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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

ON THE BASIC REPRESENTATION OF THE AFFINE
KAC-MOODY LIE ALGEBRAS Dﬁl)

Thomas N. VOUGIOUKLIS

Abstract: We compute the constants needed for the principal realizgti-

on given in [3] of the affine Kac-Moody Lie algebras Dﬁl), nzé.

Key words: Affine Kac-Moody Lie algebras, graded Lie algebras.
Classification: 17B65, 17B70

1. Introduction. Let nZz4. Let {Eij}j=l,...,2n be the standard basis of
the space of 2nx 2n complex matrices, so that the matrix Ei' is 1 in the ij-
entry and 0 in all the other entries. In the case of Kac-Moody Lie algebra
%(A) of type Dr(11) (n24) we have (see [41,(9))
(1) %=0(2n,C), (x|y)=tr xy.

Instead of the standard representations (21, we consider all 2nx 2n complex
matrices in the form given in [1), for type Dn' We can take the Chevalley ge-
nerators [3) (cf. [8)) ei’fi’hi given in [10]) by the following relations, for
i=1,...,n-1.

(€oFon-1,17F

E

2n,2°%1784 141 "Bon-i, 2n-i41°

enEno1 ,n+1_En,n+2 >

fo 1 2n-17F2,200 1576500 1B i o s

@ < £ B ,n-l—En+2 ,n’

hD=E E

2n,2n*Egn-1, 20175227 R
i” 2n-i,2n-i*Eii‘EZn—i+1,2n-i+1‘Ei+1,i+1’

h =E_ +E E

\"n""An"Tn-1,n-1"

n+2,n+2-En+1,n+1
Let us denote (see [10]) by X the number defined in the following way:
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K=K if x€&nand K=Kk-1 if K > n for every Kk of Z. Moreover let
h=2(n-1) be the Coxeter number [3]. Then we have the following

Proposition 1 (see [101) . A Lie algebra % of type 0, is a graded modh
where the l-principal Z/h Z-gradation is given by setting

deg Eij=(,1-1) modh.

So we can write

® 4.
ieZ/nZ

We take a normalized l-cyclic element [6] as follows: E=f3;e; where
ﬂ0= {31= [Bn_1= [Bn=1/\/7, ﬂi=l for i=2,...,n-2. One obtains the relations
3y L ETCD"E, 2l 200 leor keN; ke,
and tr Eh=(—1)nh.
The centralizer S of E is a CSA of 9% with dimension n (see [6]). A basis of
s is {E,E%,...,E2"3 E_} where

EoE1nfy ,n+1+Enl+E Enel s 17 ,2n+E2n , n~E2n ,n+l?

and we have

n,2n"

(4) E§+(-1)"4£h=41, tre2=8, and £ EV=EVE =0 for every .

In [5] and [3) a construction of the basic representation of the affine
Kac-Moody Lie algebras have been introduced which construction is a generali-
zation of the one introduced in [7). This construction has been called prin-
cipal realization. For this realization, in the case of Df‘l) , one needs n
root vectors Al"”’An’ with respect to S, such that their projections on
‘50 form a basis of ‘30. Moreover if 'Us}5=1,...,n is a basis of S which is
normalized such that (Ti”ml-j): dij for all i,j=1,...,n, then the constants
31‘3 defined by the relation [TS,ArJ=7\rSAr are needed for the principal re-
alization. If we decompose the vectors Ar with respect to the l-principal

gradation

A= % Angs T=1,..0,m; velZ/hZ,

then the elements AW,TS where r,s=1,...,n; 9=0,...,n-1, form a basis of 9.
The aim of this 'paper is to compute the constants 5\1_5 in the case of Dr('l),
nzZza.
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2. A basis of % . Let n=2x . Then decomposing the S with respect to
the 1-principal gradation we have dimension one for the degrees 1,3,...,n-3,
n+l, n+3,...,2n-3, and dimension two for the degree n-1. For the dimension
n-1 we have a basis: {En—l,Eoi.

For the one dimensional degrees, in order that the relation

(Tilel—j): d.ij should be valid, we can take the vectors
21 251 - 1.
) { Ts'?ﬁE for s=1,..., Kk-1;
_t _1  2s-3 -
TS- Tn+1—s' Nt E for s=x+2,...,n.

It remains to find two vectors TK s TK+1 of dimension n-1, i.e. from the li-
near span of E"L, E, such that (T, |T,)=0, (Tes1 1 Top)=0 and (T[T, ;)=1. Us-
ing the relations (3) and (4) one obtains the vectors. 0

©) Ty = I € F By Teum g €71 Egr where 1% -1,

Therefore a normalized basis in case that n=2K is given by the relaticns
(5) and (6).

Let n=2K +1. In this case for S we have only dimension one on the deg-
rees 1,3,...,n~2, n-1, n,...,2n-3. So in a similar way as above we have the
following as a normalized basis of S:

_ 1 251 ) A
o {Ts—mE for 5—1,...,K,TK+1—mE0,
t -
Ts - Tos” 51# £257 tor s=k+2,...,n.

Proposition 2. Let Qr= %"1'-, and X=diag(X;, ... X,s “X,.-+,-X)) be the
elements of Ga. Then the (adE)h has eigenvalues
n+r ,h h or _ n
(8  A=(-1)7".2" cos” -7 for r=l,...,n-2, and Ap1= =D
with corresponding, appropriate, eigenvectors

(9) Ao=diag(0,-sin @ ,...,(-1)"2 sin(n-2) 8,0,

0,-¢-D"%sin(n-2) 8,...,5in 6,0),

An_1,0=diag(1,0,...,-01,41,0,...,-1)
(10)
An°=diag(1,0,...,-vz,-vz,o,.._.,-l),
where ¥, , V, are the square roots of (-1)".
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The set iAlO,...,Am} is a basis of ‘50-

Proof. The non-degenerate operator adE shifts the gradation by 1, see
[31, so the vectors

(adE)x= ilo -1)8 (M NS xe®
s= S

are of degree zero. Since Eh's=(—l)" tEs‘, 0<s<h, we obtain
h-1 .
(11)  (adE)x=(-1)" Z My teS x SN xexe,
=] 'S
Our problem is to solve the matrix equation (adE)hX=<AX or from relation
(11) to solve the eguation

an B Ot x e DE xeh=(0"ax.
S=
We have two cases:

Case A. Let X=diag(0,x2, ,xn_l,O,U,-xn_l,...,—x2,0). In this case de-
pending on the skew symmetry with respect to the second diagonal of x
<o X1 in (12) we have to solve the homogeneous system on ><2,....,><n_l
coefficient matrix the (n-2)x (n-2) matrix which has on the A-th row,
~=1,...,n-2, the following entries

greee
with

W+ N+2
G D-GMDY, GOV -,

h n
- ID-"3, 2-G-oMa, - TGN,

D™ [ Al (SRR LS B

LIRS NG
Solving the above system we finally obtain that the n-2 eigenvalues of the
(adE)h are given by the relation (8) for r=1,...,n-2 and the corresponding

eigenvectors are given by the relation (9).For the above computation we use
the well known identity

h/{2-1
cos"6 = .Zih—z éﬂ (::) cos(h-2 K) ©+ ‘z_h'(hvz)

Case R. Let X= dlag(x 0,..,0,x,-X 0,...,[),—)(1)=Am where r=n-1,n.
In this case ail matrices (adE)vA have non-zero entries only on 1,n,n#1,2n
rows and columns. Moreover A= IA must be an eigenvector of the adE
e. (adEo)Ar= y.Ar Solving the above system we obtain the eigenvalue (- 1)
for (adE)h and a corresponding basis of X's is the one given by (10). From
the cases A and B we obtain that {A;,...,A |} is a basis of S
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Remark. Let e be a h-primitive root of (-1)™T for r=1,...,n-2, and
€,.1"€,° € be a h-primitive root of D" We set

P gy
(13) A;él @, (ade’A

where ‘u.r=2grcus ——2-11 , and a1 &7 €. Then Ts for s=1,...,n together
with the homogeneous components

18) A= (adE¥A , r=1,...,n; 90,...,h-1

of A, form a basis of $.
In order to write explicitly the matrices Ar for r=1,...,n-2 which are
skew symmetric with respect to the second diagonal lets consider the matrix

A~ (Arl ArZ)
r Ar3 Ar4

where Arl’ Ar2’ Ar}’ Ar4 are nxn matrices. o
We set ¢ and <V, u?» instead of €, and (—1)9 sin ‘“__2_1?_ respectively, and
we write simply the upper parts of the skew symmetric, with respect to the
second diagonal, matrices Ar2’ Ar}' Then Arl’ Ar2’ Ar} are given respectively

as follows:

Fo ¢1,1) 2,2  &n-3,;n-3) 4n-2,0-2» (ner,n-1) )
eV V7 e"NVZ AT el
{n+r, 1) a,2y 2,3y (n—g:Z—Z) (n-2,§|-l) <n+rén-2>
Y ¢ e e e V7
{n+r,2) (n+;r~‘£3,3> 2,8 ... <n—r31—L2_D <n+r—l‘;n—2) n+rin—}
243 3 € el VT
(nen,n-3) (n+r’—1ién—2> (n;iin—l) IR ATAN {n+r-1,3) (n;r, 2>
ez € £ € V72
-2  <n+r-1,n-1> ¢(n-1,n-2> €2,3> {n+r,l
(n+'11‘ n-2> n+l n+2 Tt 2n-3 (mr-1,2) L
eVZ & & > ev2
<n-1,n-1y ¢{n-2,n-2)  <n-3,n-3 2,2 1,1 0
-1 NG n+1\/~ o 2n-4 2n-3
e 2 < e 2 VI T /
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( (n+r,n-1y  {n+r,n-2)  (n+r,n-3) (n+r,2)  (ner,ly o)
en-l 2 e nsZ t.,'nd-l\/? eZn—It‘/i- 52"'3\/2'
{n+r,n-2> <n+r,n-3)  {n+r,n-4) {n+r,1y 0
en—Zﬁ- € n-1 en eZn-S
{mr,n-32 {n+r,n-4)  {n+r,n-52 0
en—Bﬁ- er\-2 e'n—l
{n+r,2? {n+l, D 0
Czﬁ € 3
{n+r, 1?7 0
ev2
Lo - J

(¢n-1,n-1) ¢n-2,n-2)  {n-3,0-3) 2,2 £1,1> )
8n-l 2 enﬁ sn+lﬁ e?n-hﬁ e2!‘!—,"‘/2-
{n-2,n-22 {n-3,n-37 {n-4,n-4) (1,17 0
en-Zﬁ en—l en e2n—5
{n-3,n-3 <{n-4,n-4) {n-5,n-5» 0
g"'}ﬁ en- &n—
< 22,2) (1}, 1y 0
eV? €
<1,1» 0
EVZ
L 0 J

For the skew symmetric with respect to the second diagonal matrices
An-l’An we have analogously for \)=\71 ;\72 the following upper part:
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Now using the formulas (13) or (14) it is a simple calculation to obtain

1 4 G P RO DN S DU S DU e bl
€2 "7 el Ml eV 237
D" ) )
0 0 0 ... ©
eZn-Bﬁ sn— 5 en—Zﬁ
" 2 v 0
N 0 0 2 2 '
e"V2 V2 evZ
2D v DY 9 0
el 2 e
weD ™
F'n—l 2 enﬁ eZn-Bﬁ
n
=D 0 ... 0
'
1 0
V2
L0

all Lie brackets of Ar with the powers of the element E as well as with Eo'

Note that only the odd powers of E are elements of % . So the following pro-

position is obtained.

If jed{1,3,...,h-1%, then we have

3 Ar for r=1,...,n-2

Proposition 3.
. . je
VA =9 e J L
(adE: )Ar-2 e, cos
and
(adEJ)Ar= e’ A, for r=n-1,n.
Moreover

(adED)Ar=0 for r=1,...,n-2, and

(adE A = o1

3. The results.

Ars from the relation Us’Ar] :'?‘rs Ar‘

Y] -
—_— Ar for r=n-1,n where v=vl,v2.

Using the above notation we can compute the constants
From Proposition 3 we obtain that

all constants Ars’ where r,s=1,...,n, are the following:

3.1. Let r=1,...,n-2 then
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(2s-1)0 s=1,...,k-1 if n=2k and
y S - 25 1 os—z——ifor { e
rs’ \/Tw s=1,...,k if n=2k+l.
(25-3)0
A= ZS % cos ——=L for s=k+2,...,n if n=2k or n=2k+1.
rs Jﬂ 2
Moreover
(n-1)8
1 _n 1 r .
A= &r 0s ——=—— if n=2« and
rk I‘,K+l Bh 2
Ar kel =0 if n=2k+1.
3.2. Let r=n-1,n then for v;vl,vz respectively we have
2s-1
Aps® 5—‘/—5——— for s=1,...,k-1 if n=2k, and s=1,...,k if n=2k+l.
e25—3
rs” 7 for s=k+2,...,n if n=2k or n=2k+l.
h
Moreover
1 Vi n-1 - 1 Wi\ gn-1 ..
- —2—)6 ’ar,x+1' (\/‘271 2)5 if n=2k
where 12= -1,
and
n-1
_vE se o
rkel” if n=2k+l1.
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