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LINEAR FUNCTIONALS ON SOME NON-LOCALLY CONVEX
GENERALIZED ORLICZ SPACES

Ryszard PYUCIENNIK, Marek WISKA

Abstract. The purpose of this paper is to provide theorems on existen-
ce and nonexistence of nonzero continuous linear functionals on non-locally
generalized Orlicz spaces of functions with values in a p-normable space. We
present theorems which are generalizations of the results of S. Rolewicz(19]
(Theorem 0.1) and L. Drewnowski (5] (Theorem 0.2).

words: Orlicz space, vector valued function, linear functional,
non-locally convex space.

Classification: 46E30

0. Intrnduction3 Orlicz spaces of vector valued functions have been de-
veloped by many authors. They can be considered as a special case of both Ba-
nach spaces - e.g. Skaff [21],[22), Kozek [12), Chen Shutao [3], Jamison and
Loomis [11]), and Fréchet spaces - e.g. Hernandez [7],18). The purpose of this
paper is to establish theorems on existence and nonexistence of nonzero conti-
nuous linear functionals on non-locally convex generalized Orlicz spaces of
functions with values in a p-normable space. Banach (see [1]) has given an
example of a metric linear space which has no nonzero continuous linear func-
tionals. In 1940, Day (see [3)) proved that the spaces LP over an atomless me-
asure with 0< p< 1 have this property as well. In the case of Orlicz spaces
the most important result was obtained by Rolewicz in 1959, namely

0.1. Theorem. If @ satisfies the condition A2 and

lin ing 2 50
% ~>+00 u
then there are nonzero continuous linear functionals in the Orlicz space

(1,5, @).

The converse implication remains true provided the measure « is atom-
less.
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At the same time an analogical theorem for modular-continuous linear
functionals in modular spaces was obtained by Musielak and Orlicz [15].

Similar results were presented by Cater [2] in 1962 and Gramsch [6] in
1967.

Pallaschke and Urbanskil18) in 1985 studied the case of (X, @) being a
modular space over a field with valuation (K,|+|). Let us recall that e is a
(w,v)-convex modular on X if gb(x)=;°(—x),gb(0)=0, if lax|=0 for every
a€ K\ {03}, then @(x)=0 and sb(ax+by)$v(a)gb(x)w(b)p(y) for all x,yeX,
a,be K with w(a)+w(b)£ 1. They claim that there are no nonzero continuous

" linear functionals on the space (X,q>) provided the modular @® is (w,v)-con-

vex, where

<+0.

lim inf v(a) . 0 and 1lim sup w(a)
o>+ 2 a—»+00 38

In particular, if ¢ is a @ -function with a parameter (see Definition 1.1
below) and, moreover, it is p-convex (0<p<1) in the following sense

$(ax+by,t)£ |a|PQ(X,t)+'b’p§(Y,t)
for all x,yeX, a,beR, |a]+|b|£1 and for almost every t €T, then the modular

Ig(f)- Lg(r(t),t)m

is (|-|1,"|p)-convex. Hence there are no nonzero continuous linear functio-
nals on the Musielak-Orlicz space L§ . Therefore it is worth studying
(I-II,I-ID)—convex modulars Ig only.

Some additional properties of linear functionals and linear operators in
modular spaces have also been studied in [10]) in 1983.

In 1986 Drewnowski proved the following (see [5))

0.2. Theorem. Let @ be a €-finite, atomless measure and let d bea
Musielak-0Orlicz function with finite values. The space E’ has a topological

dual zero if and only if

lim inf L1 §Cu,t)=0 for a.e. teT.
v U

(For detailed definitions, we refer to Section 1 below.)

Section 2 is aimed at solving the above discussed problems in the case
of Musielak-Orlicz spaces of functions with values in a p-normable space X.
In Section 3 we give a number of examples.

1. Preliminaries. Let (T,%,m) be a measure space, where T is an abs-
tract set, £ is a 6-algebra of subsets of T and w is a non-negative,
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complete, atomless and & -finite measure on = . (X, -} ) will denote a p-
normable space with a p-homogeneous norm W+l . By Aoki-Rolewicz Theorem (see
[20)) every locally bounded space X is locally p-convex for some p> 0, so
there is a p-homogeneous norm 0+k equivalent to the original one such that
(X, W+01 ) is a p-normed space. By :BX we will denote the 6 -algebra of Borel
subsets of X. Let M(T,X) be the linear space of all m-egquivalence classes
of strongly measurable functions f:T —» X, i.e. functions for which there is
a sequence of simple functions {f } such that f (t) —>f(t) as n—»+o for
almost every (a.e.) teT.

1.1. Definition. A function &:X=xT—>[0,+o0] is said to be a & -func-
tion if there is a set T0 of measure 0 such that:

a) @ is By X -measurable,

b) & (0,t)=0 and $(x,t)=§(-x,t) for every x €X and t¢To’

c) & (+,t) is not identically equal to O and is lower semicontinuous
on X for t¢T0, i.e. for every ttTo, XDGX and a< @(xo,t) there exists an
open neighbourhood U of x, such that a<®(x,t) for all xeU.

d) & (ux+vy,t) £ & (x,t)+ §(y,t) for every u,v20, u+v£l, x,yeX and
t#TO,

e) lim &(ux,t)=0 for all xefyeX: P (y,t)<+oot and t&T .
w->0 o]

Since X is a linear metric space, every strongly measurable function f
is Borel measurable i.e. f_l(u) e = for every UefBX. Hence the composition
t > § (f(1),t) is measurable. So, we can define the functional IQ:M(T,X)—a
—>[0,+00] by the formula

1§<f)=[r¢<f<t),t>u@,.

Let us note that IQ is a pseudomodular on M(T,X) in the sense of [14],
[16].

By the generalized Orlicz space Lg’(.M,(T,X)) (or shortly L§ if it does
not lead to misunderstanding) we mean.the set of all functions fe M(T,X)
such that IQ(af)< +0o for some a}O, equipped with the F-seminorm

£}y =int &u>o:1§(u‘1f)é u.
Let us note (ct. [13]) that If—fn(!,—-vﬂ as n—» +o0 if and only if
IQ(a(f—fn))-» 0 as n—» +o for all a»0. The sets 586(!')’ where e >0
and
Bg(e )= {1 e M(T,X): Ig(f) < €}
form a base of neighbourhoads of O in the space (L¥,]- 'i)' By E‘}(M(T,X))
(or shortly E‘) we denote a linear subspace of LQ defined as follows
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£2- s1¢ L‘:Ii(af)< +co for all a>03%.

Before we pass to the main part of this paper, we state some connections be-
tween @ -functions and Musielak-Orlicz functions in the sense of the follow-
ing definition:

1.2. Definition. A function $:RxT—> [0,+®] is said to be a Musiel-
ak-Orlicz function if

a’)  @(u,*) is measurable for each ueR,

b)) $(0,t)=0, & (-u,t): d(u,t) for every ueR and a.e. teT,

c’) $ (+,1) is not identically equal to zero and is left-continuous on
(0,+») for a.e. teT,

d) &(.,t) is nondecreasing on (0,+o0) for a.e. t€T,

e’) @(+,t) is continuous at zero.

The next proposition is a simple modification of Theorem 6.1 in [91].

1.3. Proposition. Let (Z,d) be a separable metric space and h:ZxT —
—> [0,+o0) be a function such that h(s,t) is lower semicontinuous for every
teT. If one of the following conditions is satisfied:

a) h(s,t) is continuous on the set {ze€Z:h(z,t)< +oo ¥ (shortly: conti-
nuous) for every teT,

b) Z=R and h(e,t) is left-continuous for every teT,
then the following are equivalent:

(i) his SSZx = -measurable,

(ii) tr>h(z,t) is measurable for every z eZ.

Proof. (i) = (ii) is obvious.
(ii) = (i). Let 0£c<+oo . Then

hL(10,e9)= {(z,):n(z, 1) 4 ct =
ba . 1 . 1 .
I\ ,‘ix,{t‘ T:h(y,t)< c+ ﬁ-}x{z eZ: d(z,y) -r-]-i (by assumption a))
=
Ia U {teT:h(y,t)<cc+ l}x{ze R:0¢ z—y<-1—} (by assumption b))
m=4 4606, n n
where Xo is a countable and dense subset of X and Q stands for the set of all

rational numbers. We shall prove only the inclusion > of the last equality
(by assumption a)). Let zeZ, teT be such elements that there is a sequence
{yn‘c X, such that

h(yn,t)< c+ % and d(z,yn)<% for every ne N.
Hence Yp—>2Z.
We claim that h(z,t)<+oo . Suppose h(z,t)=+e . Then, by the lower semi-
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continuity of h(s,t), for every meN there is d; >0 such that dly,z) < d’m
implies h(y,t)> m for every vy L. Let m=c+2 and n be such a number that
%<d’m. Then d(y,,z)< < d'm, so

c+ %l—>h(yn,t)> m=c+2

- a contradiction.
Now, in virtue of the continuity of h(-,t) at the point z, h(yn,t) —_
—> h(z,t). Since
h(z,t) & lh(z,t)—h(yn,t)|+h(yn,t)

£ |h(z,t)—h(yn,t)|+c+%‘-

we obtain h(z,t)4&c.
Now, the thesis is evident.

Let @ be any @ - [ resp. Musielak-Orlicz-] function satisfying all the
conditions of Definition 1.1 [resp. 1.2] with some set T, of measure zero but
not necessarily empty. Let us consider a new measure space (S'ZS"‘S) where
S=T\T,, Eg5= {AnS:A e Z} @yt {LIS. Then the measure g is also nonnega-
tive, atomless, €-finite and complete. Furthermore, the spaces L’(M(T,X))
and L3(M(5,X)) are isometric, because It(f)=IQ(f ;[S) for every f ¢ M(T,X).

Let X=R. Without loss of generality, we can assume now that the sets T0
appearing in Definitions 1.1 and 1.2 are empty. Then the following implicati-
ons hold: (a)=> (a’), [(a") and (c)] =»(a), (b)e&=s (b"), (c)emd (c”),

() e=(d"), (e)e=>(e’), so the conceptions of $-functions and Musielak-Or-
licz functions are equivalent. The space EQ(M(T,R)) is a closed subspace of
(2 (M(T,R)) and the following conditions are equivalent:

(i) fe E¥M(T,R)),

(i) f is g-continuous i.e. |fg, |°—>0 for every nonincreasing se-
n
quence {An?x of measurable subsets of T such that
400
(“(,..Oq An):o’
(iii) lim |f =0 and ¥V A< +co a <e .
u(A)..ol g o asy wW<reo and [2xp,ly

2. Main results. If X=R then the space ER(M(T,R)) is equal to
EM(T,R))=c1 £ €S(T,R): Ty(g)< + o3,

where S(T,R) denotes the space of all simple functions with support of finite
measure and the closure is taken with respect to the norm |« |§ The problem
of the structure of the space E (M(T X)) is more complicated in the case of
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vector valued functions. Sometimes, the fact that ede Eg is very useful. Un-
fortunately, the above inclusion does not hold in general. Moreover, there
are known conditions which ensure that Egﬂk @. One of them is the following:
(cf. [12],125]).

Condltlon (B). There are an increasing sequence {T} of sets of finite
measure, U T =T, and a sequence {§ % of measurable functmns from T into
[0,+e0) such that

V. su x,t) & t) for a.e. teT
meN llxlleé( ) f< )

. and
A R A i
2.1. Lemma. If ¢ satisfies Condition (B) then £fc Eg.
Proof. Let fe EQ and {Ti} be a sequence taken from (B). Denote
= fteT : NE(t)N € n} and fn=f:[An,
n=1,2,... . Then each frl is a bounded function vanishing outside a set of fi-

nite measure and Ifn—fl —»0 as n—>+a . In virtue of Proposition 3.2 from
[12] (or Theorem 21(a) in [25]) fne Eg for every natural number n. The rest
of the proof is obvious.

Let us note that Condition (B) is not necessary for the inclusion Eéc EZ
(cf. Example 3.2). Moreover, Condition (B) is always satisfied provided X is
a finite dimensional normed space and § is a continuous & -function with fi-
nite values. If X is separable, then @ satisfies Condition (B) if and only
if there is a set T0 of measure 0 such that

Y sup $(x,t)<+@
>0 {Lvl'e l.\(ﬂn.Q <
(ef. [25)). )
We shall say that the elements {el,ez,...lc X form a basis of the space

X, if for each x e X there is exactly one sequence -{an} of numbers such that
Ix- =7, a8 —> 0 whereas n—>+ o0 .

In the sequel, we will denote by d’z (zeX) a $-function defined as fol-
lows:

$,:1in {z}xT— £0,+ o], @Z(uz,t)= $(uz,t).

2.2. Theorem. Let us assume that

(+) there exist z€ X \ {03} and a set A of a positive measure such that
$(uz,t)<+o0 and 1lim inf L @(uz,t)> 0 for all u>0 and teA.
@40 U
Then the following are equivalent:
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(a) (E®y*4{0}.

(b) For every measurable set BCA sych that zgpg€ ¥ there is a conti-
nuous linear operator PB:E,(M(T,X))—-b E2(M(T,1in {£23)) such that
lin {27 gt Pa(ED.

Proof. (b) =p (a). Let us define
@ :RxA—>[0,+0], ¢ (u,t)= &Z(ul,t)-

It is obvious tgat @ is a Musielak-Orlicz function. Let us consider the ope-
rator H:E¥—>E 2 defined by H(g)=gz for all ge E¥. Then |H(g)|§ =|QZ§Z=
z

=|qu, » so H is an isometry.

Moreover,

Lin inf 2¢(u,t)>0 for all teA, '
M+

so we can apply Theorem 0.2 and we obtain (E¥)*4{03}. Let Osg*e (EH* and
let us define fE:E‘—» R such that fg factors as follows

i.e. fg=g"c Hlo Pg- Then fg is linear and continuous. Since g*#0, there is
a set B¢ A, (B )>0 such that Q(,Boe E¥ and g‘({eo)#ﬂ. Hence

LQ (cz 18 (t),t)d(4,=j_.rga(c 15 (1),t)du < +oo
) )

for all c>0, i.e. zZxg € E§. Therefore, there is a function fe Eg' such that
Pg (D)=zgp . Finally, °
o o

-1 -
£ (D=0 Py (D))=g*(H l(ngO))=g*<x,Bo>¢o,

i.e. fg is nontrivial.
o

(a) ==» (b). Let f* be a nontrivial continuous and linear functional on
ed - Let Bc A be a measurable set such that zqge E¥ . Define

P -]
Ei B > 2

N

i.e. PB=GBo f* , where GB(u)=uz'{B. Obviously, the operator PB is linear and

continuous. Moreover,
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PB(E§)= {%(Bzyg:fe £¥% = {cz xg:ceRy.

2.3. Corollary. Let X be a p-Banach space with a Schauder basis {en§
and let Condition (+) of Theorem 2.2 be satisfied. If for every € >0 there
are c,K> 0 and the function h:T—> [0,+o]) such that fTh(t)d(L < €/2 and
if the following inequality

Q(caie.

YIS 164 ;:akek,t)m(t)

holds for all te A and some fixed i, then there exists a nontrivial continu-
ous linear functional on the space E‘-

Proof. By Theorem 2.2, it is sufficient to verify that the condition
(b) of Theorem 2.2 is satisfied with z=e,. The projection P:X —» lin {ei§ =)<i
defined by
PCE (Ta80=25;
is linear and continuous (cf. Theorem 26.1 in [20]). Every function f:T— X
can be uniquely represented as the sum of series f(t)= Z;:fk(t)ek, where
fk:T—*R for k=1,2,... . Define

ie,
1 +a0
Pe:E— E 1, PoCE A f, (e )=, (D) 15( ey,

where B is a measurable subset of A. Then
{teT:f,(Dxy(éct = {teB:A(De P! [iue:uecilie =,

because P is continuous and f is strongly measurable. This means that fi 1g
is measurable. Further, by the assumption, we have

Q(CPB[f(t)],t)é Kb(f(t)'{a(t),t)m(t),
so PB is continuous. Finally, let e;qge £® . Then {cei-{B:ceR}c PB(Ei) sin-
ce Pa(eina)zeixa.
2.4. Theorem. 1t E2c £¥ and for a1l ze X \{0}
lim inf L@(uz,)=0 and lim &(uz,t)> 0,
u—y+0 U U+

for a.e. t€T, then there are no nontrivial continuous linear functionals on
the space X I

Proof. Let us suppose that there is a nonzero continuous linear func-
tional F on the space e® . Then F(f)#%0 for some ch’ . By the assumption
E‘c E?, we can find a sequence {fn} of simple functions such that
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IQ(fnk +oo for n=1,2,..., and |fn-ﬂ§_"0 as n—»+00.

Thus F(fn)-I-O for some n. Taking into account the form of the function £, we
infer that there are an element z ¢ X and a set A of a positive measure such
that F(za;A)#O.

Define

o, (u,t)= $(uz,t) for ueR and teA.

Then, in virtue of the assumption, ?Z:RxA —>[0,+o) is a (non-identically
equal to 0 for teA) Musielak-Orlicz function.

@, P
Let q:E Z_ E’ be a linear operator defined by q(g)=g ApZ for geE Z. Then
q is continuous. Indeed, if Ign-glqz—ﬂ) as n—» +00 , then

Iy(alalgy-a(e))= [#(alg ()-g(tNz,)dw =

=I ¢ (a(g -g)) — 0 whereas n— + o

for all a> 0. Thus |q(gn)-q(g)|§——>0 as n—» +o0o . Therefore, the functional

~ 92 . . N
F:E “—> R defined in the following manner

9, ¥
Ezq\/R
24

~
(i.e. F=F o q) is linear and continuous. Moreover, it is nonzero as well, sin-
ce

[ Ap)Fealx,)=F(zx,)*0.

9.
Hence (E~%)* #i0}.
On the other hand

1 | )
‘I‘l‘l_l:"l:of qu(u,t)- iﬂn:gf u@(uz,t)—o

for teA, so @, takes finite values and by Theorem 0.2, the functional ¥ must
be identically equal to zero. The obtained contradiction ends the proof.

2.5. Corollary. Let X be a one-dimensional p-Banach space. The follow-
ing are equivalent:
(a) (ED* %{0%.

(b) There are z#0 and a set A of a positive measure such that

lim inf 1 §(uz,t)>0 for every teA.
w4+ U

) ?
Proof. (b) =% (a). Let BcA and z Xg€ £®. Detine PB=E’—" E by the
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formula P (f) f. Then PB is linear and continuous because X =X and Q) o
Further, 11n {z ;[B}c 2] =Pg eH. Hence, by Theorem 2.2, (EQ)"‘*{O}.
(a) =» (b). Suppose that the implication is not true. Assume

N | _
lim 1gf 7 $luz,1)=0

“w—r+

for all ze X\§03 and a.e. teT. Since $(-,t)# 0, so 1lim &uz,t)>0 for
4400

all ze X\{03} and a.e. teT.
Let us fix ze X \{0%. Defining qaZ:RxT—->[0,+ocJ by the formula

.
9Z(u,t)= &(uz,t), it is easy to verify that spaces E Z and E§ as well as

9. 9, ¢
Esz and Eg are isomorphic. Since E Z=ESZ, then EQ =ES§ . Now, applying Theo-

rem 2.4, we obtain (E§)* = £0%. Contradiction.

3. Examples and corollaries. We say that a @-function @ satisfies Con-
dition A2 if there are a set T0 of measure zero, a number K>0 and an integ-
rable function h:T—3[0,+0o0) such that

B(2x,t)& K (x,t)+h(t)
for all xeX and teT\T

It is easy to verlfy that the spaces E§ and L§ are equal provided ¢
satisfies Condition AZ' Thus, in this case, Theorems 2.2 and 2.4 can be con-
sidered as theorems on existence and nonexistence of a nontrivial continuous
linear functional on the space Lq’ .

3.1. Example. Let A:RxT—>10,+m] be a Musielak-Orlicz function. Then
the function §:XxT—» [0,+c0) defined by
& (x,t)= Adlxh,t)

for xeX, teT is a Q-fﬁnction. We will prove only the ﬁXxZ—measurability
of § . Let ceR. Then

{0, 1) d(x, 1) >t = {(x,t): Alxh,t)>c} =“Ke)a{(x,t):|xl7u and A(u,t)>ct=
N “\tJa({x:ﬂxl>u§xTﬁ{(x,t):/\(u,t)>c})aﬁxxZ s

where Q denotes the set of all rational numbers. Thus the space EQ has the
topological dual zero, provided 3 has the same property.

The generalized Orlicz spaces generated by &-functions defined in the
same manner as in Example 3.1 are solid function spaces.
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3.2. Example (of nonsolid generalized Orlicz space). Let X=1° be the
space of all sequences ixni of real numbers, possessing a finite number of
nonzero elements, with the norm

X § = max X |.
bt = max x|

Moreover, let rn:T—-»(U,+ao) be measurable functions (n&N) such that

inf r (t)>0 for a.e. teT.
meWN N
Define
+00 N
Q(th)= zn=1|xnl ’

where x=(x1,x2,...,xn,...)s1°. Then @ is a $-function with finite values.
Indeed, the properties b), d) of Definition 1.1 are obvious. Moreover,
$(x,t)% 0 for all x#0 and for a.e. teT. Let x €1°, x40 and let & be'an
arbitrary positive number. Then xn=0 for sufficiently large n, say for n>n0.

r (t)
Further, the (finite) family of functions u—» |u] " n=1,2,...,n,, is e-
quicontinuous, so there is d’>0 such that
r (1) r_(t)
- n n £
lu-x | <d = |[ul ™ -|x,| 1<n0

for all n=1,2,...,n0, Hence, for every ye 1° such that ly-x<d” we have
lyn—xn|<d‘ for n=1,2,...,n_, so

n r_(t) r (1)
S0, 0-9(y, )= = 2 Ux | T =y | " )—Zﬁfﬁoqunl

n r (t) r_(t)
E-anl)|xn| ! !

rn(t)‘

-yl <e.

Thus, the function &(s,t) is lower-semicontinuous. Moreover, § is B ox >-
1
measurable. Indeed, for arbitrary i and c>0 we have
r.(t) 1/r, (1)
o r. i _ o, 7. i _
ix,t)el xT.Ixil >c} —i%}a‘*{(x,t)el xT.]xi|>q>c 2=

= [%%}61({xe 1% |x; 1> @)= )N (1% Lt e T:r, (1)< loge ) v
o 0
u[%ya;{xsl dlx;[>ad=TH)NQ x{teT:ri(t)>logqc})]e.‘BlDxZ ,

where Q, is a set of positive rational numbers and Q,=q, n,1),
Q2=Q+n(1,+oo). Now, 33 > X -measurability of & is obvious. Finally, let
1

O0<u&l and r,= inf r_(t). Then
tmel N
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(t) r (t) r r (t)
dux, = =220 ™ x| ol T

so lim da(ux,t):O.
“-+0
Moreover, it is easy to verify that @ satisfies Condition Az and the
inequality from Corollary 2.3 for all i€ N and a.e. teT. In general, & does

not satisfy Condition (B). However, efc E’ for arbitraty family {rn(-)}.
Indeed, let f&E¥ . Then £(t)=(x (1), xz(t), .). Define

fk(t)=(xl(t),...,xk(t),O,...) for k=1,2,... .

Since the sets X, = {xelozxn=0 for nzZk} are closed and
£l W=t UAx) for ueR o

the functions f, (k=1,2,...) are measurable, £ -flq—-b 0 as n—» +e0 and
f ¢E® forn sufficiently large. Now, let {Ti be an increasing sequence of
sets of finite measure such that U T =T. Denote

T = {teT :1max£ r(t)ém}
and

£ if U (D& mand teT ,

(1)
0 otherwise.

Then If -fklg-—-»ﬂ as m — +00 for sufficiently large k, so fk ¥ for

sufflclently large k and m. Finally, let {f } be a sequence of simple
functions such that llfk (t)l élfk (t)l and f (t)-—»fk m(t) as
’

r— +c0 for a.e. teT. Then

&(a(f, (t)-fk’m(t)),t)ésup 19 (x,t): ExU&2am, xeX } &

k,m,T
rn(t) m
& max - { (2am) :1£n &k} € (2am)
for all a>0, mZ%—a- and teTn;. Thus, by the Lebesgue dominated convergence
theorem,
Ifk,m,r"fk,mil_"o a5 T —p + GO
for sufficiently large k, m. Hence feEg i.e E’c Eg. The above considera-
’
tions lead to,the following
3.3. Corollary. There is a nonzero continuous linear functional on the
space E§ if and only if the set
+a
D=»‘.L-)‘l {teT:rn(t)z 13
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is of positive measure.

Proof. If @(D)>0, then the set D, = {teT:rk(t)zl} is of positive
measure for some k& N. Thus

! 9= 1im 1t L kP

u],.ﬂ]-rlg 7 $luey '“}};",t’;f Tu >0 for teD,,
so (E¥)*+{0% by Corollary 2.3.

On the other hand, if a(D)=0 and zalo\iU}, 2,0 for nzk, then

t
t) r () r, -1

R | Cqs s e 1 Tn Nt s k _

‘l‘}_n’\*:%f T Bluz,t)= ‘}.12+1£1°f o -y Iz, JLim inf u $(z,)=0

for a.e. teT\D, where rt= max r (t). Thus, (E®*= £0% by Theorem 2.4.
K 1emeg N

3.4. Example. Let C[0,1) be the space of all continuous functions with
the norm llxﬂ:t s[%p” |x(t)|. Let T= 10,1), @ be the Lebesgue measure on T. Mo-
‘ ’

reover, let A be an Orlicz function, i.e. A:R —>[0,+o0) is even, continu-
ous, nondecreasing on (0,+e), and vanishes only at zero. Define

$(x,t)= .7\(fatx(s)ds) for xeC[0,1], te[0,1].

Then & is a continuous @ -function with finite values satisfying Condition
(B) (cf. Proposition 1.3). Thus we conclude:
The space 3 has the zero topological dual provided (E“)"‘ = {0}.
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