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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,1 (1988) 

A NEW WAY TO FIND COMPACT ZERO-DIMENSIONAL 

FIRST COUNTABLE PREIMAGES OF FIRST COUNTABLE 

COMPACT SPACES 

V.V. TKAČUK 

Abstract: Any compact first countable space X possesses a base B such 
that the family Pg= 4Fr(U):Ue B\ has the order less than C at every xc X. 

Therefore CH implies X- has a peripherally point-countable base. We prove' also 
that every first countable compact space with a peripherally point-countable 
hase is a continuous image of a zero-dimensional first countable compact spa­
ce, giving thus a new easier way to prove A.V. Ivanov s theorem [1). 

Key words: First countable compact space, order, peripherally point-coun­
table base. 

Classification: 54A25, 54C35 

It is not yet known within ZFC if for any first countable compact space 

X there exists a first countable zero-dimensional compact Y and a continuous 

onto mapping f:Y — * X. A.V. Ivanov proved using inverse spectra technique 

that such a Y exists in case w(X)= CJ., tl]. Hence it follows from CH that the 

answer to the above question (which is actually V.I. Ponomarev's problem £23) 

is positive. In this paper we extend the result of A.V. Ivanov over the clas­

ses of Corson and linearly ordered first countable compact spaces. Thereby 

some new properties of a first countable compact X come into consideration 

and seem to be interesting in themselves. For example, if CH is assumed, 

then any X as above has a base B such that the family Pn= 4Fr(U):U€B| is 

point-countable (we will call such a base peripherally point-countable). 

It is relevant to mention hereby A.S. Mishchenko's theorem 133: any comp­

act space having a point-countable base is metrizable and B.E. Shapirovskii s 

result 14]: if the tightness of a compact X is countable, then X has a point-

countable jf-base. Unfortunately, the author did not succeed to clear up whe­

ther it is true in ZFC that any first countable compact X has a peripherally 

point-countable base. 

Our notations and terminology are standard. All spaces under considera-
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tion are Tychonoff (and in fact compact). For a space X by T(X) is denoted 

its topology and T*(X)=T(X)\ {0} . The boundary Fr(A) of a set Ac X is the 
set JnX\ A. If X= TT-iX^: <C*>*\ is a Tychonoff product of the spaces X ^ 

and Ac B e t , then PjJ: TT-C X ^ :oC€ B J - ^ T K X ^ : oCC A5 is the natural pro­

jection and PA=PA- Functions are treated as their graphs so that f=UCfoCf: 

-oC etrf means f is the common extension of f^ s. For x cX, the cardinal num­

ber /£(x,X) is the weight of X at x, and £(X)=sup£ ̂  (x,X):xe Xf. By the 

order orrK^fsx) of a family 3* of subsets of X at the point x is meant the 

power of the set { U e f r x c U } . The expression x —#• x means the sequence 

ix :n«coi converges to x. The space R is the real line with its natural to­

pology and D= {0,1$ - the discrete two-point space. 

1. Theorem. Any compact X with ^(X)= to has a base B such that 

ord(PB,x)<0 for all xcX (recall that Pg: { Fr(U):Ue B\). 

Proof. It is possible by the well known A.V. Arhangel'skii'5 theorem [53 

to faithfully index all points of X by the ordinals from C :X= "fx^: «. 6 C I ' 

Of course |X|<C implies |x|= o> and the theorem is trivial in this case,so 

we assume from now on that |X|= C . 

Fix a family F= {f ̂  : oc < C ! of real-valued continuous functions on X 

satisfying the following conditions: 

(1) f0&(X)cI= CO,13; 

(2) tx^!=Q1(0) 
for all oC < C • 

Suppose we have a family S= { S ^ : ot < C I where S^ = {rH:n6 co5is a dec­

reasing sequence of positive elements of I converging to zero. It is straight­

forward to verify that 

BQ= ifl( i 0,rn)) :n € co , oc < C I 
D cC 

is a base of X. To find a base promised in the theorem we will construct an 

appropriate S by recursion along oc < C . 

Assume that the sequences S ^ = *CrJ£:n 6<*>1 have been constructed for all 

oc <c/3<C* As I {f A (Xec): oc < #J \< C there exists a decreasing sequence 

{r^:n «. « i c (0,1 .3\-Cf / |(x< J C):oC</31 converging to 0. Let S^= frjj:n € oi • 

The family S ^ S ^ :oc<Cf being at hand let us prove that the base B=BS 

is as required. Since Fr(f^,(C0,r£))) c f «(-£), it suffices to prove that 

ord(^r,x)<C for r =*-£*(-£!): * < C , n € o { and any point xeX. 

Indeed, there is a n o C < C with xoC=x. For every ft > oc and n e c o it 

is impossible that fy|(x)=r^, so{E:E€ y and xe E !c{f^1(r^):n£ co, /$ 4 oc I 
and this finishes our proof. 
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There is a countable A. "» A *nr* •••̂'•̂  --i- !I|U" 

2. Corollary. (CH). Any first countable compact X has a peripherally 

point-countable base. 

The peripherally point-countable base (abbr.: PPC-base) seems to be an 

interesting notion in i t s e l f . It is hereditary and looks like a dimensional 
property since all zero-dimensional spaces have a PPC-base. Any compact space 
is a continuous image of a zero-dimensional compact space. Therefore our fol­

lowing example shows that the PPC-base property is not invariant with respect 

to perfect mappings. 

*>< 
3. Example. The space X=I has no PPC-base. 

Proof. Let B be a base in X, A ccJ. - a countable set and zel . Then 
A A 

there is a UeB , a countable A*3A, A*CG>.« and z^cl 1 such that PAl(z4,)=z 
and p7*(z,)c Fr(U). To prove this, pick any U*B with U A p 7 1 ( z ) 4 - 0 . # p 7 1 ( ^ ) \ U . 

<J A for which p j V (U)=U holds. The set p. (U) is op-
1 ^ At \ 

en in IA1 and 0 * pA (U)n (p
Al)"1(z)4-(pAl)"

1(z) for if pA (U) D(p*l)~l(z), 
A ^ 

then U=p^pA (U)3pA
1(pA

1)"1(z)=pA
1(z). 

The space (pAD~ (z) being connected, there is a point 

Z l €Fr (p A (U)n(p^ l ) " 1 (z ) )cFr (p A (U)) . 

Thus z ] ep A (U) \p A (U)=pA (D) \p A (U) so that p~1(z1)c Fr(U). Of course 

pJlCz-^z. 

Now it is not difficult to construct a transfinite sequence ^ x ^ * ^ * ^ ^ : 

: <c<(>>A with the following properties: 

(3) ^ccav |Aj=o>. 
(4) A^c fy i f oc -c ft <c t ^ •, 

(5) ^ A. v B and p i ( ^ ) c Fr(Utoc} -
Aa 

(6) t>ijxfi>x* for <tf-*/3; 

(7) U t nFr (U t ) * 0 for a l l oC < fi< o>y 

Once this is done, le t A= U4AoC:oc< CJA and x= U-tx^:oc-c o>1?. Then 
U. ± U. for different a£ ,fi : x e l and any y * p l (x) belongs to the set 

«c /* ^ 
^ ^ Fr(Ut ) :«C< ^-i which shows that B is not peripherally point-countable. 
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4. Main technical result. Given a first countable compact X and a base 

B in X, one can produce a zero-dimensional compact Y and a continuous onto 

mapping f:Y—-*X such that 7^(y,Y)^ord(p„,f(y)) for any y«Y. 

Proof. Let qy(0)=U, qy(l)=X\U for all U*B. Define Y to be the subset 
Q 

of D consisting of those points y=<Vy:U«B> for which the family-Cqy(yy): 

:UtB$ has the finite intersection property. It is straightforward that Y is 

closed in DB. For y=<Vy:UeB>eY let f(y)=x, where tx$ = fKqy(yy):UcBl. To 

prove the consistency of our definition we must check that 

|rHqy(yy):U€B$Ul. 

Take any z4-x. There is a UcB with x e U c U + z . Therefore qy(yy)4»X\TJ and 

z^q.Xy..) which is what we needed. That f is continuous and onto is routine. 

To verify the inequality %(y,Y)-*ord(PR,f(y)) le t C= $Ug B:f(y)« Fr(U) ? . 
1 -1 1 

Prove that pc is one-to-one on f f ( y ) . Pick y ^ y ^ f f ( y ) , y1 = <yy:UfeB> , 
y2= <yf\:U^B>> • ^ Pcyl=pCy2 t h e n f o r a n y U e B N C e i t h e r f ( y )« U or f (y ) + U. 
We have qy(yj) » f (y ) for UcB and i= l ,2 . The set qy(yy) contains f (y) i f f 

q,,(yp)af(y) for UeB\C,so there is a single possibi l i ty to choose a set W 
— 1 2 

out of the couple $U,X\IT} with f(y)cW. Hence yjj=yy for UcB\C and y^y?-
Therefore w(f~ ( f ( y ) ) ) ^ | C | and our proof is complete. 

Let us list some consequences of 4. 

5. Theorem. For any first countable compact X there is a zero-dimensio­

nal compact Y and a continuous onto mapping f:Y—>• X with ^(y,Y)<-C f° r 

all yc Y. 

Proof. Apply Theorem 1 and Result 4. 

6. Corollary. For any first countable compact X with a PPC-base there 

is a zero-dimensional compact Y with "5(,(Y)=««> which can be mapped continu­

ously onto X. 

7. Corollary. (A.V. Ivanov 113.) If CH is assumed, then any first coun­

table compact space is a continuous image of a zero-dimensional first count­

able compact space. 

We are going to prove in ZFC that first countable compact spaces have a 

PPC-base in case they belong to some wide classes extending thus the theorem 

of A.V. Ivanov within ZFC. 
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8. Theorem. If a first countable compact X belongs to one of the clas­

ses below: 

(1) Corson (Eberlein) compact spaces; 

(ii) linearly ordered spaces, 

then X has a PPC-base. 

Proof. For (i) it is sufficient to prove that the ST-product of real 

lines has a PPC-base. Let 5T =-f x cR*':supp(x)=-Coc ft :x^*0} is countable} 

and B= <M(«c;1,...,o^n:01,...,On): oC1,...,«cnc X , 0 p ... ,0n € T*(R) are 

rational intervals, Fr(0 i) + 0, i=l,...,nj. Here M( oCp ..., oC^Op... ,0n)= 

= { x« . .S. :x (oc . )€0 . , i=l,... ,n{ - the standard open set in JE . If 

ord(PR,x) > co for some x c S. , then by A-argument there is an uncountab­

le A c x such that supp(x)sA contradicting x s 2 . Thus (i) is proved. 

As to (ii) we shall establish even more, namely that every first count­

able compact LOTS X has a peripherally disjoint (in an obvious sense) base. 

Note f i r s t that for any xeX either X is locally countable at x, or 

|(a,b)| = C for each interval (a,b) containing x. Fix a numeration-f x^: 

: oc < C { of the set X. Suppose intervals (a^>b£) are chosen for oc < fi < C 

and n e o> so that 

(8) (̂a£,b£):n c co} is a base of X at the point x^ ; 

(9) if X is locally countable at x^ , then (aJLb") are clopen for all n e o> * 

(10) the family of boundaries of chosen intervals is disjoint. 

If X is locally countable at x« then pick any clopen interval base B» 

at x^ :B,j =•[ (a!J,b!J):n e o>} . If not, then let A^ ={ a"b!J: oc<(i ,n e a f . 

We will consider only the case when X is locally countable from the left at 

Xp (* there is an *<*/$ with |(x,x.)|* 6>). All other possible cases are 

similar or simpler. 

As |A-|<C reasoning as in proof of Theorem 1, we obtain a sequence 

^b2:n e &>$cX\A^ with b ^ x - for all n e w and b- —• x« . Pick a*<x~ 

such that aJJ ̂  Fr((a^,x^)) and {(aJJ,bn):n e col is a base at x» . The induc­

tive step being done, we have got a base B= { (a",b[J): oc <C '»n e co} which is 
«c «c 

as promised, so our proof is complete. 

9. Corollary. If a f i r s t countable space X belongs to one of the fol­

lowing classes: 

(i) Corson compact spaces ; 

(ii) Eberlein compact spaces; 

(iii) continuous images of f i r s t countable compact LOTS, 
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then there exists a zero-dimensional first countable compact space which can 

be mapped onto X continuously. 
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