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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,1 (1988) 

ON SOME CONVEXITIES OF 

ORLICZ AND ORLICZ-BOCHNER SPACES 

S. CHEN and H. HUDZIK 

Abstract: In the whole paper it is assumed that (JL is a non-atomic in­
finite measure. An elementary proof of the Akimovic" theorem proved in [13, 
concerning a renorming of reflexive Orlicz spaces, is given. Orlicz spaces 
with cfjj$ (1)>0 are characterized. This yields some sufficient conditions 

for uniformly normal structure of Orlicz spaces. Some examples of Orlicz 

spaces L* with <f $(1)>0 and not being uniformly convex as well as of u-

niformly non-square Orlicz spaces L^ with cT* (1)=0 are given. Locally uni-
(1) i? 

formly non-1: Orlicz-Bochner spaces are also characterized. Finally, some 
connections between uniform non-squareness and nearly flatness of Orlicz spa­
ces are given. 

Key words and phrases: Orlicz function, Orlicz space, Orlicz-Bochner 
space, condition A0, modulus of convexity, uniform convexity, uniform non-

(1) squareness, reflexivity, local uniform non-F ' property, uniform smoothness, 
nearly flatness, flatness. 

Classification: 46E30 

0. Introduction. In the following, the notion of the modulus of convex­

ity of a Banach space (X, II II) will be needed. It is a function ô («):(0,2]-> 

—>[0,1] defined by 

oTx(e)-inf { 1 - t l ^ l l : 11x1141, llylAl, Ix-y 12 c } . 

Recall that a Banach space (X, II II ) is said to be uniformly convex if <fx(e )> 

>0 for any e e(0,2}, and it is said to be uniformly non-square if crx(e )>0 

for some £ e(0,2), which means that there is cT€(0,l) such that min(Rx+y||, 

llx-y||).̂ 2(l-cf) for any x,y€Bx(l) (= the unit ball of X). Uniform non-square­

ness has been considered by R.C. James in [11] in connection with reflexivity 

of Banach spaces. Namely, it is proved there that any uniformly non-square Ba­

nach space is reflexive. For some Orlicz spaces equipped with Luxemburg norm, 

uniform non-squareness coincides with reflexivity (see £63). The same holds 

for Orlicz spaces equipped with Orlicz norm (see [20] and £22J). 
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A Banach space (X, ft II) is called locally uniformly non-1^ (n£2, n€N) 

if for any x,c Bx(l) there is cfCx-^c (0,1) such that for all x2,... ,xn€Bx(l) 

we h a v e l l - k x 1 - x 2 - . . . - : x n ) M l - £ r ( x 1 ) for some choice of signs (see C193). 

A Banach space (X,tt ft ) is said to be flat if there is a curve g:[0,43—* 

—*-X such that Ilg(s)ll =1, g(s+2)= -g(s) for any s in [0,23 and Jg(s)-g(s')| = 

= |s-s'| for all s and s' in [0,23 (see 19] and [193). Locally uniformly 

non-1^ Banach spaces are good spaces in this sense that they are not flat 

(see [193). As will be noted below, any Orlicz space over a non-atomic infi­

nite measure is either locally uniformly non-F ' or is flat. 

We say that a Banach space (X, I! R ) has uniformly normal structure if 

there exists <Te (0,1) such that for every convex, bounded and closed set AcX 

with positive diameter there is xcA such that 

sup Ix-ytt^d-cT) diam A 
> * A 

(see [23,[33,143 and [153). In these papers the notion of normal structure is 

studied. Both notions - normal structure and uniformly normal structure - are 

useful in the fixed point theory. It is known that X has a uniformly normal 

structure whenever cfx(l)>0 (see e.g. t4j). So, it is natural and important 

to find a criterion for cT*(l)>0. It will be done in the case of an infi­

nite non-atomic measure. 

Now, we shall give some definitions and notations concerning Orlicz spa­

ces. A function $:R-^tO,oo] is said to be an Orlicz function if it is con­

vex, even, vanishing and continuous at 0 and not identically equal to 0. In 

the following, (T,Z,<u.) denotes a space of infinite non-atomic measure. For 

a given Orlicz function $ , the Orlicz space L* ((a) is defined as the set 

of all 22-measurable, real-valued functions f defined on T such that I*&f)= 

= X # ( - * f(t))d(t4<a> for some .A>0. The space L*(<*t) equipped with the Lux­

emburg norm 

llf .Ij =inf U > 0 : l j ( f / g ) * l t 

is a Banach space (see [14],fl6] and [183). We say that an Orlicz function $ 

satisfies condition A« if there is K > 0 such that $(2u)£K$(u) for all 

u«R. For a given Orlicz function $» $ * denotes its complementary function 

in the sense of Young, i.e. 

f*(v)=sup -i|v|u-f(u)l 
«4*0 

for any v#R. If <f is the right-hand derivative of A and to*(v)=sup tu>0: 

:^(u)-Sv3 for V2 0, then $*(v)= f ^*(s)ds for any v*R. 
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1. Results. First, we shall prove the following auxiliary 

1.1. LeMna. For a given Orlicz function $ , the following assertions 

are equivalent: 

(1) 6* satisfies condition A0* 
* u k 

(2) There are a > l and k€(0,l) such that $(-g;)*-£$(u) for all ueR. 
(3) For any positive integer n>2 there is i^c(0,l) such that 

+ + i u,-...-u„ 0n-1-*» *v 

for all u,,...,u 6 R, where the symbol " 5L " stands for summation over all 

2n~* choices of signs. 

(4) For any a > 1 there is kc(0,l) such that §>(-£ )*-^$(u) for all 

U€R. -
c c-1 

(5) For any a > 1 there is C > 1 such that $ (-j- u)**---—$(u) for all 
ueR. 

Proof. (1) «^(5). First note that if §* satisfies condition A2, then 

for any b>l there is c>l such that cj*(cu)^ b $*(u) for all ueR. Indeed, 

the function f defined by 

f(c)=suPj% {$*(cu)/$*(u)} 

for c>l, is convex and has finite values. Moreover, f(l)=l and f(c)>.c for 

c>l. Since f is continuous, it has Darboux property. Thus, for any b>l the­

re exists c>l such that f(c)=b. It means that 

(+) 4>*(cu)*b $*(u) 

for all u c R. Observe that this method may also be applied in the case of an 

arbitrary Banach space X and an arbitrary Orlicz function $* defined on X. 

By (+), there is | > 1 such that 

$*(f 2v) *«,§§* (v) 

for all vxO. So, 

$(^)=sup*-|-|u|v- **(v)l*sup^|u|v-~^$*(f V * = 

^po*for M*- -fir ** ( S v ) l = JQT * (U)-
The implications (5) *"-M4) and (3) «~-*(2) are obvious. 

(4) -* (3). By (4), there is k«(0,l) such that #(^)*~#(u) for all 

ueR. If û ,...,u €R, then |u.-...-u IrfmaxluJ for some choice of signs, and 
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u,-...-u_ 
j>( 1 „ n)-»(--i--.) <^( r ox|u il)--jE <.(» 1) 

for this choice of signs. By convexity of $ > we nave 

+ + 
U,~...-U_ . rTW 

*(-= -)£-!£ $(u.) 

for all remaining choices of signs. Hence it follows that 

z $ ( _ i _ ^ ) , i _ ^ _ _ i £ f ( u ) , 
±1 n n CTJ * 1 

i .e . (3) holds with 7 i= l - ( l~k ) /2 n - 1 . 

(2) =_>(1). We have 

**$>*.»?_ * ¥ v " f *<-#* = r |gp0^l a- -*<_->* = r * *^ 
-1 _ _ 

for all u€R. Since k is greater than J, it means that $w satisfies condi­

tion A~. 

Note. Conditions (1),(2),(4) and (5) are also equivalent for any Orlicz 

function $ defined on an arbitrary Banach space. The function $ * is then de­

fined on the dual X* of X, by the formula 

$*(x*)=supx |x*(x)|-$(x)$. 

An analogous lemma to that given above has been recently obtained inde­

pendently by A. Kaminska and B. Turett in .133. 

1.2. Theorem. Let L* (ft) be-a reflexive Orlicz space. Then there exists 

*1 
an Orlicz function $ , equivalent to $ such that (L (ft)» tt tt$ ) and 

$*i -

(L (ft), II IL*) are uniformly convex and uniformly smooth spaces. The same 
holds for the Orlicz norms II U* and t llS* instead of the Luxemburg norms 

*1 w l 
|| Jl» and II I!-* , respectively. 

Proof. By assumptions, $ satisfies condition (4) from Lemma 1.1. Deno­

te y(u)= §(u)/u for u > 0 . Then for any a > 1 "there is k < l such that 

(a-) Y(~Ji)£kTf(u) for all u_:0. Let if* denote the generalized inver­

se function of if , i.e. ijr*(s)=sup U 2 0:if (t)* si for every s>rO. Since $ 

satisfies condition A~, for any b>l there is a > 1 such that $ (au) _• 

_*b$(u) for all u*R. Hence 

^ a u ) é - ł - f t ^ < b - * J - - - Ь ł ( u ) 

for all u>0. Therefore 
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(**) r*(£)=sup fu>0: y(u)tf %H ^7 sup { a i i : f ( a u ) ^ v j = ̂ y * < v )-

Define $x(u)= f,a,y(t)dt for all u*R. Then $*(v)= f M Y * ^ ds for a11 

v*R. The inequalities 6(u/2)< & 1(u)4$(u) hold for all uc R. Therefore, 

L5l(<u)=L*(t?4) and L * ( .<<.)<**(*«.). Moreover, | If !g* (fig * If lg for any 

feL$((u.). By conditions (*) and (*x), the functions $-_ and $* 'are uni­

formly convex (see [13). Therefore, both spaces (L *, I I* ) and (L 1 (ft), 
1 «« 

It 8**) are uniformly convex (see [123 and [163). The spaces LJ.(fc) and 
§* *1 
L (/u.) are also uniformly convex under Orlicz norms II I- and II II + , 

1 *1 »1 
respectively (for definition of Orlicz norm see [14]). This follows by the 

*1 results of Milnes [17]. Thus, both dual spaces (L , 1 IL ) and k 

A 1 
(L * , H H** ) are uniformly convex (and so also uniformly smooth). The same 

holds for the pair (L * , I 11° 3,0.% ft a«»*).The last statement follows by the 

fact that the criteria for uniform convexity of Orlicz norm and of Luxemburg 

norm are the same. This follows also by the above considerations and by the 

fact that U fl^, It IL»and H IL,, II IL* are pairs of mutually associated norms. 

Note. This theorem was obtained in a slightly weaker version by V. Aki-

moviC [13 . However, the proof given here is different and simpler than that 

given in 113 . In an analogous manner, the proof of Theorem 1.1.7 concerning 

Musielak-Orlicz spaces given in [10] may be simplified. 

Before we shall give the next theorem, we introduce the following para­

meter for an Orlicz function $ : 

p($)=sup{ae (0,1): sup [2§(u+au)/2)/($(u)+$(au))3«l}, 
AC>0 

where the convention sup 0=0 is used. It is evident that if p( $ ) > 0 , then 

for any a < p ( $ ) there is <f= cT(a) c (0,1) such that 

*( \ (u+ttu» *\ (l-«m$(u)+*(au)l 

for all ufcR. In particular, if p($)=l, then $ is uniformly convex (see f 123 

and 1161). 

1.3. Theorem. For a given Orlicz function $ the following assertions 

are equivalent: 

(1) cTL$(l)>0. 

(ii) $ satisfies condition A« and p($)>y. 
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(iii) $> satisfies condition A~ and ^e following condition: 

(a) there is €e (0,D such that for any u,vcR satisfying 

|u-v|> ±=f- |u+v|, we have $( |(u+v))* ±^L£$(u)+$(v)?. 

Proof. Fi rst , note that for any Orlicz function $ satisfying condition 

A«, we have 

(1.1) b=sup *2$(i (u+p($)u))/($(u)+$(p($)u))} =1. 
M-> 0 * L 

Indeed, by condition A 2 it follows that for any ^ > I there exists £ > 1 

such that 

(1.2) $(f u)<^$(u) 
for a l l ucR (see the proof of Lemma 1.1). Assume that (1.1) does not hold, 

i .e. b < l . Let £ > 1 be the number satisfying (1.2) with ^=1/v/b, and let 

r = ( | ( l + p ( $ ) ) - l ) / p ( $ ) . Then r >1 and f ( l+p($ ) )= l+ rp ($ ) . Thus, 

$ ( \ ( l + r P ($ ) )u )=§ ( i f ( l + p ( $ ) ) u ) * -fa * ( | ( l+p($) )u) * 

^ AM±ШŘ±ilá J&ШU)+І(TPІФ)U)Ì 

for all u c R. This contradicts the definition of p($ ). Now, we shall prove 

the implications (iii) -•£ (ii) »•* (i) •=-> (iii). 

(iii) ••* (ii). Assume that (ii) does not hold. If condition A„ i-s ^^ 

satisfied, then (iii) does not hold . So, assume that p($ )---•=; and denote 

f#(a)=supo42$( \ (u+au))/(f (u)+*(au))| 

for all a 6 CO, 13. We have by (1.1) that f,( y)*l.'Since the function f» is 

non-decreasing in [ 0 A 1 (see [11), we have 

(1.3) sup-(2§(i(u+v))/(§(u)+$(v)):u,v>0,v4jl = 

= sup 42§(-|(u+v))/(i(u)+$(v)):u,v>0,u-v>-^-? =1. 

It means that condition (a) from (iii) is not satisfied. Thus, the implicati­

on (iii) -=>(ii) is proved. 

(ii) =sa> (i). Only the fact that p(§)>4 implies (a) needs to be prov-

ed. If p($)>-|, then there is a > 4 such that f*(a )< 1. Hence it follows 

that 

(1.4) sup-f2$(i(u+v))/($(u)+$(v)):u^0,u+v>0,v.£au| = 

=sup-i2$(|<u+v))/($(u)+$(v)):u,v>0,u+v>0,u-v^-^a~(u+v)} < 1. 

Now, assume that u.v^O. The number «/=f*(0) is smaller than 1, and we 

have 

(1.5) f ( | ( u+v ) ) ^# ( imax ( |u | , | v | ) ) .6 f$(max (|u|, |V|)teft#(u)+$(v)?. 

Since (1-a )/(l+ a ) < i combining (1.4) and (1.5), we obtain condition (a) 

- 18 -



with some &€ (0,D. In virtue of condition &? there exists a function 

p(0,D—>(0,1) such that Itf IL £l-p(t> ), whenever K(f)frl-£ , £ & (0,1). Na­

mely, it suffices to put 

p(e )=supi6'e (0,1): sup C$(u/(l-e ))/$(u)]îéT-Vî 
44, >0 t - £ 

(see t73) . Let f,g6L$(<<-D, l t f l t | .41, I! g fl$ .£ 1, i l f -gK # >l . Then we have 

I$ ( f ) * -D l$(g)-^l> % ( f ~ g ) > l . Define 

A=-Ct € T: | f ( t ) -g ( t ) |> j ^ - | f ( t ) + g ( t ) | I . 

We have Ix( ( f -g) Kr\fs}^ l~6 • Thus> X $ ( ( f - 9 ) ^ A ) > C • Applying condition i^2, 
we get 

i$((f-g)a:A)^|n3)(2fxA)+]4(2g^A)uf{is(f^AM$(gJCA)}. 
Using this estimation and applying condition (a) from (iii) for teA, we obt­

ain . 

l-I$(i(f+g))?i4I§(f)+I§(g)?-I4(|(f+g))> 

* I V f *A)+V9 *A)1_tyl"+g) * A} ̂  

2 
= fft$(f)*A)+yg*A)$>£ 

Hence it follows that Ij(|(f+g))^ 1- G^/K, i.e. II ~<f+g)IL £ l-pCtf 2/K). This 

means that cfj^Q):* p( 62/K)> 0. 

For the proof of the implication (i) s=S» (iii) assume first that condit­

ion A 2 is not f u l f i l l e d . Then L*(<o,) contains an isometric copy of I00 and 

so <f * (1)=0 (even cT - (2 )=0 ) f i . e . (i) does not hold. Assume now that proper­

ty (a) does not hold, i.e. for any €e (0,1) there exist u,v£ R such that 

|u.v|> lz6L|u+v| and $ ( i ( u + v ) ) > - i ^ - { $ ( u ) + $ ( v ) ? . 

Choose a set B e 51 such that ($ (u)+ $(v)) ^.t(B)=2 and let C be a subset of B 

such that ft(C)=(u(B\C). Define 

f (t)=u tc(t)+v^0XC(t), g(t)= %c(t)+u J[BNC(t)' 

We have I^(f)=I^(g)=l. So, IflL=Ig^sl. Moreover, 

Ifj((f-g)/(l-6')
2)^(l-6')"1I<f((f+g)/2) = (l-€r)"

1$(|(u+v))<u(B) > 

>|i$(u)+$ (v)| f<. (B)=l . 

Hence, ftf-glL> ( 1 - ff)2. We have also 

ij((f+g)/2(i-er))>(i-6T)"4|(|(f+g))=(i-e)-1$(i(u+v))(-^(B) > 
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>j{$(u)+$(s,)\t*,(B)=l. 

Thus, I-|<f+g)Ĥ  > 1-C* . This means that <f ((l-eO2)=0 for any 6c (0,1). 

Since <f « is a continuous function in the interval 10,2), this yields 
L* 

(f *(1)=0. This finishes the proof of the implication (i) «=> (iii) and of 
our theorem. 

To give the examples mentioned in Abstract, two lemmas are needed. 

1.4. Lemma. Let $ be an Orlicz function with the right-hand derivati­

ve <p on R = I 0,co) and assume that there are constants & and d* in (0,1) 

such that 

(1.6) $(^u+au))*^«{$(u)+*(au)? 

for all ucR. Then cp(au) £(l+d)_1g>(u) for all u20. 

Proof. The proof is analogous to that given in tl], but we shall give 

it for the sake of completeness. Assume that there exist a , cf in (0,1) 

such that (1.6) holds. Let e > 0 be such that a=l/(l+e). We obtain 

$(|<u+u/(l+e)))£Y(l-d')-l#(u)+$(u/(l+e))} 

for all ueR. Putting U=(1+E,)V, we get 

$ ((l+e)v+v )^l ( 1_ c f H^ ( ( 1 + e ) v ) + j ? ( v )^ 

i.e. 

(1.7) 2$(u+Ju)£(l-(r)-[$((l+e)u)+§(u)? 

for all u,v€R. We have also 

(1.8) -^9(u)^f(u+f u)-f(u)£f(u+eu)-J>(u+|u)^--|u-9(u+eu) 

for all u>0. Hence, we obtain 

-f-9(U+SU)) Q . ; y /2) 

K J -M^( u) " $(u+eu/2)-^(u) 

Combining (1.7) and (1.9), we get 

<y((l+e(u) $ ( u + I u)-$(u)+cT-C$(u+ & u)+$(u) 

^ C u ; . $(u+|u)-$(u) 

for any u>0. Putting u=v/(l+e)= av, we obtain 

<f(a,v)£(l+<ryl<f(v) 

for all v>0. This is the desired result. 
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1.5. Lemma. Let $ be an Orlicz function with right-hand derivative <p 
on R+ and let the inequality 9?(bu) £ k g>(u) be satisfied for some b, k in 

(0,1) and for all u>0. If a €(0,1) is such that l+a=2b, then p(§> ) > a . 

Proof. We have MM*.*** 

$(u)+$(au) - » ( ^ - ^ ) ) * I - - ^ f t ^ t ) d t - I ^ 2 y(t)dt 

2$(|(u+au) 2$(I(u+au)) 

4JL+QM, 

_xiu. -y(g + -j--u)-y(f»df 

2$(I<u+a.u)) 

W e h a V e ^ ^ u , i.e. I ^ f ^ u . Thus - ^ u f c - . l - A - , ^ -

=b" £ . Hence 

^(u)+#(au) r l i ^ - ^ - L 2 ywdt 
2$(|(u+au)) ~ 2$(|(u+au)) 

(k"1-l){$(ku+au))-c|>(au){ 
-. i+ ' = 

2$(f(u+au)) 

2$(-j(u+au)) ** 

To obtain the last inequality, the estimation 

$ ( I ^ u)=$(-3£ a u ) > ^ $ ( a u ) 

for all ueR is applied. The proof is finished. 

Note. From Lemmas 1.4 and 1.5 the result of V. Akimovic [lJ concerning 
the characterization of uniform convexity of Orlicz functions in the terms 
of their right-hand derivatives follows. 

1.6. Example. There is an Orlicz function $ such that cf *(1)>0 and 

oT*t4(l)>0, and the spaces L*(f-t.) and L* ((JL) are not strictly convex. 
To see this, define 

- 21 



.(f/1-1 f o r t i l ^ 1 , ^ ) , ^ . . , 

9(t)=-{ (i)"
n for t€t(f)-n,(i)-n^), n=l,2,... 

0 for t=0. 

We have <f(~ u)= ̂ ( u ) , i.e. <?(| u)= |y(u) for all u?0. By simple calcu. 
lations, we obtain for s>0: 

<j*(s)=sup -ítrO: Cf(\)á sÍ= i 

f(j) n -or8«C(j)
n-1,(j)n), n.1,2,... 

( ^ t a e , ^ , ^ 1 ) , n-1,2,. 

0 for t=0. 

ЃІ .л. 1 We have also q?*(y u)= -j <j>*(u), i.e. cp*(|
 u
)= | ij>*(u) for all u*0. Define 

$(u)= J^* 9(t)dt for all ueR. Then **(v)=/J
v l
^* (s)ds for all v€ R. Both 

functions § and $ * satisfy condition A 2 for all ueR. We shall prove it 
only for $ , because the proof for $ * is the same. We have 

f <y(f)*#(u)*u9»(u) and y(2u)^ 9((^)3u)=(f)39(u) 

for all u&0. Hence, 

$ (2u)^2u<y(2u)&2u(i)3y(u).62u(^)69(|)^4(f)6$(u), 

i.e. $ satisfies condition A«. The assumptions of the last lemma are satis­
fied with b=k= ~. By this lemma it follows also that p($)i>a , where a=2b-

-1= i -1= j - In the same way we obtain p($*)>i. By Theorem 1.3 it follows 
that ^*.(1)>0 and CT».M(1)>0. Since the functions $ and $ * are not stri-

ctly convex, the spaces L*(ft) and L*tfO are not strictly convex. 

1.7. Example. There is an Orlicz function $ such that both spaces L*(ft) 
and L? (p) are uniformly non-square and d**(l)= J* ~#(1)=0. 

To see this, define #(u)= J0 y(t)dt, where 

r 4 n ^ for t«C4n'1,4n), n=l,2,... 

<j(t)= i 4~n for t€U"n,4""n+1), n=l,2,... 

I 0 for t=0. 
We have 
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4n for S6[4n-1,4n), n=l,2,... 

?*(s)= ^ 4"n+1 for s€r4-n,4-n+1),n=l,2,... 

0 for s=0. 

We have also ^(4t)=4y(t), i.e. y(|-)= j <p (t) and q»*(4s)=4 9*(s), i.e. 

^r(|) =I ^*(s) f0r a n s,t2r0. Moreover, $*(v)= f y*(s)ds for all v# R. 

Therefore, both functions § and $* satisfy condition *A« (see the discussi­

on concerning Example 1.6). Hence the conditions p($)>0 and p(#*)> 0 fol­

low. We shall prove for example that p($ )>0. By Lemma 1.1, there exists £ = 

=l+a with a c (0,1) such that $(•! u)6 \—$(u) for all u*R. Hence it fol­

lows that 

$(i-|- u ) ^ ^ ~ -If (u)+*(au)J 

for all u 6 R. This means that p($)fca->0. In virtue of Theorem 1.2 in C63, 

we conclude that both spaces L*(fO and L*V(U.) are uniformly non-square. We 

have <p(bu)> qp(u) and g>*(bu)* g*<u) for any b>-r and some u>0.Applying Lemma 

1.4, we get p($ )&j and p($* )£ j . In virtue of Theorem 1.3 it means that 

<f^(l)=cf^(l)=0. 

1.8. Remark. Also in R there exist norms R I and HI II such that 1 I 

is not strictly convex and <ffl j(l)>0, HI II is uniformly non-square, but 

*» HI a)=o. 

It suffices to put 

llxli=max(|x1|+(V?-l)|x2|,(VI-l)|x1| + |x2|), 

IllxltUmaxdxJ, ^|x-J+j|x2|). 

Indeed, the unit sphere corresponding to the norm X I is a sum of eight in­

tervals of the same length smaller than 1. Hence it follows that <J1 - (1)>0. 

It is evident that I I is not strictly convex. 

The unit sphere corresponding to the norm III II has six extremal po­

ints: (1,1), (0,|), (-1,1), (0,- | ) , (-1,-1), (1,-1). So, the number of ext­

remal points is equal to 2n+2, where n=2 is the dimension of R . Applying 

Theorem 1.5 from [5], we conclude that K W is uniformly non-square. Tak­

ing x=(l,D, y=( 1,-1), we have lllx-ylll = y > l and M ^ M - 4 . This yields 

4 III < » * • 

We shall investigate »below the local uniform non-1^1^ property for 
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Orlicz-Bochner spaces. Let (X, I I ) be a Banach space and let F^TjX) deno­

te the space of all (equivalence classes) of strongly *E -measurable functi­

ons from T into X. For a given Orlicz function $ the convex modular I* : 

rF^CT.X) —* tO,ooJ is defined by L$(f)= fT §> ( llf(t)l| )d<a . The Orlicz-Bo­

chner space is the set L^(,<*,X) of all functions from F ^ V X ) for which 

I*( A f)<oo for some & > 0. This space will be considered with Luxemburg 

norm H Hg defined by Rf||̂  =inf«£e > 0:I$(f/s ) * lJ. 

To characterize locally uniformly non-1/: * Orlicz-Bochner spaces, the 

following characterization of the local uniform non-F property for normed 

linear spaces will be useful. 

1.9. Lemma. A normed linear space (X, It It ) is locally uniformly 

non-F if and only if for any x, € X there exists e(x,) in (0,1) such that 

for all x0,...,x in X, we have 2 n 

|i(x1-...-xn)l.ti<lx1ll +...+ llxnll)-e(x1)min{l|xil| : H U n t 

for some choice of signs. 

Proof. Suppose X is locally uniformly non-1 and x,4-0 is in X. Then 
xl there is <f(j.—=-) in (0,1) such that for all x0,... ,x € X\-£0$, we have 

(1-10) «^TrqF ---nj*'i-«-TZč 
X, 1 

for some choice of signs. Denote <f ( .. ..)= £(x,) and assume that II x. U = 

=min i II x. II : i=l,...,n|, 1.6k.6n. Without loss of generality we may assume 
that all signs in the left-side of (1.10) are equal 1. Thus, we have 

лk» 

* ir^rtt-^^11- - * &.(i^r - p ^ - M • 
Therefore 

•-•<*l)
+
^niir»S.

,X
l

,
-n&T^I "

t(Xl)
' 
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^v-^ u l .? <
, x i , - * ( , , i ) K | s H6»* i | -» ( , < i ) - l n l , ( i l -

Conversely, le t the inequality from the lemma hold for some choice of signs 

and le t x 1 , . . . , x n € B x ( l ) . I f m i n l x - J t ^ i then H ̂ ( x ^ . . .+xn I £ 1- ^ - . I f 

min l x . H > 4 , then by the assumed inequality, we have 

II i C x - V . .-xn)II £ idx-JI +.. .+ Ix n | ) - } &(x 1 )£ 1- i e(x1) 

for some choice of signs. So, in general 

i l ^ x ^ . . . ^ ) ! ! £ 1- ̂ min( e(x x)i) 

for some choice of signs, which means that X is locally uniformly non-1 . 

Note. The proof of this lemma is analogous to that of the lemma concer­

ning a characterization of uniform n o n - P ^ property given in [133. 

1.10. Theorem. The following assertions are equivalent: 

(a) An Orlicz-Bochner space L*((u.,X) is locally uniformly non-1 ̂ "i. 

(b) Both spaces 1$({4,,R) and (X, II It ) are locally uniformly non-1 ̂  . 

(c) $ is linear in no neighbourhood of zero, $ satisfies condition A7 (for 
(i) 

all u€R), and (X, R M ) is locally uniformly non-lv*'. 

Proof. The implication (a) -=^ (b) follows by the fact that both spaces 

X and L*((uv,R) can be isometrically embedded into L*((u,,X). The implication 

(b) «.->- (c) is proved in [8j. Now, we shall prove the implication (c) *=^(a). 

Assume that (c) holds and llf-H^ =1 for i=l,2,...,n (we may restrict oursel­

ves only to elements f. from the unit sphere of l ; * ( ^ , X ) ) . Then I«(f.)=l for 

i=l,2,...,n. Let c>0 be such that assuming 

A1=-vteT:c"
1£ »f1(t)U ̂  cl, 

we have I^(f]L qrA )>•£. Let d>0 be such that $ ( c ) / $ (d)< ^ " r r j > a n d l e t 

Ai=-vt€T: Hf i(t)iUd§, i=2,...,n. 

We have $(d)fu(T\ A.)< If (f.^ T s A )^1, whence we get <u.(T\A^ -^gy for 

i=l,2,...,n. So, x 

V M A N A ^ * * ^ ^ V**(c)/*(^ • 
in-

Defining n =^£\, Ai» we have 

W f l V Vfl SS'CASA.)^1*0^ 
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Hence, 

( L I D ^ ( f^ t , ) ? ! . 
By assumption (c), we have $ (^)<-iltLl for all u>0. Hence it follows 

n 
that $(--—=- u)< •—=• $(u) for all u>0. Since $ is a continuous function on 

the interval tc ,ndJ, there exists ^ e (0,1) such that 

(i.i2) $ ( ^ u ) * n n r # < u > 

for all uctc ,ndj. In virtue of condition A«, there is a e (0,1) such that 

$((l+a)u)*(Vi£ ) $(u) for all u€ R (see the proof of Lemma 1.1). Combin­

ing this with (1.12), we obtain 

(1.13) #((l+a) ^-u)£(sfrl )" 1 » ( ^ u) ̂  Tr̂  ̂ ^ ( u ) 

for all uc t c " ,nd3. DenoteZ= ViJ . Note that a and Z depend only on f. and 

f . Define for xcB x( l ) : 

iT(x)=inf { 1-min | i ( x A ± . A n ) 11} , t i n 2 n 

where the infimum is taken over all x0,...,x in Bv(l). The function 
z ' n x 

rf'(f1(t)/llf1(t)||)=oC(t) is 21-measurable. By Lemma 1.9 we have 

(1.14) min» n - ( f 1 ( t ) i . . . i f n ( t ) )Ui ( f t f 1 ( t ) l +...+ l f n ( t ) | ) -

-«(t)min HfiCt)ll = j ^ l f - W I +...+ l f R ( t ) | ) x 

x( l -oc( t ) n m i n | f . ( t ) | /(II f ^ t ) l +...+ B fR(t) I ) ) . 
We shall consider two cases. 

1°. min nfi(t)l>a(Mf1(t)l +...+Ilfn(t)| -min llf^t)!! ). Then 

min llfi(t)il > (a/(a+l))( lif1(t)ll +...+ |lfn(t)|| ). Thus, combining this with 

(1.14), we get 

, . . n<L l{f1(t)ll+...+fff(t)(| 
*(min l^f1(t)i...ifn(t))l)**((l-f^«c(t))--i - 2 ) * 

^(l-fSr^t^^tfrtqWH), 

because j&- oc(t)£l. 

2°. opposite to 1°. Assume for example (but without loss of generality) 
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that min fl fi(t) U = llf1(t)l| . We have for ft - a.a. t€T and any choice of 
signs, 

$(lli(f1(t)^...ifn(t))|| )6$(i(llf1(t)ll+...+ Ifn(t)ll)) = 

llf-tt)! Hf2(t)«+...+ Ifn(t)H 
= $(((1+ U f 2 ( t ) l l + . . . + ||fn(t)|)/r7T)- R--I } £ 

n - llf9(t)/l +...+ Ilfn(t)ll n - llf7(t)ll +...+ If n(t)| 
4*<nr (1+*} — — n = i — D — v ^ W - 1 - ! * ~—>* 

* * ^ » ( l f i ( t ) , ) -

Denoting (3 (t)=l - - ^ &c(t), and y(t)=max(l- 1"rf,^
t) ,£)• we get by the 

above two cases: 

f1(t)i...if(t) OH - I ^ X N ** £ #(HJ _n_ | U_L^^ 4 ? | # ( | f i( t ) |, f 

where " 2 L " stands here and in the following for the summation over all 

choices of signs. Define 

Bk=*tfeD: y(t)_a-£}. 

By SI-measurability of ̂  , B, e _5L for k=l,2,... . There is k 4 N such that 

I*(*i *CB )£_f* *n tne secl-el we shall write B in place of B. . Denote C=l-l/k, 

where k is the number defining B. We have for teB: 

£ $(ll±(f1(t)±...ifn(t)(| , _ 2 ^ J ^ ( | f i ( t ) | ). 

Integrating this inequality both-sides over B, we get 

Hence, we obtain 

2n"1- S ^h^-X^^$<Vh^-& Vfcr-^V^* 
» 2n-I-2n"V £ T (f „ w2 n 4(H) T ,f r w 2

n"1(l-6r) > _. ^ 1 ^ ^ ^ *— V f l * B } * ^ 
Hence 

•5T T fl/P + +* ̂ -wo0"-- ______________ -o0-1 n _____juon---.-. 

n Wfr---"fn))*2 K — 2 ( 1 ~~ ir ) = 2 q' 
where q=l- ̂ - belongs to (0,1). It must be 1$ (^f-_-...-fn))* q for some 

choice of signs. Denoting by p the function from (0,1) into (0,1) such that 
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ft f 1L .6 l-p( E,) whenever I*(f)Jel-£, (such function p exists by condition 

A 2i see the proof of Theorem 1.3), we get 

•nttr-'^Vf - H>(l-q) 
for some choice of signs, where p(l-q) depends only on f,. The proof is fini­

shed. 

The girth of Sx (= the unit sphere of X) is defined as double infimum of 

lengths of curves on S x with antipodal endpoints (see tl9J) and is denoted by 

Girth(Sx). 

1.11. Theorem. Every Orlicz space L*(fO of real-valued functions is ei­

ther unifotmly non-square or is nearly flat, i.e. Girth(S*)=4. 

L* 

Proof. If G i r t h ( S . J > 4 then L*(<-*) is reflexive (see 1193). But it is 
L* * 

known that for any non-atomic infinite measure AJL , reflexivity of L*(fO co­

incides with uniform non-squareness (see t63). 

We say that a Banach space (X, I It ) is non-F ' (n>2 and integer) if 

for any xll..,x in Bx, we have Ix,-x2-...-x ll<n for some choice of signs. 

We say that an Orlicz function $ satisfies condition A 2 at co if there 

exist positive constants K, a such that $(2u)^K§(u) for all u satisfying 

*(u)Za. 
1.12. Theorem. Any Orlicz space Lr((u.) of real-valued functions over a 

non-atomic finite measure (U, is either non-1^ ^ for some integer n £ 2 or is 

flat. 

Proof. If Lf((ut) is non-F ' for no integer n £ 2 , then either $ does 

not satisfy condition A« at co or # is linear on the whole R+ (see 183). 

Then L*((U.) is flat (see t93). 
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