

compact in (X, nc _)» where % _ is the topology generated on X by the 8n-
T 8 n 8 n 

closure. 

Proof. If iUjlj is a cover of M with x _-open sets of X, then -£UiiI is 
an S(n)-cover w.r. to M, so it admits a finite subcover. 

2.5. Proposition. Let X be an S(n)-space, n >0. If M is an S(n-l)-set 

of X, then M is 8-closed in X. 

Proof. The proof goes almost on the same line of that of Th. 2.2 of 

IDG1. We give it for sake of completeness. 

Suppose there is a point x«.clgM-M. Then, for every meM, x and m are 

S(n)-separated. This means that there are open neighborhoods U and V of m, 

x, respectively, such that meint _ ,u" and U moV =0. tU.J _,.,_, is an S(n-l)-' nn-l m m m m m^M 
cover w.r. to M, hence it has a finite subcover iU ,...,U I. Setting V= 

k — I K 
f*\ V , then Vr\M=0, by hypothesis. Since V is an open neighborhood of x, 

" i=l mi 
this is a contradiction to x«cl«M-M, hence M has to be 8-closed. 

In IDG} an S(n)-space M, n>0, is defined to be S(n)-8-closed if it is 

closed in every S(n)-space in which it can be embedded. By Th. 2.2 of £DG1, X 

is S(n)-8-closed, n > l , if and only if it is an S(n-l)-set of itself. Every 

S(n)-8-closed space is S(n)-closed. A space X which is H-closed and Urysohn 

is S(n)-8-closed, for every n>l. 

Also in IDG1, Ex. 4.4, there is exhibited a space X which is Urysohn 

(= S(2))-8-qlosed and not H-closed. This can be read by saying that such an X 

is an S(l)-set of itself but not an H-set; hence the converse of Prop. 2.3 

does not hold. 

2.6. Proposition. Let X be S(n)-8-closed, n>l, and let McX. M is an 

S(n-l)-set of X whenever it is 8-closed in X. 

Proof. Let -CÛ -. be an S(n-l)-cover w.r. to M. Then iX-MluiU^j is an 

S(n-l)-cover w.r. to X. The proposition follows by the remark above. 

2.7. Theorem. Let X be an S(2)-8-closed space and let McX. Consider 

the following statements: 

(a) M is an H-set of X. 

(b) M is an S(l)-set of X. 

(c) M=C1QM. 
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Then (a) — .» (b) «->(c) always. In case X is an S(2)-space which is H-closed, 

(a), (b) and (c) are all equivalent. 

Proof. The implication (a)—*(b) is contained in Prop. 2.3. The equi­

valence of (b) and (c) follows from Prop. 2.5 and 2.6, for n=2. The last as­

sertion is motivated by (b) of the introduction. 

The following example is a modification of £HE1, Beisp. 5 and £DG1, Ex. 

4.3. Let I = I , u L u L be a partition of the unit real interval, where each 

I., i=l,2,3, is dense in I and 0 6 I.. Let us denote by € the coarsest topo­

logy on I, containing the usual compact topology x and I2, I, as open sets. 

(I,6f) is an S(2)-space; it is actually an S(2)-closed space which is not H-

closed. 

Let (x ) be any sequence, contained in I-,, converging to 0 in (I,r)»D=-

= 4x„:ncNl is 8-closed in (I,«T), that is D * €*«, hence 6_ > % and D is 
n u a 

not compact in (I, OV,). By Prop. 2.4, D cannot be an S(l)-set of (I,ef). 

2.8. Definition. Let X be an S(n)-space. A subset M of X is said to be 

S(n)-embedded in X if, for every open set V of X, one has 

Mnint J/=intM(MnV), 
8 n 8 n 

where int n denotes the 8
n-interior in the subspace M of X. 

8 n 

2.9. Theorem. Let X be an S(n)-8-closed space, n >1, and let M c X be 

S(n-l)-embedded in X. 

Consider the following statements: 

(a) M is an S(n)-8-closed space. 

(b) M is an S(n-l)-set of X. 

Then ( a ) — * (b) always and (a) «-*(b) for n=2. 

Proof. Suppose M is an S(n)-8-closed space in the induced topology from 

X. Then the implication ( a ) — • (b) follows from the remark preceding Prop. 

2.6 and from the easy observation that, for every space X and M c Y c X , M is 

and S(m)-set of X whenever it is an S(m)-set of Y, m«N. 

Let now n=2 and assume that M is an S(l)-set of X. Let -CU-l-r be an S(D-

cover w.r. to M; then U.=MnV., V. open in X, for every i*I. The family 

*Mnint n.1Vii = - t i n t ^ - U . I is a cover of M. Now {X -Mlv i iV . i j is an S(l)-co-
8 8 

ver w.r. to X by Th. 2.7, hence it admits a finite subcover IX-M, V, ,...,V4 |. 
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It follows that * U . ,...,U, 1 is a finite subcover for M, so that M is S(2)-
h lm 

^-closed. 

o© 
Let X be the subset {(0,0)}u KJ {l/nl*£0,l/nlof the Euclidean plane. 

n=l 
Let X be the weakest topology on X, finer than the subspace topology ST and 

containing as closed subsets all subsets of F= {(l/n,0):n *N|. Then (X,t) 

is an H-closed Urysohn space while M = C 1 Q F = F M < ( 0 , 0 ) | is an H-set and an S(l)-

set of X which is not S(l)-embedded in X (cf. COG], Ex. 4.2). 

« I wish to thank 0. Oikranjan for reading the manuscript. 
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