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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,1 (1988)

ON CARATHEODORY 'S AND KREIN-MILMAN'S THEOREMS
IN FULLY DRDERED GROUPS

Siegfried HELBIG

Abstract: In a fully ordered group (F',&,e ) we introduce an algebraic
structure by inducing a further binary operatlon by the order and extending F’
about a zero-element U. Provided with this algebraic structure, we prove in

Fn, the n-fold cartesian product of F:=F ‘'vi03, the theorems of Carathéodory
and Krein-Milman. Here, Caratheodory s theorem is proved not by a reduction
step - as be usually done in linear spaces - , but by solving a certain syst-
em of equalities which is linear with respect to the operations & and o

To prove Krein-Milman s theorem, we state some results of separation theory
in such algebraic structures.

Key words: Ordered algebraic structure, convexity concept, Theorem of
Carathéodory, Theorem of Krein-Milman.

Classification: 06F99, 52A01, 46P05

I. Introduction. Let (F',%,¢ ) be a fully ordered group with neutral
element T and let O be an element not belonging to F’. Extend & and e on
F:=F 'v{T% by

0 ex=x0-0 and D&x for each xeF,

and introduce a further binary operation @ induced through the fully-order
by
X ® y=y4eb x 2y for each x,yeF.

In this way, F is provided with an algebraic structure. To emphasize
this, we denote in the sequel (F, & ,e ) by h(F,o ,® ). An easy consideration
shows (see Helbig [2], Lemma II.1) that (F,® ,e ) is an extremal algebra, a
conception introduced by Nedoma [5) and investigated in detail by Zimmermann
[6] and Helbig [3]. For that reason we call (F, ® , ») extremal algebra. If
the group F° is complete, i.e. that every non-empty subset of F° which is
bounded from above, has a least upper bound, we call (F,®, *) a complete
extremal algebra. Notice that a subset of F is always bounded from below by 0.
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Examples for complete extremal algebras (F,®, ¢) are (Ru{-o},max,+),
(Ru {o¥,min,+), (R;,max,-), and (R*U {o03,min,+), where R is the set of the

real numbers, R; is the set of the non-negative and R* is the set of the po-
sitive real numbers. Exchanging R by the rational numbers, we obtain examp-
les for extremal algebras.

It is easy to see that (for proofs see Nedoma (5] or Zimmermann [6])

(1) x4y =» x@z&£y @z for all z¢F;
(2) x&y=» xezkyez for all zeF;
(3) x<yw=p Xo0z<yoz for all zeF, z«#D.

On Fn, the n-fold cartesian product of F, we define a partial order by
x&yepy &y, for izl,...,n, where x=(x;,...,x ), y=(y ,...,y,) in F", and

extend the operations @ and < on N by defining x@® y and o¢ « x component-
wise, where x, y in F" and ec 6 F. Furthermore, we define an exiremal inner

product on F by
.,
(x,y):=x1- Y@ ... Bxeyi= ,-,%?Xi' y; for x,yin FM.

By definition of the operation ® , we have for x, y in Fn
(x,y)z X;j®y; for i=1,...,n and (x,y):xj . yj

for at least one jeil,...,n}. For the following, we need some definitions.

Definition I.1: Let A be a subset of F".

{a) The set A is called extremally convex (for short e-convex), if x,ys
¢Aand €, 3 inF with < @ B=1 imply ccex @ Bey€A.

(b) The set

eco A:= {&E‘-?uci- ai! o F,ale F for ieI, IcN, card I<  , 4.?? a¢j='1'}
is called the e-convex hull of A.

(c) The set

econ A:= -té?-ci-ail 6 F,aleF for ieI, IcN, card 1< o }
is called the e-convex cone of A.

Let x, y be in F". The closed segment between x and y is defined by

[x,y):={c e x @ Boy|ler,f & F with <« @ f3 =18,
while the open segment between x and y is

[x,1/{x,y}  if xdy
Iyl := {

{x1 if x=y.
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Definition I.2: Let K be a subset of F".

(a) A subset E of K is called extremal subset in K (or extremal in K),if
x, y in K, and Jx,yln E48 imply x,yeE.

(b) A subset E of K is called weak-extremal subset of K (or w-extremal
in K), if x,ye K, and [x,yln Es @ imply x or y in E.

(c) An element xe€ K is called extreme point of K, if {x¢ is extremal in

(d) An element x€ K is called efficient point of K, if yéx, yeK imp-
lies x=y.

We endow F with the so-called open-interval-topology. A basis of neigh-

bourhoods of an element y€ F is given by the e-convex sets

Upp:= Axe Flacx< bl if y40 and Up,:= ixeF|D£x<bt if y=0,

where a,be F. If F’ is complete, then (by a theorem of Holder (see for inst-
ance Kokorin and Kopytov [4), p. 110), (F} e ) with its order is order-isomor-
phic to the additive group of the real numbers with the natural order. Thus,
a complete extremal algebra (F, ® , o) is homeomorphic to (Ru{-wf,+) with
the natural order (for a proof see Helbig [2), Lemma III.2). On account of
this conclusion, we characterize the compact sets of Fn, where F” is endowed
with the product topology, and (F,® ,e ) is a complete extremal algebra, as
the closed and bounded sets in Fn, and that the extremal inner product is a
continuous function.

The aim of this paper is to prove two theorems which are well-known in
linear spaces, namely the theorems of Carathéodory and Krein-Milman. Here, we
prove Carathéodory s theorem in F" not by a reduction step - as be usually
done in linear spaces -, but by solving a certain system of equalities which
is linear with respect to the operations ® and e . From this, we deduce
that the number of elements in a set which are needed to describe an element
of the e-convex cone of this set, is less or equal to n and that the e-con-
vex hull of a compact set is compact.

Furthermore, we prove that a non-empty compact subset of F" has extreme
points, and is the closed, e-convex hull of its extreme points, if it is ad-
ditionally e-convex. For this, we need a separation theorem in a complete ex-
tremal algebra , which we obtain as a conclusion of a theorem of Zimmermann
Lé].

II. The theorem of Carathéodory. Let (F,®, o) be an extremal algebra,
whose group operation o is not necessarily commutative.

- 159 -



Theorem II.1: Let A be a subset of F". If be eco A, then there exist
k £n+1 elements ade A, j=1,...,k, such that be eco ({al,...,ak}).

Proof: Since be eco A, there exist m elements aj e A, j=1,...,m, such
that

. 5
- ® J
b= .;1 g a,

m
where o ;€ F for j=1,...,m with a.g;o ucj=l. By definition of the operation

® , for all indices i€ {1,...,n% there exists an index je {1,...,m%¥ such
that
(2.1) bjzec;© ai for all 1 €{l,...,m}
and
- °ad
(2.2) b;= w85

Define a function f: {1,...,n%—>{1,...,m¥ by

f(i):= | min
2 6{1,.c,m

Lyw e ﬂaz

dnd a set N by
N:= {5edl,...,m¥|3iefl,... ,ny:£(i)=3].
Since beF" we have card N¢n. By (2.1) and (2.2), it follows

. 9P J

b= }sZN ocjo a”,
If ecj=i for some je€N, beeco({ajlje N%) and k=card N<n+l. Thus the proof
is finished in this case. Otherwise, there exists 1€ {1,...,m¥, 1N, with
o, =I. With (2.1) we obtain

J
Thus, beeco (£’ |3eN} u{alD and k=card N+1<£n+l, 0

b= .ZQ«,.OGJ ® cclval-
ie N

In the same manner, we deduce

Theorem I1.2: Let A be a subset of F". If be econ A, then there exist
k&n elements aJe A, j=1,...,k, such that be econ ({al,...,ak}). w]

Corollary I1.3: Let (F,®,+) be a complete extremal algebra and let A
be a non-empty compact subset of F". Then eco A is a compact set.

Proof: By Theorem II.1, it follows
prore | . 5 mat
eco A= {55;‘:" %5 eale F"| “ye F,ale F" for _"|=1,...,n+1,‘.'§,;o gcj=1§.

n+l ""@ s . : .
Let T:={ec 6 F | iF:.‘ ecj=1}. By the considerations of Section I, T is com-
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n+1 n+l

pact. Hence Tx A —» eco A, which is de-

fined by

is compact. The mapping f:T»x A

1 1 med .
(,a...,a"" )'—'—?§? j-aJ,

is continuous. Thus, the set f(Tx An+1)=eco A is compact. D

III. A separation theorem. Although the separation theory in extremal
algebras is of own interest, we only make available one separation theorem
which we will need to show the Krein-Milman-Theorem. Let (F,®, » ) be an ex-
tremal algebra. For he F" and NcAl,...,n}, N&@, define

H(h,N):= {xe F"| z@h o x; ZCNhlox o 13,
+ L n ® . -
H*(h,N):= {xeF |,z¢; hie x; 2, 2 z nhiex; @ 1%, and

- .= ® - [} °
H(h,N):={xe F"| z hjex; & Zcuhl x; ® 1t,

where CN:={1,...,n3\ N. Obviously, we have
(1) H(h,N)=H"(h,N) A H™(h,N);
(2) H*'(h,N)UH (h,N)=F;
3) H+(h,N) and H (h,N), and hence H(h,N) are e-convex.

If (F,®, o) is a complete extremal algebra,

(4) H+(h,N) and H™(h,N), and hence H(h,N) are closed,

since the extremal inner product is a continuous function. The sets H+(h,N)
and H (h,N) are called the halfspaces belonging to H(h,N).

Lemma III.1: Let (F, ® , s ) be an extremal algebra with the following
properties:

(1) Let x, y, z be in F such that x<y£z. Then there exists oc & F with
U<« <1 such that x< ot e z< y.

(2) There exists a metric d:Fx F—» R with

(a) Let x, y, z be in F such that x<y<z. Then d(y,z)< d(x,z) and
d(x,y) < d(x,z).

(b) Let x be in F and B& R. Then the set {ye Fly>x and d(x,y)< B} is
non-empty.

(c) Let x be in F such that x#0 and (e R. Then the set {ye F|ly<x and
d(x y) < % is non-empty.

Suppose a closed e-convex subset A of F and pe FU\ A. Then there exist he F"
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with hi-t-U for i=1,...,n, and a non-empty subset N of §1,...,n% such that
AcH'(h,N)\H(h,N) and pe H (h,N)\ H(h,N),

or conversely.
Proof: See Zimmermann [6), Theorem 4. D

Theorem II1.2: Let (F,® , ¢) be a complete extremal algebra. Further-
more, let A be a closed, e-convex subset of F" and let p be in FN A, Then
there exist he F" with hin'-U for i=1,...,n, and a non-empty subset N of
{1,...,n% such that the set H(h,N) separates A and p strictly, i.e.

Ac H"(h,N)\ H(h,N) and peH™(h,N) \ H(h,N),

or conversely.

Proof: We show that a complete extremal algebra (F, @ , ¢ ) satisfies
the properties of Lemma III.1. Let ¢ be the homeomorphism between (F, e ) and
(R;,-), which exists by the result mentioned in Section I. Furthermore, let
X, ¥y, z be in F such that x<yé€ z. Since ¢ preserves the order,

9(x)< @(y) £¢(2).
Then there exists s¢ R; with 0<s<1 such that ¢@(x)<s@(z)< g(y). This im-
plies

X 49’1(5) ezcy

with U<q_1< 1. Hence, the property (1) of the above lemma is fulfilled. De-
fine a metric d on F by

d(x,y):=| @(x)-g(y)] for x,ysF.

Obviously, the properties (2)(a) - (c) are fulfilled. Then the assertion fol-
lows by Lemma TTI.1. 0.

For a more detailed discussion of the sets H(h,N), H*(h,N), and H™(h,N)
see Zimmermann (61, and Helbig (3], Chapter I.4.

IV. The theorem of Krein-Milman. lLet (F,® , ¢ ) be a complete extremal
algebra and let K be a subset of F. Denote the set of all extreme points of
K by ext K, the set of all efficient points of K by eff K, and the closed,
e-convex hull of K by €co K. Of course, an extremal subset of K is w-extrem-
al in K. Tn general, the converse is not true. Nevertheless,

Lemma IV.1: Let K be a subset of F" and veK.
(a) The set {v} is w-extremal in K iff v is an extreme point.
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(b) If v is efficient in K, then v is an extreme point of K.

Proof: (a) The "if"-part follows immediately. To show the "only if"-
part let x, y be in K with velx,y[. It follows velx,ylc [x,yl. Since {v} is
w-extremal in K, we have v=x or v=y. W.l.0.g. let v=x. If x¢y, then x=v§]x,y[.
which is a coritradiction to the assumption. For this, v=x=y. Thus, the asser-
tion is proved.

(b) Let x, y be in K such that velx,yl, i.e. v= ec ex@® 8 y for sui-
table «, 36 F with x®f3 =]. W. l.0.g. let « =1. By definition of the opera-
tion ® , the equalities Vi¥x; @ B e yi for i=1,...,n imply Xi‘ vy for i-=1,...
...,n, i.e. x£v. Since v is efficient in K, we have v=x. Thus, the set {v}
is w-extremal in K. Part (a) finishes the proof. [

The next lemma shows that sets which are described by extremally linebr
functionals, this means linear with respect to the operations & and e ,such
as halfspaces, are w-extremal sets.

Lemma IV.2: (a) Let K be a non-empty, compact subset of F" and let p
be in F". .

Then the set G:={ x& K| max (p,y)=(p,x)¥ is a non-empty, compact, w-ext-
remal subset of K. pek

(b) Let p; q be in F" and ceF. Then the sets A% :={xe Fnl(p,x) z
z (9,x) @ c} and A* := {xeF"(p,x) & (q,x) @ c} are w-extremal in F".

Proof: (a) Since K is compact and the extremal inner product is contin-
uous, the set G is non-empty, closed, and, as a subset of K, compact. To show
the third property of G let x, y be in K and «c,36F with c ®f8 =1 such
that vi=ecoex @ (3 o y is an element of G, i.e. velx,yJnG. If x and y both
are not in G, then (p,x) ® (p,y)< (p,v). This implies

(p,v)=(p,c o x ®Bey)= cce(p,x) @ 3 2(p,y)< (p,v).

Because of this contradiction x€ G or ye G, i.e. G is w-extremal in K.
(b) The proof is similar to the proof of (a). 0O

With these preliminaries we state the main theorems.

Theorem IV.3: Let K be a non-empty, compact subset of FM. Then there e-
xists an efficient point of K, and therefore an extreme point of K, i.e.
Bceff Kc ext K.

1

Proof: Set K1:= K. Then there exists v e K1 such that v}:= min X De-
xek?
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fine recursively for i=2,...,n

Kl:={xe Kl'llx. =vJ for j<i{ and vie k! such that vil= min_ x; .
J ] xe K"
Since vl_le k! for i=2,....,n, the sets Kl, i=2,...,n,. are non-empty. Because
of the compactness of Kl, i=1,...,n, the elements vl, i=1,...,n, exist. We
claim that v:= V" is an efficient point of K. To show this, let x be in N

with x ¢v. If x#v, then there exists ke{l,...,n% such that X< Vier W.l.0.g.
let k be the least index with this property. Because xj=vj=v§ for j<k if

k >1 and xeK1=K if k=1, we have xe Kk. Then the inequality X < vk=vt is a
contradiction to the choice of vk. Thus, veeff Kcext K. O

As a corollary from this theorem we deduce a theorem of Butkovic [1),
Theorem 1.

Corollary IV.4: A non-empty, closed subset K of F" has extreme points.

] Proof: For arbitrary weK define C:= {xeK|x£wi. This set is closed
and bounded, and hence compact. With Theorem IV.3, we have eff C4@. We claim
that v in eff C is an efficient point of K. For this, let y be in K such that
y<€v. Since v€w, we obtain y«w, i.e. yeC. The efficiency of v implies y=v.
Thus, eff K is non-empty, and therefore ext K#@ by Lemma IV.1(b).

It follows the theorem of Krein-Milman in complete extremal algebras.

Theorem IV.5: Let K be a non-empty, e-convex, and compact subset of F,
Then the set K is the closed, e-convex hull of its extreme points, i.e. K=
=eco ext K.

Proof: Set B:= €C0 ext K. Since the inclusion B¢ K follows immediately,
it suffices to show Kc B.- Assume that there exists z€ K with z¢ B. By Theorem
III.2, there exist h in F" and a non-empty set Ncdl,...,n¥ such that the set
H:=H(h,N) separates the point z and the closed, e-convex set B strictly. Let
H*:=H"(h,N) and H™:=H"(h,N) be the halfspaces belonging to H. To simplify mat-

ters define
p":{hi if ieN
ot T if ie¢4l,...,n}\N
and
0 if ieN
qi=
hy if i€41,...,n¥\N,
Then
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H'= {xe FM|(p,x)Z (q,x)® 1 and H'= {xe Fnl(p,x)é(qlx)@ 1s.

where (»,+) denotes the extremal inner product. Distinguish two cases:

Case 1: zeH'\H and BcH \H

Let G:={xe H'n K| max (p,y)=(p,x)}. Since zeH'n K, the set H'a K is non-
4y e HNK

empty. It is compact as a closed subset of K. Hence, by Lemma IV.2(a), the
set G is non-empty, compact, and w-extremal in H'A K. Applying Theorem IV.3,
there exist an efficient point v in G. We claim that veext K, or equivalent-
ly, by Lemma IV.1(a), {v} is w-extremal in K. To show this, let x, y be in K
such that ve Ix,y). Then there exist <, €F with o @3 =I such that v=
=oLex @ 3ey. Since the set H' is w-extremal in F" by Lemma IV.2(b), xeHn
nKorye HaK.

Subcase la: xeH'n K and ysH+n K

Since G is w-extremal in H'a K, w.l.0.g. the point x is in G. If «=1, then
x€v. By efficiency of v, this implies x=v. Thus, {v} is w-extremal in K, and,
hence, v is an extreme point of K. If « < '1', then fzﬁ and y£ v. Because of
xe H'n K, it follows (p,x)21>D. Therefore, (p,v)=(p,x) > « ¢(p,x). This im-
plies

(p,v)=(p,ecox® B o y)= Beo(p,y)=(p,y),

i.e. ye G. By efficiency of v, the inequality y< v leads to y=v. Thus, fvi is
w-extremal in K. Hence, v is an extreme point of K.

Subcase 1b: xe H'n K and ye (H'\ H)aK
Then

(6.1) (p,y)< (g,y) @ 1.

Assume that x4 G or ec< 1. Then we obtain because of (p,v)21>0 if e <
<1 and directly if x4 G that e« o(p,x)< (p,v). This implies (p,v)=
=(p, o x ® o y)= Be(p,y). Since (p,v)>0, we have B+ 0. With (6.1) the
following inequality holds

(6.2) (q,v) ® 1< (p,v)= Belp,y) < Bela,y) ® B ¢
£fe(0,)@l cxo(g,x) ® fe(g,y® I=(g,V)® 1.
This is a contradiction. Thus, x&G and o =I. Now, we deduce like in subcase
la that ve ext K.
As well in subcase la as in subcase lb, the element ve H'a K is an ext-
reme point of K. Since Bec H \ H, we have vﬁB, which is a contradiction to

the definition of B.
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Case 2: zeH \Hand BCH'\H
Subcase 2a: (p,z)¢1
Define a compact set A by A:= {x6 K|x £z3. Since Be H'\ H, we have
(p,x)>(g,x) @1 for xeB.

Then there exists ie {l1,...,n%} with p; e xi>Izpi- z. This implies X;>2Z5.
Thus, x§A. Since x was arbitrary, An B=@.
By Theorem IV.3, the set A has an efficient point v. To show that v e
. eext K, let x, y be in K such that velx,yl, i.e. v=ocex ® B o y for sui-
table ¢, B €F with «c@f =1. W.l.0.9. let oc=1. Then x£v and, by effici-
ency of v, v=x. This implies that §v§ is w-extremal in K, and hence v is an
extreme point of K by Lemma IV.1(a). Notice that v¢ B as veA.

Subcase 2b: (p,z)>1
In this case, the set ﬁ:= {x€F|(p,x)=(q,x)} separates the set B and the
point z strictly, since ze H"\ H and (p,z) >1 implies 1< (p,2)<{9,2)@® 1.
Thus,
1< (p,2) <(q,2) ® 1=(q,2)
and
(Pp,x)>(g,x)® 1 2(g,x) for all xeB.
Let ?1+:= Sx¢ FM|(p,x) Z(q,)% and let 7" be analogously defined. More-

over, let
G:=4 xe Hn K| max (g,y)=(q,x){.
N welnk a

The set H'n K is compact and, since z& H n K, non-empty. By Lemma IV.2(a) and
Theorem IV,3, the set G is non-empty, compact, and w-extremal in ﬂ'n K, and
has an efficient point v. Exchanging the roles of p and q and cancelling the
term " @ I" in (6.1) and (6.2), we obtain like in subcases la and 1b that v e
e ext K, but v¢B since veh .

In both subcases 2a and 2b, the element v is an extreme point of K, but
v¢B. This is a contradiction to the definition of B.

Combining the results of cases 1 and 2, we have z ¢ B. Therefore, Kc B.
This completes the proof. []

Example IV.6: Consider the following compact set K in Fz, whereby
F,®,» )=(R:,max, )
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We have eff K= 4u}, ext K=4u,v,w}d, and K=eco {u,v,w}). 0O
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