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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,1 (1988) 

ON CARATHgODORY 'S AND KREIN-MILMAN'S THEOREMS 

IN FULLY ORDERED GROUPS 

Siegfr ied HELBIG 

Abstract: In a fu l l y ordered group (F ' , . * ,© ) we introduce an algebraic 
structure by inducing a further binary operation by the order and extending F' 
about a zero-element u". Provided with this algebraic structure, we prove in 

Fn, the n-fold cartesian product of F:=Fu4u"i}, the theorems of Caratheodory 
and Krein-Milman. Here, Caratheodory s theorem is proved not by a reduction 
step - as be usually done in linear spaces - , but by solving a certain syst­
em of equalities which is linear with respect to the operations © and * . 
To prove Krein-Milman s theorem, we state some results of separation theory 
in such algebraic structures. 

Key words: Ordered algebraic structure, convexity concept, Theorem of 
Caratheodory, Theorem of Krein-Milman. 

Classification: 06F99, 52A01, 46P05 

I . Introduction. Let (F' ,«-»,• ) be a fu l l y ordered group with neutral 

element I and le t t) be an element not belonging to F'. Extend *& and • on 

F:=F'u{TJl by 

0»x=x»(J=0 and"0^x for each x c F , 

and introduce a further binary operation © induced through the fully-order 

by 

x © y=y«-s* xd&y for each x,yc F. 

In this way, F is provided with an algebraic structure. To emphasize 

this, we denote in the sequel (F, 6 , • ) by (F,® , • ) . An easy consideration 

shows (see Helbig [23, Lemma II.1) that (F,® , * ) is an extremal algebra, a 

conception introduced by Nedoma £5} and investigated in detail by Zimmermann 

[6] and Helbig [31. For that reason we call (F, © , • ) extremal algebra. If 

the group F' is complete, i.e. that every non-empty subset of F* which is 

bounded from above, has a least upper bound, we call (F,® , • ) a complete 

extremal algebra. Notice that a subset of F is always bounded from below by 13. 
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Examples for complete extremal algebras (F,^, * ) are (Rvf-o&|,max,+), 
(Ru ia»I,min,-ir), (R^max,*), and (R+u-CooJ,min,*)» where R is the set of the 

real numbers, R* is the set of the non-negative and R is the set of the po­
sitive real numbers. Exchanging R by the rational numbers, we obtain examp­
les for extremal algebras. 

It is easy to see that (for proofs see Nedoma 153 or Zimmermann £63) 

(1) x * y w+ x €> z * y © z f o r a l l z c F ; 

(2) x£y -¥ x »z-4y »z f o r a l l z t F ; 

(3) x<y«> x » z x y « z for a l l zcF, z+fl. 

On Fn, the n-fold cartesian product of F, we define a partial order by 
x6 y«-*yi*vi for i=l,...,n» where x=(x1,...,xn), y=(y1,...,yn) in F

n, and 

extend the operations © and • on Fn by defining x © y and oc • x component­
wise, where x, y in Fn and oc « F. Furthermore, we define an extremal inner 
product on Fn by 

(x,y):=xx« yx © ... ®x n#y n:= ^ . ^ ^ x ± • yi for x, y in Fn. 

By definition of the operation © , we have for x, y in Fn 

(x,y)2x.»y. for i=l,...,n and (x,y)=x.»y. 

for at least one j€$l,...,n}. For the following, we need some definitions. 

Definition 1.1: Let A be a subset of Fn. 
<a) The set A is called extremally convex (for short e-convex).. if x,ys 

€ A and «c, fi in F with oc ® fi =1 imply oc • x & fi • y€ A. 
(b) The set 

eco A:= -f S?ot , • ax| oc. € Fja1* F for i t I , I c N, card I < co , , 2 ? 0C4=1} 

is called the e-convex hull of A. 

(c) The set 

econ A:= 4.2? «c. -a 1! o c . c F , a 1 « F for i d , IcN, card I < co I 

is called the e-convex cone of A. 

Let x, y be in Fn. The closed segment between x and y is defined by 

tx,y]:=iec* x © £ » y | c * , / 3 * F with oc ® ft =li , 

while the open segment between x and y is 

£x,yj/<x,yt if x+y Г Lx.yJ/í 
З x ' y t ! = l W if x=y. 

158 -



Definition 1.2: Let K be a subset of Fn. 

(a) A subset E of K is called extremal subset in K (or extremal in K),if 

x, y in K, and 3x,yCnE*0 imply x,y€E. 

(b) A subset E of K is called weak-extremal subset of K (or w-extremal 

in K), if x,ycK, and Hx,y3nE-#-0 imply x or y in E. 

(c) An element x€ K is called extreme point of K, if ixl is extremal in 

K. 

(d) An element x e K is called efficient point of K, if y*x, ycK imp­

lies x=y. 

We endow F with the so-called open-interval-topology. A basis of neigh­

bourhoods of an element y€ F is given by the e-convex sets 

Uafa:= -(xc F|a< x< b\ if y+S and UQb:= ix cF|I5--.x<b! if y=U, 

where a,bcF. If F' is complete, then (by a theorem of Holder (see for inst­

ance Kokorin and Kopytov C 43, p. 110), (F', © ) with its order is order-isomor-

phic to the additive group of the real numbers with the natural order. Thus, 

a complete extremal algebra (F, ® , © ) is homeomorphic to (Ru{-oo?,+) with 

the natural order (for a proof see Helbig 123, Lemma III.2). On account of 

this conclusion, we characterize the compact sets of Fn, where Fn is endowed 

with the product topology, and (F,® , • ) is a complete extremal algebra, as 

the closed and bounded sets in F , and that the extremal inner product is a 

continuous function. 

The aim of this paper is to prove two theorems which are well-known in 

linear spaces, namely the theorems of Carath6odory and Krein-Milman. Here, we 

prove Caratheodory s theorem in Fn not by a reduction step - as be usually 

done in linear spaces -, but by solving a certain system of equalities which 

is linear with respect to the operations © and © . From this, we deduce 

that the number of elements in a set which are needed to describe an element 

of the e-convex cone of this set, is less or equal to n and that the e-con­

vex hull of a compact set is compact. 

Furthermore, we prove that a non-empty compact subset of Fn has extreme 

points, and is the closed, e-convex hull of its extreme points, if it is ad­

ditionally e-convex. For this, we need a separation theorem in a complete ex­

tremal algebra , which we obtain as a conclusion of a theorem of Zimmermann 

UJ. 

II. The theorem of Caratheodory. Let (F,<£>, © ) be an extremal algebra, 

whose group operation <» is not necessarily commutative. 
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Theorem II.1: Let A be a subset of Fn. If b c eco A, then there exist 

k^n+1 elements aJcA, j=l,...,k, such that be eco (fa ,...,a | ) . 

Proof: Since b6 eco A, there exist m elements aJ 6 A, j=l,...,m, such 
that 

b= ..£?<*.. â , 

where ofi€ F for j=l,...,m with .2® oc.=I. By definition of the operation 

© , for all indices i € - d , . . . , n ? there exists an index j € { l , . . . , m } such 

that 

(2.1) b ^ o c ^ a j for all 1 € {L , . . . ,m] 

and 

(2.2) b.= oGjOa^. 

Define a function f: «C 1,... ,n$ —> { 1,... ,ml by 

f ( i ) : = , min j 

^nd a set N by 

N:= 4j6^1,... ,ml|3i€{l, . . . ,n>:f( i)=j}. 

Since beF n we have card N£n. By ( 2 . 1 ) and ( 2 . 2 ) , it follows 

If oC,=l for some J6N, b € eco(-CaJ| j € Nf) and k=card N<n+1. Thus the proof 

is finished in this case. Otherwise, there exists led,...,ml, l^N, with 

<* .=!. With (2.1) we obtain 

a1. 

Thus, be eco (-iaJ| j€-N|u{a \) and k=card N+l^n+1, D 

b= . 2 ® oc • • aJ ® otт - a" 
*e H 3 l 

In the same manner, we deduce 

Theorem II.2: Let A be a subset of F
n
. If b€ econ A, then there exist 

kasn elements aJ6 A, j=l,...,k, such that be econ (-ta ,...,a }). D 

Corollary II.3: Let (F,® , • ) be a complete extremal algebra and let A 

be a non-empty compact subset of F . Then eco A is a compact set. 

Proof: By Theorem H A , it follows 

eco A=ri®' oc. •aJ6Fn|oc.6F,aJ6Fn for j=l,...,n+l, * 2 f o&,=li. 
• » i j J ^ » 1 J 

n+l ****** 
Let T: = Co& 6 F | 2 ? ©t =li. By the considerations of Section I, T is com-

i * 1 J 
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pact. Hence Tx A is compact. The mapping f :TxA —* eco A, which is de­

fined by 

(««,a1 . . . ,a"*1 ) • - * * ? • c * . . a J , 

is continuous. Thus, the set f(TxA )=eco A is compact. D 

III. A separation theorem. Although the separation theory in extremal 

algebras is of own interest, we only make available one separation theorem 

which we will need to show the Krein-Milman-Theorem. Let (F,©, • ) be an ex­

tremal algebra. For hcF n and N c-fl,... ,n}, N*0, define 

H ( h , N ) : = 4 x e F n | % ^ ® h.«> x.= . ^ h . < » x . © 1$, 
i * N x -• * « CN -» x 

H+(h,N):= { x c F n | 2 ? h . o X . 2 2 1 e h. • x. ® I | , and 
i i N - -- * cCN l l 

H-(h,N):=4xeFn| .£® V X j A . S j * V x ^ I J , 
•v« N J- - - 1 / « C N i J-

where CN:= 4 1 , . . . , n i \ N, Obviously, we have 

(1) H(h,N)=H+(h,N)nH"(h,N); 

(2) H+(h,N)uH~(h,N)=Fn; 

(3) H (h ,N ) and H~(h,N), and hence H(h,N) are e-convex. 

If (F,©, o) is a complete extremal algebra, 

(4) H+(h,N) and H~(h,N), and hence H(h,N) are closed, 

since the extremal inner product is a continuous function. The sets H (h,N) 

and H~(h,N) are called the half spaces belonging to H(h,N). 

Lemma III.l: Let (F, €> , • ) be an extremal algebra with the following 

properties: 

(1) Let x, y, z be in F such that x< y.6z. Then there exists « * 4 F with 

U"< ec <1 such that x<oc • z< y. 

(2) There exists a metric d:Fx F—• R with 

(a) Let x, y, z be in F such that x < y < z . Then d(y,z)< d(x,z) and 

d(x,y)<d(x,z). 

(b) Let x be in F and /3c R. Then the set«CycF|y>x and d(x,y)</3f is 

non-empty. 

(c) Let x be in F such that x*»0 and &€ R. Then the set {ye F|y< x and 
d(x y) < /il is non-empty. 

Suppose a closed e-convex subset A of F and pc Fn\ A. Then there exist he Fn 
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with h.«-F~i for i=l,...,n, and a non-empty subset N of i 1,...,n? such that 

AcH+(h,N)\H(h,N) and pc H~(h,N)\ H(h,N), 

or conversely. 

Proof: See Zimmermann £6], Theorem 4. D 

Theorem III.2: Let (F, €> , • ) be a complete extremal algebra. Further­

more, let A be a closed, e-convex subset of Fn and let p be in F n\ A. Then 

there exist h c F n with h.4-t! for i=l,...,n, and a non-empty subset N of 

{l,...,nl such that the set H(h,N) separates A and p strictly, i.e. 

AcH+(h,N)\H(h,N) and pe H~(h,N) \H(h,N), 

or conversely. 

Proof: We show that a complete extremal algebra (F, © , • ) satisfies 

the properties of Lemma III.1. Let <p be the homeomorphism between (F,» ) and 

(R , • ) , which exists by the result mentioned in Section I. Furthermore, let 

x, y, z be in F such that x<y4i. Since <p preserves the. order, 

<f(x)< <p(y) &<f(z). 

Then there exists scR with 0 < s < l such that <f (x)< s ^ ( z ) < y ( y ) . This im­

plies 

x <<f (s) • z< y 

with tf < 9V < T. Hence, the property (1) of the above lemma is f u l f i l l e d . De­

fine a metric d on F by 

d(x,y): = | 9p(x)-<3p(y)| for x,y*F. 

Obviously, the properties (2)(a) - (c) are f u l f i l l e d . Then the assertion fol­

lows by Lemma T I L L DL 

For a more detailed discussion of the sets H(h,N), H+(h,N), and H~(h,N) 

see Zimmermann t63, and Helbig 133, Chapter 1.4 . 

IV, The theoren of Krein-Milman. Let (F, © , • ) be a complete extremal 

algebra and let K be a subset of Fn. Denote the set of all extreme points of 

K by ext K, the set of all efficient points of K by eff K, and the closed, 

e-convex hull of K by eco K. Of course, an extremal subset of K is w-extrem-

al in K. Tn general, the converse is not true. Nevertheless, 

lamm IV.I: Let K be a subset of Fn and vcK. 

(a) The set Ivl is w-extremal in K iff v is an extreme point. 
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(b) If v is efficient in K, then v is an extreme point of K. 

Proof: (a) The "if"-part follows immediately. To show the "only if"-

part let x, y be in K with v€jx,yf. It follows V€-Jx,yCc fx,yj. Since -Cvf is 

w-extremal in K, we have v=x or v=y. W.l.o.g. let v=x. If x$y, then x=v^Jx,y[, 

which is a coritradiction to the assumption. For this, v=x=y. Thus, the asser­

tion is proved. 

(b) Let x, y be in K such that v«tx,yj, i.e. v= 06 • x ©/3 • y for sui­

table oc,/3« F with ocGft~\. W. l.o.g. let oc=l. By definition of the opera­

tion © , the equalities v-=x. ®/3 • y. for i=l,...,n imply Xj£ v. for i=l,... 

...,n, i.e. x£ v. Since v is efficient in K, we have v=x. Thus, the set -Cvf 

is w-extremal in K. Part (a) finishes the proof. D 

The next lemma shows that sets which are described by extremally linear 

functionals, this means linear with respect to the operations © and • ,such 

as halfspaces, are w-extremal sets. 

Lemma IV.2: (a) Let K be a non-empty, compact subset of Fn and let p 

be in Fn. 

Then the set G:={xtK| max (p,y)=(p,x)J is a non-empty, compact, w-ext-

remal subset of K. 

(b) Let p, q be in Fn and ceF. Then the sets A* := ix€ Fn|(p,x) > 

£ (q,x) © c\ and A* := 4 x e Fn|(p,x) £ (q,x) © c\ are w-extremal in Fn. 

Proof: (a) Since K is compact and the extremal inner product is contin­

uous, the set G is non-empty, closed, and, as a subset of K, compact. To show 

the third property of G let x, y be in K and oc,ft * F with cc ®ft =1 such 

that v:=oc«»x® ft « y is an element of G, i.e. V I E X , V } A G . If x and y both 

are not in G, then (p,x) © (p,y)< (p,v). This implies 

(p,v)=(p,et« x ®/3»y)= oc»(p,x) 9 ft *(p,y)< (p,v). 

Because of this contradiction x c G or y c G , i.e. G is w-extremal in K. 

(b) The proof is similar to the proof of (a). D 

With these preliminaries we state the main theorems. 

Theorem IV.3: Let K be a non-empty, compact subset of Fn. Then there e-

xists an efficient point of K, and therefore an extreme point of K, i.e. 

0ceff Kc ext K. 

Proof: Set K := K. Then there exists v c K such that v,:= rnin x,. De-
1 xeK* l 
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fine recursively for i=2,...,n 

Ki:=-Cx£Ki""1|x. =v?for j< if and v ^ K1 such that v^= min. x. . 
3 3 * *tK% x 

Since v1 € K1 for i=2,...,n, the sets K1, i=2,...,n, are non-empty. Because 

of the compactness of K1, i=l,...,n, the elements v1, i=l,...,n, exist. We 

claim that v:= vn is an efficient point of K. To show this, let x be in F 

with x*v. If x .#v, then there exists kc{l,...,n{ such that x^< vk« W.l.o.g. 

let k be the least index with this property. Because x.=v.=v*? for j<k if 

I k k 
k > l and x€K =K if k=l, we have xcK . Then the inequality x. < v. =v£ is a 

k 
contradiction to the choice of v . Thus, vceff Kc ext K. D 

As a corollary from this theorem we deduce a theorem of Butkovic [ 13 , 

Theorem 1. 

Corollary IV.4: A non-empty, closed subset K of Fn has extreme points. 

Proof: For arbitrary w c K define C:= i x€ K|x * W { . This set is closed 

and bounded, and hence compact. With Theorem IV.3, we have eff C+0. We claim 

that v in eff C is an efficient point of K. For this, let y be in K such that 

y^v. Since v.£w, we obtain y& w, i.e. y€C. The efficiency of v implies y=v. 

Thus, eff K is non-empty, and therefore ext K4»0 by Lemma IV.Kb ) . 

It follows the theorem of Krein-Milman in complete extremal algebras. 

Theorem IV.5: Let K be a non-empty, e-convex, and compact subset of Fn. 

Then the set K is the closed, e-convex hull of its extreme points, i.e. K= 

=eco ext K. 

Proof: Set B:= eco ext K. Since the inclusion Be K follows immediately, 

it suffices to show KcB.- Assume that there exists ztK with z^B. By Theorem 

III.2, there exist h in Fn and a non-empty set Nc£l,...,nf such that the set 

H:=H(h,N) separates the point z and the closed, e-convex set B strictly. Let 

H :=H (h,N) and H~":=H~(h,N) be the halfspaces belonging to H. To simplify mat­

ters define 

h, i f i c N 

and 

Then 
*- Í : 

i f i c * l , . . . , n * \ N 

i f i€.N 

i f i e4 l , . . . . , n } \N , 
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H+= {x€Fn |(p,x) .?(q,x)<2) 1 and H~= {x€ Fn|(p,x) £ (qtx)<3> l\. 

where (•,•) denotes the extremal inner product. Distinguish two cases: 

Case 1: z 6 H +\ H and Be H~ \ H 

Let G:=4xcH A K| max (p,y)=(p,x)|. Since zcH +nK, the set H + A K is non-
Y«H*nK 

empty. It is compact as a closed subset of K. Hence, by Lemma IV.2(a), the 

set G is non-empty, compact, and w-extremal in H n K. Applying Theorem IV.3, 
there exist an efficient point v in G. We claim that vcext K, or equivalent-

ly, by Lemma IV. 1(a), 4N1 is w-extremal in K. To show this, let x, y be in K 

such that vcEx,yJ. Then there exist at,/3eF with ac®fi=I such that v= 

= oC*x©/3» y. Since the set H+ is w-extremal in Fn by Lemma IV.2(b), X C H + A 

A K or ycH A K . 

Subcase la: xeH n K and ycH n K 

Since G is w-extremal in H A K , w.l.o.g. the point x is in G. If ©t=l, then 

xt£v. By efficiency of v, this implies x=v. Thus, -ivl is w-extremal in K, and, 

hence, v is an extreme point of K. If oC< 1, then /3 = 1 and y£v. Because of 

xeH+r>K, it follows ( p , x ) > I . > 0 . Therefore, (p,v)=(p,x) > oc *(p,x). This im­

plies 

(p,v)=(p,oc»x© /a 0 y)= |3*(p,y)=(p,y), 

i .e . yc G. By efficiency of v, the inequality y£ v leads to y=v. Thus, fvf is 

w-extremal in K. Hence, v is an extreme point of K. 

Subcase l b : x c H + n K and y c ( H ~ \ H ) n K 

Then 

(6.1) (p.y)<(q,y)©I. 

Assume that x^G or oc<I. Then we obtain because of ( p , v ) £ l . > u if oc < 

< I and d i r e c t l y if x^G that oc o(p,x)< ( p , v ) . This implies (p,v)= 

= (p,oo • x © fi • y)= / 3 » ( p , y ) . Since (p,v)> 0, we have p *u\ With (6.1) the 

following inequality holds 

(6.2) (q,v)©I*(p,v)= j3»(p,y) <: £»<q,y) © fi 6 

£(im (q,y) <$ 1 & ot°(q,x) €> /3 • (q,y)© l=(q,v)© 1. 

This is a contradiction. Thus, xeG and oc =1. Now, we deduce like in subcase 

la that ve ext K. 

As well in subcase la as in subcase lb, the element vcH A K is an ext­

reme point of K. Since Be H~\ H, we have v±B, which is a con t rad ic t i on to 

the definition of B. 
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Case 2: z€ H"\ H and Be H+ \ H 

Subcase 2a: (p,z) .&I 

Define a compact set A by A:= {x€ K|x £z\. Since B c H + \ H , we have 

( p , x ) > ( q , x ) © 1 for x€B. 

Then there exists ic{l,...,n? with p.»x. > l > p . » z . . This implies x.>z.. 

Thus, x^A. Since x was arbitrary, AnB=0. 

By Theorem IV.3, the set A has an efficient point v. To show that v € 

eext K, let x, y be in K such that v€tx,yJ, i.e. v=oc»xd5»^3* y for sui­

table o£ , /3eF with oc 9> ft =1. W.Lo.g. let eC=l. Then x£v and, by effici­

ency of v, v=x. This implies that £v? is w-extremal in K, and hence v is an 

extreme point of K by Lemma IV. 1(a). Notice that v$ B as vcA. 

Subcase 2b: (p,z)>l 

In this case, the set H:= <x€Fn|(p,x)=(q,x)l separates the set B and the 

point z strictly, since zcH*"\H and (p,z)>l implies 1< (p,z)< (q,z)@ I. 

Thus, 

l-<(p,z)<(q,z)€>l=(q,z) 

and 

(p,x)>(q,x)© I >(q,x) for all xcB. 

Let H+:= { x c Fn|(p,x) > ( q , x ) | and le t H" be analogously defined. More­

over, le t 
G: = 4x€H"oK| max (q,y)=(q,x){. 

The set H~A K is compact and, since z€H""n K, non-empty. By Lemma IV.2(a) and 

Theorem IV,3, the set G is non-empty, compact, and w-extremal in H n K , and 

has an efficient point v. Exchanging the roles of p and q and cancelling the 

term " $ 1" in (6.1) and (6.2), we obtain like in subcases la and lb that v # 

e ext K, but v^B since v€ H . 

In both subcases 2a and 2b, the element v is an extreme point of K, but 

v^B. This is a contradiction to the definition of B. 

Combining the results of cases 1 and 2, we have zcB. Therefore, KcB. 

This completes the proof. Q 

Exanple IV.6: Consider the following compact set K in F2, whereby 

(F,€> , - M R * , m a x , • ) : 
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w 

We have eff K=^.u], ext K=-iu,v,wJ, and K=eco («Cu,v,w$). Q 
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