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A NOTE ON TOEPLITZ OPERATORS 

ON BERGMAN SPACES 

Miros lav ENGLIŠ 

2 
Abstract; Toeplitz operators on the Hardy space H of the unit c i rc le 

are characterized by the intertwining relat ion 
S*TS=T. 

In this paper it is shown that no such characterization exists for Toeplitz -
operators on the Bergman space of the unit disc. 
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2 
Let H be the Hardy space on the unit circle T and let f*L*°(T). The 

2 2 
Toeplitz operator with the symbol f is the operator on H sending x * H to 

2 2 
P+fx, where P+ is the orthogonal projection of L (T) onto H . It is easily 
seen that 

Tz TfTz=Tf for anv **L*°(T). 

According to a classical result, the converse also holds: if an operator T on 

H satisfies T*TT =T, then T=Tf for some f*L**(T). This result serves as a 

starting point for the theory of symbols of operators (cf. ClJ,£2J). 

2 2 

Consider now the Bergman space H (0), the (closed) subspace of L (0), 

consisting of functions analytic in the unit disc 0. For f c L °*(D), we can 

define the Toeplitz operator Tf in the same way as above. It is natural to 

ask if there is a similar intertwining relation characterizing these Toeplitz 

operators. 
The following theorem shows that the answer is negative. 

2 
Theorem. Let A, B be operators on H (0) such that 

ATfB=Tf for all ftL^CD). 

Then both A and B are scalar multiples of the identity. 

Proof. For any f *L**(D) and x%H (0), we have 
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TfTzx=P+fP+zx=P+fzx=Tfzx, 

i.e. TfT =Tf , and so 

ATfBTz=TfTz=Tfz=ATfzBSATfTzB, 

consequently 

ATf(BT2-T2B)=0. 

We are going to prove BT-TB=0.Suppose on the contrary that there is 

some x-fcO in Ran(BT -T B). Then, by the last relation, 

ATfx=0 for all fa.L~(D), 
2 

so the kernel of A contains the set { T f x $ f t L ^ D ) } . Consider some y « H (D) 

orthogonal to this set. Then (dz is the planar Lebesgue measure on D) 

0=<y,Tfx> = <y,P fx> = <y,fx>= f y(z)HzTx"(z7 dz 1 + 'D 

for all f*L**(D); because *y*L (D), we conclude that x>=0, and this is only 
possible if at least one of the analytic functions x, y is identically zero. 
But x4»0 by assumption, so y must be zero, which means that our set is dense 

2 
in H (D). Because this set is contained in Ker A, we have A=0, so Tf=ATfB=0 

for all f - a contradiction. This proves that BT -T B=0. 

Denote B^gt-H^D). Then 

Bzn=BTnl=TnBl=zng for a l l nJTO, 

and, consequently, 
Bp=g.p 

2 

for all polynomials p(Z). For x € H (0), take a sequence ip | of polynomials, 

converging to x in the H (D) norm. Then also Bp -^ Bx in norm. Because point 

evaluations are continuous functionals, we have 

p n(z)-*x(z) and (Bpn)(z)-*(Bx)(z) 

for any z*D. On the other hand, 

(Bpn)(z)=(png)(z)=pn(z)g(z)-*x(z)g(z), for all z«0. 

Consequently, Bx=gx for all x*H (0), i.e. B is the operator of multiplicati­

on by g%H 2(D). 

Now ATfB=Tf for all f€L~(D) implies B ^ T ^ * ^ for all f«L*»(0);thus, 
we can deduce in the same way that A* is the operator of multiplication by 

h«H 2(D). Hence tePjn*!^. 
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Summing up, we see that our original relation has the form 

Tj-TfT =Tf for all f«L°°(D). 

Take f=l and note that T,=T and 

Vg x = P^ P+ g x = P+^ g x = TRg x for a11 X € H 2 ( D ) » 

because g is analytic in D; so 

V1-
For m, n nonnegative integers, zm and z11 belong to H (D), and the last 

formula gives 
<rlgzm,zn>=<zm,zn>, 

i.e. 
f zWzTg(z) dz= fzmzndz. 
''O 'm 

This means that the finite complex measure (h(zjg(z)-l)dz on 0 is annihilat­

ed by all monomials zm2n, m,n20; by linearity and the Stone-Weierstrass the­

orem, it is annihilated by all functions continuous on IT, and so is the zero 

measure and necessarily 

hg=l on D. 

But this means that the function h=l/g is both analytic and antianalytic, and 

so must be constant. Q.E.D. 

R e f e r e n c e s 

111 V. PL4K, P. VRB0V4: Operators of Toeplitz and Hankel type, Acta Sci. 
Math. Szeged, in print. 

£21 V. PT4K, P. VRBOVA: Lifting intertwining relations, Int. Eq. Oper. Theo­
ry, in print. 

£33 B. SZOKEFA.VY-NAGY, C. FOIAS: Toeplitz type operators and hyponormality, 
in Dilation theory, Toeplitz operators and other topics, Operator 
Theory 11, Birkhauser Verlag 1983, pp. 371-378. 

Mathematical Institute of CSAV, 2itna" 25, 115 67 Prague, Czechoslovakia 

(Oblátům 18.11. 1987) 

- 219 


		webmaster@dml.cz
	2012-04-28T15:48:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




