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REDUCIBILITIES OF SETS BASED ON CONSTRUCTIVE FUNCTIONS
OF A REAL VARIABLE

Osvald DEMUTH

Abstract: Reducibilities of sets based on mappings corresponding to con-
structive functions of a real variable are introduced and studied. Connecti-
ons between them and tt- and T-reducibilities and their relativizations to @
are discussed.

Key words: Recursion theory, tt-reducibility, T-reducibility, construc-
tive functions of a real variable, arithmetical real numbers, sets of reals
of B-measure zero.

Classification: 03030, 03F65

Binary expansions of reals give us a many-to-many correspondence between
reals and sets of natural numbers (NNs). For any set A of NNs we denote by Ty
the sum of the series *§ . 2%l and, for any real X, we denote by Set(X) the

infinite set B of NNs for which X-rB is equal to an integer. Using reals to
study sets of NNs we can restrict ourselves to reals from the closed unit
interval [ 0,1]. A real X is said to be A-recursive if Set(X)‘TA holds. In
constructive mathematics in the sense of Markov we study, among other things,
constructive reals (i.e. codes of @-recursive reals) and everywhere (i.e. for
any constructive real) defined constructive functions of a real variable (bri-
efly:constructive functions). Let us remember that any comstructive function
is an algorithm transforming equal constructive reals into equal ones and it
is constructive continuous (i.e., as we shall see later, @-continuous) at any
constructive real [2].

For any constructive function F we denote by RIF) a classical function
of a real variable being a maximal (as to domain) continuous (with respect to
its domain) extension of F. Thus, R[F1 is defined, in particular, at any @-re-
cursive real and transforms it into a real being #-recursive, too.

A set A of NNs is said to be f-reducible to a set B of NNs by F (notati-
on: Ath via F) if F is a constructive function for which R[FJ(rB) is defin-
ed and R[Fl(re)=rA holds. Studying f-reducibility we can limit ourselves to
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constructive functions constant on both (- ,0] and [1,+00), which will be
named by us c-functions. A set A of NNs is said to be f-reduciblq, gLuct-re-
ducible, @-ucf-reducible, mf-reducible, respectively, to a set B (notation:
P < ; ; ; _ ;
A‘fB, A‘g —uch’ A"ﬂ-uch’ A.‘.me, respectively) if there is a c-function

F, a classically uniformly continuous (i.e., as we shall see later, @ -unif-
ormly continuous) c-function F, a constructively uniformly continuous (i.e.
@-uniformly continuous) c-function F, a monotone c-function F, respectively,
such that AéfB via F holds.

Basic properties of these reducibilities and their relation to tt- and
T-reducibility and their @ -relativizations are studied in this paper.

We use the notation and terminology of [11]. & stands for "denotes"
and == for graphical equality. For any function (or algorithm) g- and for any
objects P and R (of corresponding types),! G (P) == (G.(P) is defined) and
G(PI=R 2 (1G(P)& (G(P)=R)). Note that = means: both sides are defi-
ned and equal, or both are undefined.

Objects of constructive mathematical analysis used in this paper are ei-
ther words in the alphabet S (containing, among other things, the symbols
o,|,-,/,0,48 ,% )or objects finitely codable by words in E (e.g.
algorithms are codable by NNs). Thus, 0, 0], OW0,... are (codes of) NNs. Also
integers, rational numbers (RtNs) and strings are words in 5 of appropriate
types. As an abbreviatory notation for these constructive objects, we employ
the standard notation (e.g., for NNs, 0,1,2,...). It is not necessary for us
to make any explicit difference between intuitive objects of these types and
their constructive counterparts (used by us). The set of all words in E is
denoted by S* , the set of all NNs (or RtNs) by N (or by Q) and the set of
all strings (of 0's and 1's) by St. In the sequel, the symbols U, V are vari-
ables for words in S , s, t, u, v, w, x, y and z are variables for NNs, i and
j for integers, a, b, c and d for RiNs, @ , € and ¥ for strings (of 0's and
1's), A, B and C for sets.of NNs and X and Y for reals. A RtN a is said to be
binary rational if 3 iy (a=i.27Y) holds. Let Qb denote the set of all bina-
ry rational numbers. Thus, Qb, Q, N and St are subsets of S*.

Notions and notations for strings, sets of strings, partial recursive
functions (PRFs), recursively enumerable (r.e.) sets of NNs and their relati-
vizations were introduced in [11]). In particular, d;( denotes the string with
the number x, <A D> = {d'z:ze A% and ALO,x] is the string of length (x+1) ex-
tended by A for any NN x and any set A of NNs. For any set A and any NNs z
and s, we denote {x: ,?ACU 51(>()8<x< s} by wA S (for the notation see [111).

For any set & of strings let ot = {A v (ved &(A extends ©))}.
We remind that @ () denotes the Lebesgue measure of 9E (in the following
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we shall often write ,u.(yE) instead of w (¢)) and that < is said to be
a proper covering if ¢ is r.e., S’E contains all recursive sets but there is
a set of NNs not contained in Q’E.

There exist recursive functions nol (non-overlapping) and hp (the halting
problem) such that, for any NNs t and y,

(i) B°(t)= 1lim hp(s,t) and hp(y,t) &€ hp(y+1,t) hold;

H—>+00

(i) 4 wnol(t)> is a set of mutually incomparable (with respect to
€ ) strings; moreover, if even 4 Wt> has this property then wnol(t)=wt
holds;

E_ E . X

(iii) « Woorct) ¥ = €Wy > T is valid.

Rrk 1. 1) There are recursive functions dom of two variables and
val of three variables such that, for any NNs z,x and vy,

I Lo
Waom(z, 0= $t: 19, &AW, (I, 8 &P "G,

<
W {t:tew y& (g, (=)}

(for the notation see [11)). Consequently, wnol(dom(z,x))zwdom(z,x) and, for

eval(z,x,y)” dom(z,x

any set A of NNs, 9é(x)zy¢-=b Ae (weval(z x y)> E,

On the other hand, we can construct on the basis of an index of a recur-
sive function f of two variables a NN z fulfilling

E E
<('Weval(z,x,y) > < <wf(X,y)>
and

+00 E +00 E
++0 <weval(z,x,t) »-= J““-jo<wf(x,t)> for any NNs x and y.

2) Using @ -recursively enumerable sets instead of r.e. ones in the de-
finition of partial A-recursive functions [1, p. 1321, we obtain, among other
things, a generalization of T-reducibility: the concept of @ -T-reducibility.
According to 1) and its relativization to B  we have Alﬂ—_TBQAér(BO 29
(there are recursive functions transforming indices of @ -T-reducibility into
corresponding indices of T-reducibility and vice versa). Let us remark that
the (8°-T)-jump of any set A is T-eguivalent to (A@#°) .

It will be useful for us to introduce also an @ -variant of tt-reducibi-
lity. A set A of NNs is said to be @ -tt-reducible to a set B of NNs (notati-
on: A‘ﬂ'-ttB) if there exists an @ -recursive function f such that A‘ﬂ'-tta
via f holds, i.e., for all NNs x, xe A g (tt-condition f(x) is satisfied by
B) is valid.

0f course, Ay, (A®B) and Aky- .B =p A& (B @) hold.

Results from £10, Theorem 61 are reformulated in parts 1) and 2) of the
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following statement. We use the function e from [11].

Theorem 2. There are three recursive functions f and § of one variable
and g of two variables and four @ -recursive functions T and k of two variab-
les, p of three variables and § of one variable with the following properties.

1) For any NNs x and t, ;a sg(]a(s,x)-g(s+1,x)|) & £(x),
p.(iwhm gly, x))E)LZ_X, L ql (t))E O, <whm g(y,v))E and

E -t+1.
S 1)} sqw 'g(t)b hold and consequently, (w((wg(t)> )£ 2
2) For any NNs z and t and any set A of NNs fulfilling A§ < wg(”) s

we have

(1) AcqaupEer ne i BE
(i1) if A& €W, »E (e if A ¢ (wE(t’Z),bE) holds then

Ywy(k(z,wrt) €y => w(d W, »Entaro,yiH< 2. @{AL0,y13 )
is valid; consequently,

(111) either A is in (w"“ 2)} or it is a point of dlspersmn of
q w ) (with an @ -recursive function as a modulus).

3) For any NNs t, z and x and any set A of NNs,

a) (Ag LWy (t)> )&' A(x) =9, A(x)£ B(t,z,x) holds;
b) if

o .
¢)) A -.:’:‘o 4wg(v)‘y5
is fulfilled, then A is a NAP-set (thus, a non-recursive non-semigeneric set
[11)) and
(1) !qu(y)=¢ qi(y)é d(y) is valid for any sufficiently large NN y;
(ii) A'= g -tth and, thus, A= (A®@’) hold;
(iii) for any sets'B and C of NNs, we have C£B<A=> (Cég‘_ttB)&
& (B is not B -hyperimmune).

Let us remark that, as we have seen, for any set A fulfilling (1), any
partial A-recursive function is almost everywhere majorized by the @ -recur-
sive function § and that (1) is valid for almost any set A, where "almost any
is effective with respect to @  (cf. [ 9], the corresponding notion will be
also introduced below).

"

Proof of Theorem 2. It is sufficient to show that part 3) is a consequ-
ence of the preceding two parts of the statement. We use Remark 1 and
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construct @ -recursive functions p and § such that, for any NNs t,z and x,
P(t,z,x) is the maximal element of the set
{otuig y(x) yewgg,ﬁ(gog(z x)); and §(x)= max Plv,w,x).

hw <

To finish the proof we notice that if A § {wg(t)PE then

wh(t dom(x,x))

xeA &> J y(ye dom{x, %) & dy A[U,lh(d"y)]).

By a slightly modified @ -relativization of the proof of [6, Theorem
3.12] we can prove the following statement.

Theorem 3. For any set A of NNs the following are equivalent.

(a) Any A-recursive function is majorized by some @ -recursive function.

(b) degT(A) (the T-degree of A) is @ -hyperimmune-free.

(c) degT(A) has a non-empty intersection with only one @ -tt-oegree..

(d) degT(A) has non-empty intersections with only finitely many @ -tt-
degrees.

We introduce some constructive concepts now (cf. [ 71).

Let us fix two Markov algorithms: wd establishing a one-to-one corres-
pondence between N and E* , and en being the algorithm 1nverse to wd. For
any set B of NNs and any NN x, the correspondence AU(wd(g (en(U)))) will
be denoted by l[q 1 and called the B-algorithm with B-index x.

Let M0 and M1 be subsets of Eg* . A B-algorithm F is said to be a) of
the type (M —> M) if YUUeM =» ! FID&F(WeM);

b) a B-seguence of elements of M1 if it is of the type (N—> Ml);

c) a B-sequence of C-algorithms if it is a B-sequence of C-indices of
corresponding algorithms. *

In the following we shall present B-sequences of words (or algorithms)
by their "members" using notation {...!S.

Let F be a sequence of RtNs. A sequence of NNs (or a function) G is cal-

led a modulus of fundamentality of F if Vxy(|F(G(x))-F(G(x)+y)|£ 27) holds.
F is called B-fundamental if there is a B-sequence of NNs (or, equivalently,
a B-recursive function) being a modulus of fundamentality of F. If the func-
tion Ax(x) is a modulus of fundamentality of F then F is said to be canoni-
cally fundamental. Let us notice that any B-sequence of RiNs.is fundamental
(in the classical sense) if and only if it is B -fundamental and that a real
X is B-recursive if and only if there exists a canonically fundamental (or a
B-fundamental) B-sequence of RtNs converging to X.

We meet a situation similar to the one just presented,among other cases ,

- 147 -



in the cases of convergence, continuity, uniform continuity and measurabili-
ty. Also we can introduce here (in parallel with classical concepts) B-con-
cepts, where the availability of a B-recursive function being a correspond-
ing modulus, is required. Speaking about constructive (or, equivalently, ef-
fective) fundamentality, constructive continuity etc. we always mean @-fun-
damentality, @-continuity etc.

Let x be a NN. E(X)—constructive real numbers (B(X)—CRNS) are words in
S being either rational numbers or codes of ﬁ(X)-recursive reals such that
any PCO-CRN is an 04D gry. 083 denotes the set of a11 #C)-CRNs ([x]

+do
stands for ﬂ(x)). Elements of A , where Ag"},}o bW, are called arith-

metical real numbers (ARNs). On A , the relations of equality and of order
are defined in an obvious way, basic algebraic operations can be realized,
thanks to the s-m-n theorem, by @-algorithms, i.e. effectively [7]). Let S and
T be variables for @-CRNs.

A rational segment (or interval) is a word of the form aab (or awb),
where a and be are RiNs and a<b holds. For any words of the form UMV, where
A is either A or ¥ and U and V are ARNs, and any real X, Xe UaV &
= (U£X£V holds), Xe UoV = (U<X<V holds), (UaV)°== UeV, [UMdV| e
= (V-U), El(U>l walu, Er(U>I V) & V. Let us suppose to have a fixed enume-
ration of rational segments given by an @-algorithm & and two @-algorithms
£° and Seg such that, for any NN x and any string ® , £°(x) = (&(x))°
and Seg(«) is the rational segment cA(c+flh("')), where

-x-1
¢ gx <§.(¢)1(x)'2 ’

For any set A of NNs, we define [A) < {X:3x(xe A&X € &(x))} and
[Al = {X: Ix(xe A&X & B2(x))}. Sometimes, we use the word Uy V, where U and
V are ARNs and ) is either A4 or ¥ , instead of {X:Xe UNV}. Let In be a
recursive function such that, for any NN z, wrﬁ(z) is the get of all NNs y for
which the segment #r(y) is a union of a finite subset of the set
{seg( d"x):xcwzi of rational segments.

A class ¢ of sets of NNs is said to be of B-measure zero if there exist
two B-recursive functions f of one variable and g of two variables such that,
for any NN x, Vyzv(g(x,y)€ z = I@.((W?ZSV)E)— @« W?E§)> Ey|€27),

(u(<w§(x)>5)42"‘ and € & <wg(x)>f hold.

Let us remark that the class of all weakly l-generic sets [5] is of @-me-
asure zero, the class of all sets being either semigeneric or recursive [11]
is of @ -measure zero and, for any non-recursive set A, the class {B:AéTB}

is of (A@® @ )-measure zero.
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Theorem 4. For any class € of B-measure zero and for any string ¢
and any set C of NNs, there is a set A of NNs such that Ae({r}E\%),
AéT(B @®C) and CéT(Be A) hold (in fact, we have C EB-ttA)'

Proof. Using standard methods of measure theory, we construct a B-algo-
rithm T of the type (St —» St) (determining a B-recursive tree) such that
(i) T of the empty string is « , (ii) for any string € , the segments
Seq(T(&x 0)) and Seg(T( &% 1)) are disjoint, contained in (Seg(T(& )))°,
they have the same length, the first of them is situated to the left of the
other and none of them contains any of RtNs of the type i.Z_Ih(s)—l and (iii)
no set of NNs corresponding to an infinite path of the tree T is in the class

% . Then, for a given set C of NNs, we put A= {x:T(CL0,x2)(x)=1}.

Corollary 5. For any string @ and any set B of NNs, @ & TB, there is a
set A such that (1) is valid, ® A, A=y .8 and A" = B hold. Thus, A is
a NAP-set, 1(87€A) and (B'< (B => (A£8)).

Proof. It is easy to show that the class 7% (Wﬂ )>E of sets is of
wa0 - 8v)
@ -measure zero. Then we use Theorems 4 and 2.

We return to constructive functions now. Concepts introduced by us ‘make
it possible to give definitions. An @-algorithm F is said to be a constructive
function if it is of the type (0'0—s D0J) and WST(S=T=> F(S)=F(T))
holds. A constructive function is called a c-function if ¥S((S<£0 =» F(S)=
=F(0))& (145 =» F(5)=F(1))) is valid.

Remark 6. 1) By Cejtin [2], for any c-function F, there is a recursive
function contp such that, for any NN v, the set wcontF(v)yOf strings is a

. E -
proper covering and ”’(<wcontF(y)> y£2™V and Vyab(y € wcontF(v) &
& (a,b e Seg( d'y)) = |F(b)-F(a)|£2™Y) hold. Consequently, any c-function F

is @-continuous at any B-CRN and RLF] is defined at least on
:f:\oo 4wcontF(v)>E’ in particular, it has a B-limit at Ty for any semigene-
ric set B (cf. [11]). However, a c-function can be unbounded on Oal.

2) For any c-function F, (F is (classically) uniformly continuous) &=
&= (F is @# -uniformly continuous) &> (R[F] is defined at any @ "-recursive
real) &> (RIF) is everywhere defined) [ 7). There are uniformly continuous c-
functions being not @-uniformly continuous [4]. On the other hand, any mono-

tone c-function is @-uniformly continuous [3].

- 149 -



3) The predicates S<T of variables S and T, Se¥%°(x) and S & & (x) of
variables S and x are recursively enumerable. For any @-uniformly continuous
(resp. @ -uniformly continuous) c-function F the predicates RIF] ({#(x)) &

c %°(y) and RLF)(3(x)) n¥(y)=P of variables x and y are @-recursively
(resp. @ -recursively enumerable.

Remark 7. On the basis of Remark 6 and [11, Lemma 10] it is easy to
prove the following.

1) Let B be f-reducible to A. Then we have

(i) if B is a non-recursive and non-semigeneric set, then A also has
these properties;

(ii) if A is l-generic [12) then B is either recursive or l-generic;

(iii) if A is hyperimmune then B is contained in a class of sets of §-
measure zero.

2) Weakly l-generic sets [5]) can be mf-reducible to semigeneric sets
only.

We shall have some trouble with binary rational reals in our considera-
tions. Let us notice that the real Ty is not equal to a binary rational num-
ber if and only if A is a bi-infinite set. In the sequel, for any NN t, 33(t)
(or, as the case may be, 33” (1)) denotes: Wy » (or (w“)) is a set of mu-
tually incomparable strings which, for any non- enpty finite set A, covers ei-
ther A or Set(rA).

A set A of NNs is said to be

a) a strongly bi-infinite set, an SBI-set, (resp. and @ -strongly bi-in-
finite set, an @ -SBI-set) if it is a bi-infinite set and there is a NN t
tultilling B(t) (resp. B (1)) and A ¢ €, DE (resp. 4 ¢ D5,

b) a weakly bi-infinite set, a 'HBI—set, if it is a bi-infinite set, but
it is not an SBI-set.

Remark 8. 1) Any bi-infinite recursive set is an SBI-set. Any SBI-set

is an P -SBI-set. Any weakly l-generic set is, naturally, a WBI-set. Any WBI-
set is by [11, Remark 15 and Corollary 12] a bi-hyperimmune and, consequently,
semigeneric set. So, according to [5], WBI T-degrees are just the hyperimmune

ones. The class of all WBI—sets is both a ’ITO P class and a TT class of @-
measure zero which is not a 23 class

2) Let t be a NN such that Nt°= {x: y(1h( d"x)=2y+2&(VZ)Ry( J (22)=
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= &,(22+41)) & &, (2y) % &, (2y+1))}. Then B(t ) holds and A® A ¢ < W, »F
o]

is valid for any set A of NNs. Thus, for any bi-infinite set B (in particu-
lar, for any WBI-set), B @® B is an SBI-set Consequently, there are bi-hy-
perimmune SBI-sets.

3) We can construct bi-infinite @ -recursive sets AD and Bo such that
A, = B, holds and A, ® (806 Bo) is a WBI-set which according to [11, The-
orems 4 and 5] cannot be weakly l-generic. By [1l, Theorem 93, 1) and 2)
(B,® B,) is a semigeneric set not being a WBI-set.

We begin with @-ucf-reducibility. Let us remark that according to the
part 2) of Remark 6 Aéme =p A‘ﬂ-—ucf B holds for any sets A and B of NNs.

Theorem 9. 1) For any @-uniformly continuous c-function F and any NN t
fulfilling 0< F<1& B(t), we can construct a recurswe function f such that,
for any sets A and B of NNs, where B ¢ (Wt> and B is bi-infinite, we have

(2) (B g-uct? Vvia F) &> (B& A via f).

2) For any recursive function f and any NN t fulfilling B(t), we can
construct an @-uniformly continuous c-function F such that 0£ F£1 and (2)
hold for any sets A and B of NNs, where A ¢ 4 Wt)E and B is bi-infinite.

Proof. Let t be a NN, 3(t). We construct an increasing recursive func-
tion g such that V xi(0<i< 2*l=y 3 y(yewg x) &i.27%" le Seg( ‘f)))

1) Let F be an @-uniformly contlnuous c-function, 0&F&1. There are
an increasing recursive function h and an @-algorithm H of the type (S5t—St)
such that 0< h(0) and, for any NN x and any strings € and ¥ fulfilling
1h(x )=h(x), we have (€ & 4WQ(X)> => Vab(a,b€Seg(w) = |F(a)-F(b)] <

<27 1(E)-X-2yy " 1p i ))=x+1, RIF(Seg(%))s (Seg(H(®)) v u Se9(I),
YW,

(( 7 extends €) = (H(2 ) extends H(&)) and (lF(El(Seg(e N)-

-E, (Seg(H(# < 27%v H(e )(x)=0) (see Remark 6). We construct a recursive
function £ such that, for any NN x, f(x) is the (code number of) tt-condition
of norm h(x) with an associated set £0,1,...,h(x)-1} and h(x)-ary Boolean
function transforming any string @ of length h(x) into H(a’ )(x). Obviously,
f has all the required properties.

2) Let f be a recursive function. We shall construct an @-sequence
{F x}g( of polygonal c-functions and a recursive function h such that 0£ Fx £
&2 1 and Fx fulfils the Lipschitz condition with h(x) for any NN x and a

c-function F to which the canonically uniformly fundamental @-sequence
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v .
1,20 F
Let

of c-function converges, has all the required properties.
be a NN and Py the greatest of the elements of associated sets

x< =

. q
of tt-conditions £(0),f(1),...,f(x). We denote by {'cx i} i)—‘O the increasing
,i% =
finite sequence formed by RtNs: 0, 1 and all end points of Seg( d"z) for
ZeWi Px’ . The c-function F, will be linear on the rational segment
cx,jACx.j+1 for any NN j< Q- Let i be a NN, 0¢ iéqx, and let Vx,i =

= @y(lh( d'y)=px+1& Cx,i® Seg( d'y)&(cx,i< Er(Seg( d'y)) viz=q v Jz(z e
. ewf(px)&El(Seg( d'z))=cx’i))). We find a string € fulfilling 1h(® )=x+1 and

: _ -x-1 R
Géttd'vx . via f (see [11, p. 731) and put Fx(cx,i)‘ 6(x).2 . It is ea-

sy to find’a NN being the Lipschitz constant for Fx.

These results cannot be improved in a general case.

Example 10. Let g & Ax(ay(x<2y+2)). Then, for any set A,

(a) A&)A‘mA via g holds;

(b) if A is bi-infinite and A® Asz is valid then A is necessarily an
SBI-set.

Remark 11. Let F be a non-decreasing c-function fulfilling F(0)=0, F(1)=
=1 and Va(aeub&0<a<l =» (Set(F(a)) is bi-infinite)). Then, for any set A
and any bi-infinite set B of NNs such that BéfA via F holds and BéttA (or
B‘ﬂ'-ttA) is valid, the set B must be an SBI-set (or, an @ -SBI-set, respec-
tively).

By a relativization of the proof of the part 1 of the preceding theorem
we get the following statement:

Theorem 12. For any @ -uniformly continuous c-function F and any NN t
fulfilling D‘F‘l&ﬁﬂ (t), we can construct an g'—recursive function f such
that, for any sets A and B of NNs, where B 4 (wg >E and B is bi-infinite,

(B£y-_ o¢A via F)e=> (B&y-_44A via £) holds.

In the case of monotone c-functions we can get more.

Theorem 13. 1) Let F be a c-function and f a recursive function such
that (BittA via f) = (BlfA via F) holds for any sets A and B of NNs. Then
(B4 eA via F) = (B&,,A via f) is valid for any set A and any bi-infinite set
B of NNs.

2) Let F be a non-decreasing c-function, F(0)=0&F(1)=1. Then the follo-
wing two conditions are equivalent:

(a) There is a recursive function f such that, for any sets A and B of
NNs, (B£,4A via ) = (B & ¢A via F) holds.
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(b) There is an @-algorithm E of the type (Qb-—-» ®) such that
Va(ae Q°%0<acl=p F(E(a))=a) is valid.

Theorem 14. Let F be a non-decreasing c-function and £ an P-algorithm
of the type (Q°—s Q®) for which F(0)=0&F(1)=1% Va(a€°&0<a<l=>
=p» F(a)=E(a)) holds. Then there is a recursive function f such that
(B £ ngh via F)(::(A-ttB via f) holds for any set A and any bi-infinite set B
of NNs.

Theorem 15. For any B-uniformly continuous c-function F we can const-
ruct NNs z, and Zy such that, for any sets A and B of NNs, we have

(a) (B bi-infinite) =» ((B&A via z )e=>(B£y (A via F));

(b) if F is non-decreasing and 0<£ F£€ 1 holds then ﬂ<TB =>
- ((BémfA via F)e=d (A‘TB via zl)).

Theorem 16. For any c-function F we can construct NNs Vg and v, such
that (B4 (A via F)M(B‘T(Aeﬂ Jvia v) and
(A is elther recursive or semlgenerlc)=> ((Bé A via F) e=>(B£ A via Vl))
hold for any set A and any bi-infinite set B of NNs

1

Proofs of Theorems 15 and 16. We use Remark 6, the s-m-n theorem and
its relativization and construct everywhere defined @-algorithms L and R and
recursive functions 90 91> hD and h1 of two variables such that L(xyi) ==
= (2i+).27% L) R(xyi) & (2i+y+1).27%71
wgm(x,y)= {t:y€1& 3 j(RIFI(Seg( d't))sL(xyj)vﬂ(xyj))i,

wgl(" "7 {t:y £18 3 3(Seg( g) e F(Lxy3)) vF(R(xy3)E,

W Gyy” {41833 73000 eSe0( TR Fl)« Loy VR F@I,
W, (x 9= {t:y<1 3jvaltew 0ntF(v)&aeSeg( dy) & L(xy3)+2~ -v+l
< Fla)< Rxy3)-27* 1}

for any NNs x and y and any integer i. For the completion of the proof it is
sufficient to use Remark 1.

Remark 17. 1) Using Theorems 13 and 14, we can prove by a construction
of corresponding non-decreasing c-functions the following:

(a) Any @ -recursive 1-generic set is tt-equivalent to a weakly l-gene-
ric set being not 1-generic.

(b) Any weakly l-generic set is tt-equivalent to a WBI-set being not
weakly l-generic.

- 153 -



As we already know, for any WBI-set A, the set A @ A being tt-equival-
ent to A is a bi-hyperimmune SBI-set and, thus, by [11, Corollary 12], a se-
migeneric set.

2) By Remark 11 there exists an increasing c-function F such that F(0)=
=0, F(1)=1 and, for any sets A and B fulfilling BémfA via F we have:
B'mfA, B -TA (Theorem 15), if one of the sets A and B is 1l-generic (resp.
weakly l-generic) then the other one is also 1-generic (resp. weakly l-gene-
ric) and, in addition, B and A are tt-incomparable WBI-sets (Remark 8).

Example 18. There are two @ -recursive sets being recursively isomorph-
ic (i.e. l-equivalent) but f-incomparable (according to Theorem 9 these sets
must be WBI-sets).

Theorem 19. For any proper covering (wt> and any NN z we can construct
a c-function F such that 0 & F&€ 1 and, for any sets A and B of NNs, where
A ¢ <, > and B is bi-infinite, we have

(B‘T(AGE’)via 2)e=> (B&A via F).

Theorem 20. For any proper covering (Wt) and any @ - recursive func-
tion f, we can construct an @ -uriformly continuous c-function F such that
0£LF&1 and, for any sets A and B of NNs, where A ¢ (Wt>E and B is bi-infi-
nite, we have (Bé&y- 4A via D)Gmp By oA via F).

Proof of Theorem 20. Let k be a recursive function whose range is the
set wnol(t) and let ay’oulr El(Seg(J’R(y))) and ay,l‘—= Er(Seg(J-‘;(y)))
for any NN y. The RiN ay i where 0£i€1, is said to be vacant if 0<a .<
’
.) holds.

Y,1
<1&-(3V),, () s=a, , ;

We shall construct an @-sequence of (B-indices of) c-functions { FXIE such
that, for any NNs x,y and i, 0€i<£1, Fx is linear on the segment ay,DA ay’1
and F,(a, ;) is either 0 or 271 and, thus, 0&F €277 holds.

Let P be a recursive function of two variables such that f(x)=
= 1lim P(y,x) for any NN x.

“—"0.
We put FX(D)=FX(1)=0 for any NN x. The construction proceeds in stages.

Stage s. If neither ag g nor a4 is vacant, we go to the stage s+l1.
b ’
In the other case we denote by 7 s the longest string from the set
{7 :lh(v)bs&(x ‘tt;ﬁ(s) via Ax B(s,x))¥ of strings (containing at least
the empty string, see [11, p. 73)). For any NNs x and j, 0£) él&(as 3 is
- -x-1 . _ S
vacant), we put Fx(as,j)' es(x).z , if x<1h( -rs), and Fx(as,j)’o’ if
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lh('t:s)_é x. We go on to the stage s+l.

Let us remark that, for any NN x and sets A and B fulfilling A ¢ (Wt>E
and Béﬂ'—ttA via ¥, the function R[Fxl is not only everywhere defined and,
thus, by Remark 6, @ -uniformly continuous but even polygonal and R[Fx](rA)=
=B(x).2_)"1 is valid.

Let us denote by F a c-function being a limit of canonically uniformly
x .
fundamental @-sequence {gzo Fy'ﬁg of @ -uniformly continuous c-functions. Ob-

viously, F has all the properties described in the theorem.

To prove Theorem 19 it is sufficient to modify the previous proof using
the function hp.

Corollary 21. For any non-recursive non-semigeneric set A and any @ -
recursive set B we have B‘ﬂ’-ucfA' Consequently, there are @ -recursive (and
thus, g'—tt—equivalent) non-semigeneric @ -ucf-equivalent sets being T-incom-

parable and, thus, @-ucf-incomparable.

Proof. It is sufficient to use Theorems 15 and 20, the Friedberg-Much-
nik theorem (1, § 10.2] and [11, Theorem 13]. '

We shall restate Theorem 33 from (11} here.

Lemma 22. For any NN t such that u (€ wt>)<1 and for any set A of
NNs we can construct a set B of NNs such that A£.B, B ¢ (thsE and
B= - 44A hold and, thus, B£,(A® #’) is valid.

Using this lemma we can get the following example.

Example 23. For any covering { W,>» such that m (<4 wt>)< 1 we can

construct sets A and B of NNs not contained in <wt>f which are T-equival-
ent to #°° and @ -tt-incomparable. Consequently, according to Theorems 12 and
19 and Remark 8, A and B are f-equivalent and @ -ucf-incomparable.

Example 24. For any NAP-set A there is an NAP-set B such that A and B
are tt-equivalent and mf-incomparable. Thus, A and B are SBI-sets [11, p. 74]
which are by Theorem 9 B-ucf-equivalent.
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