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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ON SOME CONVEXITIES OF
ORLICZ AND ORLICZ-BOCHNER SPACES

S. CHEN and H. HUDZIK

Abstract: In the whole paper it is assumed that @ is a non-atomic in-
finite measure. An elementary proof of the Akimovi& theorem proved in [1],
concerning a renorming of reflexive Orlicz spaces, is given. Orlicz spaces
with JL" (1) >0 are characterized. This yields some sufficient conditions

for uniformly normal structure of Orlicz spaces. Some examples of Orlicz
spaces Ll> with J;_ﬁ’(l)>0 and not being uniformly convex as well as of u-
niformly non-square Orlicz spaces LQ with J'Q (1)=0 are given. Locally uni-
formly non-lgl) Orlicz-Bochner spaces are also characterized. Finally, some

connections between uniform non-squareness and nearly flatness of Orlicz -spa-
ces are given.

Key words and phrases: Orlicz function, Orlicz space, Orlicz-Bochner
space, condition A2’ modulus of convexity, uniform convexity, uniform non-

squareness, reflexivity, local uniform non—ln1 property, uniform smoothness,
nearly flatness, flatness.

Classification: 46E30

0. Introduction. In the following, the notion of the modulus of convex;
ity of a Banach space (X, § ) will be needed. It is a function d;<(-):(0,2]—i
—»[0,1] defined by

dy(e)=inf {1- |I'X-%Y-|l: IxU&l, Nyfl&l, Ix-yhZzek.

Recall that a Banach space (X, } W) is said to be uniformly convex if d'x(a )>
>0 for any ¢ €(0,2), and it is said to be uniformly non-square if d'x(e )>0
for some ¢ €(0,2), which means that there is J6 (0,1) such that min(ix+yll,
lix-yl) §2(1-d") for any x,ycBX(l) (= the unit ball of X). Uniform non-square-
ness has been considered by R.C. James in [11] in connection with reflexivity
of Banach spaces. Namely, it is proved there that any uniformly non-square Ba-
nach space is reflexive. For some Orlicz spaces equipped with Luxemburg norm,
uniform non-squareness coincides with reflexivity (see [6]). The same holds
for Orlicz spaces equipped with Orlicz norm (see {201 and [22J).
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A Banach space (X, I} is called locally uniformly non-l,gl) (nz2, neN)
if for any x€ Bx(l) there is d‘(xl)e (0,1) such that for all XgyenesX € Bx(l)

we have II%—(xltxzf...fxn)“él- d(x;) for some choice of signs (see [191).

A Banach space (X, W) is said to be flat if there is a curve g:[0,4]—
—> X such that llg(s)ll =1, g(s+2)= -g(s) for any s in [0,2] and Jg(s)-g(s )=
= |s-s’| for all s and s~ in [0,2) (see 19] and [19]1). Locally uniformly
nrJn-lr('1 Banach spaces are good spaces in this sense that they are not flat
(see [19)). As will be noted below, any Orlicz space over a non-atomic infi-
nite measure is either locally uniformly ncm—ln1 or is flat.

We say that a Banach space (X, I # ) has uniformly normal structure if
there exists d'e¢ (0,1) such that for every convex, bounded and closed set Ac X
with positive diameter there is x ¢ A such that

sup Mx-yl£(1-d") diam A
46 A

(see [2),033,04]) and [15)). In these papers the notion of normal structure is
studied. Both notions - normal structure and uniformly normal structure - are
useful in the fixed point theory. It is known that X has a uniformly normal
structure whenever d'x(1)> 0 (see e.g. [4]). So, it is natural and important
to find a criterion for d;:} (1)>0. It will be done in the case of an infi-
nite non-atomic measure.

Now, we shall give some definitions and notations concerning Orlicz spa-
ces. A function ¢ :R—>10,00] is said to be an Orlicz function if it is con-
vex, even, vanishing and continuous at 0 and not identically equal to 0. In
the following, (T,Z ,m) denotes a space of infinite non-atomic measure. For
a given Orlicz function Q , the Orlicz space LQ (p.) is defined as the set
of all X -measurable, real-valued functions f defined on T such that I§O\f)=
=_[rQ(J\ £(t))d w < for some A >0. The space L’((a.) equipped with the Lux-
emburg norm

llfllé =inf £e> O:Ig(f/s )€1}

is a Banach space (see [14],[16] and [18)). We say that an Orlicz function &
satisties condition A, if there is K> 0 such that $(2u) 4K §(u) for all
ue R. For a given Orlicz function ¢, ®* denotes its complementary function
in the sense of Young, i.e.

Q*(v)fgpoﬂﬂu-(}(u)}

for any veR. If ¢ is the right—ha?dl derivative of ¢ and @¥(v)=sup [u20:
:qp(u)€v] for v20, then $*(v)= fovq*(s)ds for any veR.
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1. Results. First, we shall prove the following auxiliary

1.1. Lemma. For a given Orlicz function @ , the following assertions
are equivalent:

(1) ¢* satisfies condition A,.

(2) There are @ >1 and k& (0,1) such that 4(—5)61§(u) for all ueR.

(3) For any positive integer n22 there is 7 €(0,1) such that

u it n-1
1y Ml 2
P A ey

for all uf,...,une R, where the symbol "; " stands for summation over all

$(up)

2™ choices of signs.

(4) For any @ > 1 there is k € (0,1) such that @(—& )£ —;Q(u) for all
ue R. -1
(5) For any @ > 1 there is § > 1 such that Q(—é— u)é E&——Q(u) for all

ueR.

Proof. (1) = (5). First note that if §* satisfies condition AZ’ then
for any b>1 there is ¢ >1 such that @*(cu)éb $*(u) for all ueR. Indeed,
the function f defined by

f(C)if:po {9* (cu)/ $* (W3

for c21, is convex and has finite values. Moreover, f(1)=1 and f(c)2 c for
c21l. Since f is continuous, it has Darboux property. Thus, for any b>1 the-
re exists c>1 such that £(c)=b. It means that

(+) @*(cu)&b $*(uw)

for all u¢ R. Observe that this method may also be applied in the case of an
arbitrary Banach space X and an arbitrary Orlicz function &®* defined on X.
By (+), there is § >1 such that
(g & afd* ™
for all vz0. So,
% (-&u —sup {-& lulv- Q’(v)}‘sup {-E—Iulv-T—Q'(fz V-

?g%{‘é? Juv- -;é— $* (g V= -g-;lt— .

The implications (5) == (4) and (3) = (2) are obvious.
(8) =» (3). By (4), there is k (0,1) such that Q(%)‘ -:_%Q(u) for all
ueR. If u),...,u €R, then Iult...tunlt maxluil for some choice of signs, and
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xluy |

n

ut...ﬁu ma kw
oL o BN LK gmaxlu; DT Z dCup

for this choice of signs By convexity of & , we have

LTy 1 & z, $u)

n 4:1

for all remaining choices of signs. Hence it follows that

+ 4+
U,=...-U n-1
1 n, k2 -1 &
A X 1
i.e. (3) holds with m=1-(1-k)/2""}

(2) = (1). We have

T e LI (M 1O S )

~20
for all ueR. Since k! is greater than }, it means that §* satisfies condi-
tion AZ'

Note. Conditions (1),(2),(4) and (5) are also equivalent for any Orlicz
function @ defined on an arbitrary Banach space. The function @* is then de-
fined on the dual X* of X, by the formula

* (W)= * _ .
§* (xM=sup, [x*C) |- @ (0%

An analogous lemma to that given above has been recently obtained inde-
pendently by A. Kaminska and B. Turett in [13].

1.2. Theorem. Let L® (@) be-a reflexive Orlicz space. Then there exists

?,

an Orlicz function Ql equivalent to § such that (L (y,), 1 \l§ ) and

(y.) [l llé,) are uniformly convex and uniformly smooth spaces The same
holds for the Orlicz norms | ll§ and | llg,i. instead of the Luxemburg norms

’ 1
W lly and Il U, respectively.
?) 51

Proof. By assumptions, § satisfies condition (4) from Lemma 1.1. Deno-

te y(us= @ (u)/u for u>0. Then for any a > 1 there is k<1 such that

(%) \l,(%");, k¥ (u) for all uz20. Let y* denote the generalized inver-
se function of y , i.e. w*(s)=sup £tz 0:y(t)& s} for every s20. Since &
satisfiés condition 4,, for any b>1 there is @ > 1 such that & (au) £
£b@(u) for all ueR. Hence

¥(auwg Q(S W 4 ‘Q'L(TU)' =b ¥ (u)

for all u>»0. Therefore
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Grx) y*(%)=sup {fuzo0: V(u)f%}é —]E'— sup {qu: ylawevy = -la—v* {vis
Define ,(w)= j"“' ()t for all ueR. Then &3(v)= f’“"w(s) ds for all
veR. The 1nequahtles P/2) £ ¢1(u)é & (u) hold for all ug R. Therefore,
Ql((m) LQ(@.) and LQI((A.) L"(y.) Moreover, 1 Ifl!Q I!fIlQA ﬂfl§ for any

fe W(w). By conditions (x) and (xx), the functions ) and @1 are uni-
formly convex (see [1)). Therefore, both spaces (L 1, B l§ ) and (L i (@),
Q*l@lJ are uniformly convex (see [12) and [16]). The spacps LJ (@) and

L (‘u) are also uniformly convex under Orlicz norms |l |’1 and |l ||

respectively (for definition of Orlicz norm see [14]). This follows by the
results of Milnes [17). Thus, both dual spaces (L!l, ] |1¢ ) and |
(LQI , W1%, ) are uniformly convex (and so also uniforml%r smooth). The same
holds for the pair (LQl , M ll;) (L? I ﬂgﬂ The last statement follows by the

fact that the criteria for uniform convexity of Orlicz norm and of Luxemburg
norm are the same. This follows also by the above considerations and by the

° o
fact that Il ué, ] l&,and i > ] llq,, are pairs of mutually associated norms.
1 1 1

Note. This theorem was obtained in a slightly weaker version by V. Aki-
movi€¢ [1]. However, the proof given here is different and simpler than that
given in [13. In an analogous manner, the proof of Theorem 1.1.7 concerning
Musielak-Orlicz spaces given in [10] may be simplified.

Before we shall give the next theorem, we introduce the following para-
meter for an Orlicz function @ :

p($ )=sup {a e (0,1): 3u>p°[2 $u+ au)/2)/(§ud+ (au))I<1t,
where the convention sup @=0 is used. It is evident that if p(® )> 0, then
for any a < p($) there is o= d(a )€ (0,1) such that

§( 3 (1 aw) £3 (1-8) {3+ daw}

for all ueR. In particular, if p($ )=1, then & is uniformly convex (see [12]
and [161).

1.3. Theorem. For a given Orlicz function @ the following assertions
are equivalent:

1 e0)>o0.
(ii) ¢ satisfies condition 4, and p(@)>%.
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(iii) § satisfies condition 4, and the following condition:
(a) there is €€ (0,1) such that for any u,veR satisfying
lu-v] 2 =€ Jusv|, we have $( %(uw))é lis{é(u%é(v)f-

Proof. First, note that for any Orlicz function & satisfying condition
AZ’ we have
(1.1) b= sup {2@(— (u+p(PHu))/ (P (W+ (p(§)Hu))} =1.
Indeed, by condition A2 it follows that for any 7 >1 there exists § >1
such that
1.2 d(fw=qdW
for all ue R (see the proof of Lemma 1.1). Assume that (1.1) does not hold,
i.e. b<1. Let § > 1 be the number satisfying (1.2) with 1[=1/\/5, and let
r=(§ (1+p($))-1)/p($). Then £ >1 and £ (L+p(d))=1+1p(d). Thus,

$C 5 erp(@ DW= §Lp(@ N & 5 BG (Lep($)u) &
¢y 22 8E(@I) £ VB gg(u). pirp( g0}

for all ueR. This contradicts the definition of p(@ ). Now, we shall prove
the implications (iii) = (ii) == (i) = (iii).

(iii) = (ii). Assume that (ii) does not hold. If COﬂdlthl‘l A is not
satisfied, then (iii) does not hold . So, assume that p($ )‘ and denote

f5(a)=sup 28( 3 (Lraw)/ (@ W+&law)i
for all @ € [0,1). We have by (1.1) that f§>( —%—)-—'1.’Since the function fQ is

non-decreasing in [0,1] (see [1]), we have

(1.3) sup {2<I>(l(U+v))/(§>(U)+i’(v)):u,V>0,v!-9-! =

= sup {28 (Hur))/ (B W+ (W) :u,v>0,u-vz S¥ F =1,

It means that condition (a) from (iii) is not satisfied. Thus, the implicati-
on (iii) =» (ii) is proved.

(ii) = (i). Only the fact that D(§)>% implies (a) needs to be prov-
ed. If P(§)>i, then there is a>—%— such that fQ(a )< 1. Hence it follows
that
(1.4) sup{2 Q(%(UW))/(Q W+d)):u,vZ0o,u+v>0,vsau} =

=sup §2 Q(%(uw))/(@(u% $(v)):u,v20,u+v>0,u-v2 -{—:—%(uw)} < 1.

Now, assume that u.v £0. The number J'=f§(0) is smaller than 1, and we
have
(1.5) Q(%(uw))é 47(% max(lul,[v])) € §@(max (|U|,|V|))££{Q(U)+§(v)3.
Since (1I-a)/(l+a)< -%—, combining (1.4) and (1.5), we obtain condition (a)
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with some & € (0,1). In virtue of condition AZ there exists a function
p(0,1) — (0,1) such that ﬂf!liél—p(e ), whenever I§(f)£1—a ,€e€ (0,1). Na-
mely, it suffices to put

- . 1
p(e )=sup{6e (0,1): ﬂJgo[Q(U/(l—G ))/Q(u)]éra—}

(see [71). Let f,0e LB(w); Nilg<l, Nghy £ 1, I1f-ghy21. Then we have
Ié(f)é 1, I@(g)é 1, Ié(f—g)Zl. Define

A= {te T:|8(D-g(0) Iz L& r(tea(t) 3.

We have Ié((f—g) ;LT\A)él-G’ . Thus, IQ((f—g) xA)za' . Applying condition A2,
we get
T5((£-9) )4 5 $ 12 X )+ Tp (20 1,8 & 5 £ 15(F 1)+ 150 17
Using this estimation and applying condition (a) from (iii) for te A, we obt-
ain .
1-Tg (3 1+0))z 5 {g(E)+Ig(0 T3 (£+0))

2 3{0g(t 5 ) g0 b -TgG(Tra) 1 ) 2
2§ Ty(f x )+ Tg(0 x k- S5 Alg(f 7 )+ Tp(a )3 =
2
= Eirgy(h) 1) Igla bz gK_ .
Hence it follows that Ty(3(f+g))£ 1-67/K, i.e. | F£40)llg < 1-p(6 /). This

means that d'LQ(l)Z p(G’Z/K)> 0.
For the proof of the implication (i) = (iii) assume first that condit-
ion 4, is not fulfilled. Then 1¥(@) contains an isometric copy of 1% and

50 d'é (1)=0 (even d'§(2)=0),i.e. (i) does not hold. Assume now that proper-
L 5

ty (a) does not hold, i.e. for any 6e (0,1) there exist u,ve R such that
|u-v|2 156 Jusv] and Q(-é—(u+v))>%§{§(U)+§(v)§.

Choose a set B e = such that (@ (u)+P(v)) u(B)=2 and let C be a subset of B
such that w(C)= u(B\C). Define

F()=ug (v y gy (1), 9= A (Druyg (1),
We have IQ(f)=IQ(g)=1. So, llf.l!g= “g%ﬂ. Moreover,

T5((£-0)/(1- 6)2) 2 (1- 6) 1g((£+0)/2)=(1- €)' @ Glu) w(®) >

>Lig W+ a0 w@-1.
Hence, lf-gllgz(l-s-)z_ We have also

I5((£+8)/2(1-€)) 2 (1-6)‘114,(%<f;g>>=<1—e)‘lé(%(uw))(«aa) >
- 19 -



> 14w+ F W)=,

Thus, I-%—(f«‘g)l\QZl—s’ . This means that JQ((1_6 )2)=U for any 6e (0,1).
L

Since 4 , is a continuous function in the interval [0,2), this yields

2
Jd §(1)=0. This finishes the proof of the implication (i) = (iii) and of
ouf‘ theorem.

To give the examples mentioned in Abstract, two lemmas are needed.

1.4, Lemma. Let § be an Orlicz function with the right-hand derivati-
ve ¢ on R = [ 0,00) and assume that there are constants a and J” in (0,1)
such that
1.6) 9Gwraun)e L1 p W daw?

for all ueR. Then @(au)&(1+d) Lg(u) for all uz0.

Proof. The proof is analogous to that given in [1], but we shall give
it for the sake of completeness. Assume that there exist a ,d in (0,1)
such that (1.6) holds. Let & » 0 be such that q=1/(1+€). We obtain

Suru/ 1+ €))) £3(1-) B W+ Bu/(1+ € )}
for all ueR. Putting u=(1+e¢)v, we get
pllrelvy Lo o) (e e dt,
i.e.
(1.7) 2{>(u+f W £ Q- 4P 1+ g)Hu)+ P (W}
for all u,veR. We have also
(1.8) BHg(u)e §urg - B £ Pureu)-H (g £ Elglure )

for all u2 0. Hence, we obtain

€u
(1.9) Z I Bueu)- §luseu/2) .
. -%ﬂg(u) = olureu/2)-9(u
Combining (1.7) and (1.9), we get
g((1+e (u) >§(U+ % w- W+ PCur -2‘_' u)+ §u) >1+8”
el &+ Zu- 3w )

for any u>0. Putting u=v/(1+ &)= av, we obtain

g (av)£rd) g W)
for all v>0. This is the desired result.
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1.5. Lemma. Let § be an Orlicz function with right-hand derivative ¢
on R_and let the inequality @ (bu) € k @ (u) be satisfied for some b, k in
(0,1) and for all u20. If @ €(0,1) is such that l+a=2b, then p(p ) > @ .

Proof. We have

“ u,+2a,u.
ﬁ(U)+¢(au) 2¢(%(u+a.u))+ fifv_@q(t)dt- 4“ @(t)dt )
206u-aw =

S
1-
2d>(—1—(u+a.u))
e have ££ L8 u, de. TR E€ 5% 0 Thus SR uzfe TR E g §e
=b'1§ . Hence
e
)+ Blau) , L 0 ‘[w, gt
2@(—(u+au)) 2@(—(u+au))
. -D{$ Gurau))- glaw?
- 1+ .
20(%(U+aU))
-1 1 $lau) 1, -1
= LD S - =3z 1+ k-1 (- )= > 1.
2 ZQ(‘%‘(mau)) 2 1*"' 1

To obtain the last inequality, the estimation
e V&L ez S pauw)
for all ueR is applied. The proof is finished.

Note. From Lemmas 1.4 and 1.5 the result of V. Akimovi& [1] concerning
the characterization of uniform convexity of Orlicz functions in the terms
of their right-hand derivatives follows.

1.6. Example. There is an Orlicz function ¢ such that d'Q(l) >0 and

d'é,.(l)>0 and the spaces L‘i(y.) and L% () are not strictly convex.
L To see this, define
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@™ for tel3" LGN, a2,

g={ P for telp™ D™ 0.
0 for t=0.

4 4 X 3 3
We have @ (3 u)= 3@(u), i.e. @(F W)= FP() for all uZ 0. By simple calcu-

lations, we obtain for s2 0:
@ for st M, o1z,
g*()=sup {120: g4 st={ D™ for se 1™, D™D, ne1,2,..

0 f(‘)r t=0.

We have also 9"(—- u)= 5 q"‘(u) i.e. q*(- u)= — q;"(u) for all uZ0. Define

§u)= f ' (4)dt tor all ueR. Then *(v)- f @* (s)ds for all ve R. Both
functmns ® and $* satisfy condition A for all ueR. We shall prove it
only for @ , because the proof for ¢* 1s the same. We have

$ 9@ £dWLugw) and g2w) £ g(H’w=3’ g W)
for all u20. Hente,
3 () €20 g2« P’ (w420 g2 s dw),

i.e. ¢ satisfies condition AZ' The assumptions of the last lemma are satis-
fied with b=k=% By this lemma it follows also that p(¢ )Za , where @=2b-

that J§(1)>0 and JQ'(1)>0 Since the functions § and {7* are not stri-
ctly convex, the spaces ¥ @) and L"((b) are not strictly convex.
1.7. Example. There is an Orlicz function § such that both spaces L‘((O
and 1 (@) are uniformly non-square and d"(l)- ’..(1) =0.
To see this, define &(u)= f:"’q(t)dt where
4™l gor tela™1 4™, n=1,2,...

-n

@(t)={ 4" for tela",a™h), n:1,2,...

0  for t=0.
We have
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8" for sela™1 4™, n-1,2,...
cy*(s): ™™ for sefﬂ'n,a,'ml),nq,z,...
0 for s=0.

We have also @ (4t)=4 (1), i.e. ga(j;f-)= -,1; @ (1) and @*(4s)=49*(s), i.e.

(]
?'(%)=%— @®*(s) for all s,tZ 0. Moreover, §“(v)=fa ¢*(s)ds for all veR.

Therefore, both functions § and §* satisfy condition A2 (see the discussi-
on concerning Example 1.6). Hence the conditions p($ )>0 and p($*)> 0 fol-
low. We shall prove for example that p(® )>0. By Lemma 1.1, there exists §=

-1
=1+q with a € (0,1) such that §(—§ u)é -Ef—ﬁ(u) for all uéR. Hence it fol-
lows that

-1
YRR M YN YO

for all ueR. This means that p(® )2 a »0. In virtue of Theorem 1.2 in [6),
we conclude that both spaces L‘(y-) and L”(y.) are uniformly non-square. We
have @(bu)z @(u) and g*(bu)z g*(u) for any b>%— and some u>0.Applying Lemma

1.4, we get p(¢ )é%— and p($* )4 71; In virtue of Theorem 1.3 it means that
JF (1)= d g4(1)=0.
@ ®

1.8. Remark. Also in R% there exist norms B N and M M such that A\ I
is not strictly convex and d'& I(1)> 0, il M is uniformly non-square, but
Iy (1)=0.

It suffices to put
xh =max(|x1|+('\/7-l)|x2|,(ﬁ-—1)|x1|+|x2|),
Ml =maxC|x, |, $x, |+ Zlx, D).

Indeed, the unit sphere corresponding to the norm N K is a sum of eight in-
tervals of the same length smaller than 1. Hence it follows that Ji 1 (1)>o0.

It is evident that # B is not strictly convex.

The unit sphere corresponding to the norm Ml M has six extremal po-
ints: (1,1), (0,3), (-1,1), (0,- 3), (-1,-1), (1,-1). So, the number of ext-
remal points is equal to 2n+2, where n=2 is the dimension of R2. Applying
Theorem 1.5 from [5], we conclude that M MW is uniformly non-square. Tak-

ing x=(1,1), y=(1,-1), we have Mx-yW = §->1 and W1 XY Hi=1. This yields
I w (L=0.

We shall investigate ibelow the local uniform non—l(}]) property for
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Orlicz-Bochner spaces. Let (X, ¥ | ) be a Banach space and let F“,(T,X) deno-
te the space of all (equivalence classes) of strongly = -measurable functi-
ons from T into X. For a given Orlicz function @ the convex modular Iq,
FulT,X) = 10,00] is defined by Ig(f)= S & (W£(t)N )d@ . The Orlicz-Bo-
chner space is the set L’(,«»,X) of all functions from Fu(T,X) for which
Ipn(Af)<oo for some A > 0. This space will be considered with Luxemburg
norm # IIQ defined by Ifll& =inf {¢ > D:IQ(f/s Y& 13.

To characterize locally uniformly non—lél) Orlicz-Bochner spaces, the
following characterization of the local uniform non-lr(ll) property for normed

linear spaces will be useful.

1.9. Lemma. A normed linear space (X, Il N ) is locally uniformly
r'\on-ll(‘n if and only if for any x| € X there exists &(xl) in (0,1) such that
for all XgseeesXp in X, we have

+ o+ 1 ‘
H300 e X & S I e )= € 0min £llx 14 140
for some choice of signs.

(1)

Proof. Suppose X is locally uniformly non-1 and x14=0 is in X. Then

there is d'(————-—) in (0,1) such that for all x.,...,x_€ X\{0%, we have
lelll 2 n

1 o *1
(1.10) u#m ~...—m)llél-€(‘m)

X
for some choice of signs. Denote J(ﬁﬁ a(xl) and assume that lekl =
1

=min { Il X3 I: i=1,...,n}, 1&£k&n. Without loss of generality we may assume
that all signs in the left-side of (1.10) are equal 1. Thus, we have

1 Xl+...+Xn

X
1 -
l—ﬁ(x )Z" lxu “xnI )l‘u le -

&zk( X Il__) 1"’

1 Xt 1 1
2 —_— -2 R N
ﬁxki ] n ] n %h(m T, 1 )lxll
Therefore ‘
1 X1+. . .+xn _ ﬂ 1 -
H;T (il -——n———l £ 1-e(x)) ot —FTH 5).“ xil
1“

1 1 1l -
= - E(Xl)"’ 'ﬁ + W &auxll n F‘ S(Xl))
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m

1 1
Il;(x1+...+xn)ﬂ €52

llxil! - elx) x, 0 = 354 Il x; - €(x;min Ixil .

Conversely, let the imequality from the lemma hold for some choice of signs

1 L
and let x o €By (1). If min lx £ then Ilﬁ(xl“f"'*'xn' £1-55 . If

l’ 2’
min ||x > 7, then by the assumed inequality, we have

+ + 1
0 - I & 2l + - S e £1- S etx)
for some choice of signs. So, in general

1 + + 1 . 1
"ﬁ(xl""'xn)“ 4 1- 7m1n( e(xl),ﬁ)
for some choice of signs, which means that X is locally uniformly non—l(rl]?
Note. The proof of this lemma is analogous to that of the leimma concer-
ning a characterization of uniform non-l(}‘) property given in [13]1.

1.10. Theorem. The following assertions are equivalent:
(a) An Orlicz-Bochner space L’(”,x) is locally uniformly non-l(rll).
(b) Both spaces L‘!((L R) and (X, § & ) are locally uniformly non- 1(1)
(c) & is linear in no neighbourhood of zero, $ satisfies cond1t10n A (for

all ueR), and (X, K N ) is locally uniformly non- 1(1)

Proof. The implication (a) =% (b) follows by the fact that both spaces
X and L’((»,R) can be isometrically embedded into Lg(pu,x). The implication
(b) =% (c) is proved in [B]. Now, we shall prove the implication (c) = (a).
Assume that (c) holds and IlfillQ =1 for i=1,2,...,n (we may restrict oursel-
ves only to elements f, from the unit sphere of L’((J«,X)). Then I§(fi)=1 for
i=1,2,...,n. Let c>0 be such that assuming

A= iteT:c™le NE (DU £ct,
we have Ig(f, xAl)z%. Let d>0 be such that Q(c)/@(d)<§z711—_—1—)— , and let

A= fteT: Bf; (t)uéd}, i=2,.

We have @(d)y.(T\A )< Iq(f va\A )41, whence we get & (T\A; )‘W for
i=1,2,...,n. So,

I’(fl 1A \A )éQ(C)F(Al\ Ai)‘é(c)/Q(d)éﬂ 2_“1 )

Defining D= f\ Al, we have

eI,(f1 x,A V& I.(f1 ’('O' )+I§,(f1 Ap) £
14:2 1
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m
1
£5 L A, *Igh % p)é 5 1500, 20)-
Hence,
11D 73
By assumption (c), we have @(%kj%‘l for all u>0. Hence it follows

that Q(Dﬁl u)< n—;l- $ (u) for all u>0. since $ is a continuous function on

the interval [c'l,ndl, there exists m € (0,1) such that
n-1 n-1
112 sl wsq 2w

for all ue[c'l,ndJ. In virtue of condition A2, there is a € (0,1) such that

P((Q+alu) & (Vy )'1{>(u) for all u€ R (see the proof of Lemma 1.1). Combin-
ing this with (1. 12), we obtain

113 $(ra) Z w2 ()T e &Ly 2w How
for all ue[c' ,nd]. Denote £= V3 . Note that a and £ depend only on £, and
® . Define for chX(l):
. . 1+ + +
I (x)=inf {1—:12111n lln (x-xz-... xn)lll',

where the infimum is taken over all XgseoyXy 1N Bx(l). The function

J’(fl(t)/ ] fl(t)ll)=ec(t) is Z -measurable. By Lemma 1.9 we have

(1.18) pin ICe (D1 ()D& T O+ RE (D1 -
—ac(t)mln e, (I = II £CON w+ BE (D) =

» (3-ec (t) n min lfi(t)l /CH fl(t)l +...+lfn(t)l ).
We shall consider two cases.

1°. min ME (O R>@ (HE (O +.+ NE (DR -min BE, (1), Then
min NE; (DN 2 (a/(a +1))( e, COW w4 WE ()N ). Thus, combining this with
(1.14), we get
llfl(t)||+...+llfn(t)n

(1)) - )£

; 1
$min W (e (D7 (1) )& Q((l— e

4(1- 1+a°‘(t))_ g4§ @ ),

because Tl% (1) &l.

2°. opposite to 1°. Assume for example (but without loss of generality)
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that min I£; ()W =N £, ()0l . We have for @ - a.a. t€T and any choice of
signs,

(R C NGRS XN PPE-Yo d ENCT RS PR DI

XY IO ERRT EXOTI
A A6 ey E e R =) ) £

NECON +..o+ NE_ (DN R (OO0 ..o+ KE (DA
2 + + n )éﬂﬁllé( 2 + + n )‘

€™l (1+a) . £

n-1

ci2 sar,mn.

Denoting f3 (t)=1 - '_T%. oc(t), and 9 (t)=max(l- l'n_it) ,8), we get by the
above two cases: z

£ (I (1) n-1 m
1 n 2 " a(t)
5 el o e = &.Z1¢(Ilfi(t)ll),
where " 5 " stands here and in the following for the summation over all

choices of signs. Define
- . 1
B, = {teD: ()£ 1- 1.
By X -measurability of 4 , Bke = for k=1,2,... . There is k&N such that
IQ(flzLBk)z—%—. In the sequel we shall write B in place of Bk' Denote &=1-1/k,

where k is the number defining B. We have for teB:

n-1
P ICER RO ROTPPESLS £ IFTAOTPE

Integrating this inequality both-sides over B, we get
n-1

> I¢(;1\-(f1'-’...ffn)xa)é2—n—§—

Hence, we obtain

~m
"v§4 I’(fi la) .

L o= et tt 2t F 1t go- = 1ace bt ) )z
& WGty I S (Fy T 1) = Tp((fy =~ ) gg) 2

-1 on-1 m 2n'1§1— §) 2n-1§1-6'2
2 n 4-24 Ig(t; xg)Z n I!(fl g2 S35 y
Hence
n-

1
PR R CR R D IPYARS 2 (1-6) 1. L8,

where g=1- %g— belongs to (0,1). It must be I§(%(flt...ffn))£q for some
choice of signs. Denoting by p the function from (0,1) into (0,1) such that
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I\f“’.l.- 1-p(¢ ) whenever I.(f)bl- ¢ (such function p exists by condition
AZ’ see the proof of Theorem 1.3), we get

1,0 + +
N(E) = ..-fn)lg < 1-p(1-g9)
for some choice of signs, where p(1-q) depends only on f,. The proof is fini-
shed.

The girth of SX (= the unit sphere of X) is defined as double infimum of
lengths of curves on SX with antipodal endpoints (see [19]) and is denoted by

Gu‘th(SX) .

1.11. Theorem. Every Orlicz space ®(w) of real-valued functions is ei-
ther uniformly non-square or is nearly flat, i.e. Girth(S ‘)=4.
[

Proof. If Girth(S Q)>4 then L’((u) is reflexive (see L191). But it is
L

known that for any non-atomic infinite measure w , reflexivity of L’((b) co-
incides with uniform non-squareness (see L6]).
We say that a Banach space (X, # N ) is non—lr(]l) (n22 and integer) if
for any x,,..,x in By, we have \|x13x21...fxn W< n for some choice of signs.
We say that an Orlicz function & satisfies condition A2 at oo if there
exist positive constants K, a such that ¢ (2u)€K @(u) for all u satisfying
P(u)Za.

1.12. Theorem. Any Orlicz space L’(y.) of real-valued functions over a
non-atomic finite measure @ is either non-lnl) for some integer nZ2 or is
flat.

Proof. If L‘f(y-) is non—l'gl) for no integer nZ2, then either & does
not satisfy condition A2 at o or ¢ is linear on the whole R, (see [8)).
Then L‘((L) is flat (see [9)).
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