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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
29,1 (1988)

ON CHROMATIC NUMBER OF PRODUCT OF GRAPHS
Lajos Soukup®

Abstract: It is shown that if ZFC is consistent, then so is ZFC + GCH +
"There are two graphs, B and W, with cardinalities and chromatic numbers w,

such that the product of B and W has chromatic number e ".
Key words: Chromatic number, product of graphs, consistency result.
Classification: 03E05, 03E35

1. Introduction. The aim of this paper is to prove a theorem about the
chromatic number of product of infinite graphs. Our set theoretical termino-
logy is the standard one as can be found, e.g. in [5). For example, we iden-
tify a cardinal number with the smallest ordinal having that cardinality, and
use @, W, etc. instead of LR

Let us recall that given graphs B= < U,E), and W= (V,F) (for black and
white, respectively) their product is defined as

Bx w=<UXV1 {“( gO’h(J)’(gl’hl)}: { gD’gl} € E, {hﬂ’hl}‘ F;) .

That is, the set of vertices of Bx W is the product of the set of the verti-
ces of B and W and the set of edges is the product of the set of the edges.

S.T. Hedetniemi raised the following problem [4] : Given a natural num-
ber k, must the product of two k-chromatic graphs be also k-chromatic, or may
this number be less than k?

The case k=3 is trivial, the product cannot be 2-chromatic.

M. El-Zahar and N. Sauer solved the problem for k=4 in [2]). In this ca-
se the chromatic number of the product must be 4. The problem for kz 5 is o-

pen.
A. Hajnal asked what happens for infinite cardinals. He succeeded in

proving the following results, see [3):

X ) The preparation of this paper was supported by the Hungarian National
Foundation for Scientific Research, grant no 1805
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Theorem. (1) If Chr (B)= Wy Chr (W)= k<(.)0, then Chr (B> W)=k.
(2) 1f 9¢ is a strongly compact cardinal, A < 9¢, and
Chr (B)= 9¢ , Chr (W)= A , then Chr (BxW)=A.
(3) There are two graphs, B and W on @, such that Chr (B)=
= Chr (W)=w,, but Chr (wa)=a)o.

The problem how small the chromatic number of the product can be still rem-

ains open. Here we are going to give a partial answer by proving the follow-
ing result.

Theorem. Con (ZF) implies Con (ZFC+GCH+ there are two graphs B and W on
@, such that Chr (B)=Chr (w>=4.>2, but Chr (Bx\fl)=wo).

2. A simple case. In order to make a bit easier to follow our construc-
tion, we present a proof for a weakened version of the main result, namely,
we drop the assumption CH.

Theorem. Con (ZF) implies Con (ZFC + there are two graphs B and W on
W,
@,, such that Chr (B)=Chr (W)= @,=2 °, but Chr (Bx W)=w,).

Proof. Define the notion of forcing Q=< Q,£€) as follows. Its underly-
ing set Q consists of quadruples <a,B,W,f) where

<w
(i) a s.[cozl o B,Ws[a]z, and f is a function, f:axa —>
(ii) BAW=@,
(iii) for each «, 36 a we have

0 ifec=f
f(a‘,ﬁ)={ >0 and even if «<f3
odd if x> f3
(iv) if {,B}6eBuW and g e a, ot < g then f(ot, )% E(B,) and
fly,c)$f(y,3),
(v) for each {o¢,3%6B and {7,036 W, £(oc, 3 )FI(B,07).
The ordering on Q is as expected: if p= <aP,BP WP, tP)eq and
g= <a9,89,w9,£% 6 Q then p&q iff
a9 P
89:8° [a%?
W3=wP (a2
9P,

The elements of Q are the approximations of the edges of B and W, and the co-

louring of the product. It is easy to see that Q satisfies c.c.c. Now let 9,
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be V-generic over Q and put

.'B=U{Bp:peg,]
W-Uiw:pe G}
F=U{tP:pe G}

B and W are the sets of edges of graphs on @, and their product has chrom-
atic number at most w, since F is a "good colouring" of B x W by @, col-
ours. On the other hand, for each n €W, the complete graph on n vertices can
be embedded into $ = W , thus Chr (B=UW) 2 W,

Finally, Chr (83 )=Chr ('w)=m2 follows from the following fact. For each

a)z

Ae [023 and {p,, :cc€A}c Q in V there are two different elements o¢, B€ A
and qép, ,pp with {ec,p}e 8.

Obviously, this construction can be carried out for every regular cardi-
nal in place of w,. ’

3. The proof of the main result. We use a generalization of a method of
J.E. Baumgartner [1). First of all we sketch the idea. The elements of the
poset P we are going to force with are quadruples <A,B,W,F», where A is a
countable subset of Wy B and W are edge-disjoint graphs on A approximating
93 and W, and F is a set of functions, F={F :x¢ w<®? The union of Fg s
in the generic set will be a good colouring of T x W,

The poset (P will be w-complete, therefore we need to show $#,-C.C. As
usual, we have to "amalgamate" p and g € P whenever they satisfy certain as-
sumptions. Assume s is a full isomorphism between p=<Ap,Bp,Np,Fp) and
q=< A9,B9,WI,F9). If o @ AP\ AT, X3 A9\ AP, then we must define the "colour"
of {o¢c , A3} in the amalgamated condition. Our idea is that F?o)(:n’ (ec),f3) con-
sist of the potential colours of {& » 3% . However, we need to define
F(O)(ac ,3), too. Its candidates are the members of F?o’(])(ﬂ(cr.),ﬂ). In ge-
neral, the elements of ngy\x(ﬂ’(«.), f3)) are the candidates to be elements
of F (,f3).

Now we start the detailed construction with some notions. Let
U ={ec<co2:cf(o6)= w}, {fn:ne e} be a set of functions from % into @,,
such that for each o 6 U, (fn(uc ):n & wYis increasing and unbounded in o .
Let {5,6.,H :n € w} be the following enumeration of @:5=0, G =2n+2, H =
=2n+1.

If « geU o <, letta,p)=min{n:ec<f ()% . If nkew, let
- : T W
Tn,k- §5,6,,H, :m2n, L2k} and Yo,k ok @ -
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Definition 3.1. Let J’°=( Py€) be the partial ordered set whose under-
lying set P0 consists of quadruples {A,B,W,F), where

(1) Ae [wzléwo, B,W;lAJz, F=4F :xe w“"{;
X
(2) BaW=g;
(3) Fyisa function trom [A)2 into [@]%;
(8) If x € w<% x%@ then F is a function from Ax A into [w]1%.

The ordering on P_ is as expected: if p=< AP,BP WP, PP> ¢ P
a= ¢A%,89,WI,PDeP . then p<q ift

A9¢ AP

8%-8Pn (A% 2

W3=wP (A% 2

Fgg Fg for each x ¢ w<%.

Definition 3.2. Let 91 be the subset of ?0 consisting of quadruples
p={A,B,W,F> e .'Po satisfying conditions 1 - 5 below.

Condition 1. If fec ,y36B, {f,dtec W, x <fB,7,0", n=tla, ), k=t(ex ,8),
stn,k then Fu(ﬁt,ﬂ )n Fx(—r,‘f)=ﬂ.

Condition 2. If{«,y3e¢B, B A, x<f3,, x,erD o’ n=t(ec, ),
k=t(e¢ ,3) and for arbitrary ZeV, K and i< n <G, )"‘x*Z"y and
X #¢6;>~Zy, then F (at,B)AF (7,,3) =g

Condition 3. If{p,8}eW, vy €A, f<cy,d, X,y 6 Vg ,0° n=t(,2),
k=t(p ,d") and for arbitrary ZeV, K and i<k <H, )"x¢Z"‘y and
X #CH; ™27y, then F (7,[5)nF (7,6') =g.

Condition 4. I1<{B,d>eW, v &A, ?</3 d , x y‘V and for arbit-
rary i € @ <Hp " xapy and x*(H >y, then F (7,B)nF (7,d’) =g.

Condition 5. If «,f €A, x,ye€ vo,o’ x#ey then Fx(oc,ﬂ)nFy(cc,ﬂ)=ﬂ.
If «,f,p, x,y,n,k are such as in 2 above, we denote this fact by
b(u,p,y,x,y,n,k) and if they are such as in 3, we abbreviate this ‘by writ-
ing w(f3,9,d",x,y,n,k).

The notions strongly closed, closed, the lemma 1 and the method of Lemma
7 are due to J. Baumgartner [1].

If © £ cew,, let Q“%u;w%o ;. We say that A e[wzl‘”is s‘l:r:mg1 ly
closed iff A n@, & @ and for each o« € A A is closed under hy and h' and
for each o & A and p 6 @ f (e¢)&A. For arbitrary A tlvz:l‘“’, scl(A) is
the smallest strongly closed set containing A. If p e 3’1 , P is closed iff
AP=scl AP A U . For ?1 is &-complete, the closed conditions form a dense
subset of :Pj . -4 -



Lemma 1. If a, b are strongly closed and a nwl:br\ol, then anb is an
initial segment of both a and b.

Proof. Let §~anwl-bnw1, veanb, nea, p<v. Thenh (Vean

A®=bAw,. Thus v= h"l (hn(v))eb

Definition 3. Let p,qe Py» P, q closed, p= <AP,BP,WP,FP>,
g= € Aq Bq wq FO>. We say that p and q are isomorphic and a shows it, in signs
pPE_a

iff the following conditions hold:

(a) ar:scl AP 1- i scl A':I ar is order preserving,

(b) (scl AP)n w,=(scl AHa @)

(©) f,PB¥ebP iff for (), 7(B)}eBY,
(d) {oc,BleW’ itf{ar (), 7(B)3ewl,
(&) FPec,B)=Fl(ar(ec), m(3)),

(1) tle,B)=tlar (ec), (),

(@) ar (£ Cee))=g, (ar(ee)).

By Lemma 1, D=APA AT is an initial segment of both AP and A9.
At present we are ready to define the poset P =<{P, &) , which adds the
desired graphs to the ground model.

Definition 4. J cun51sts .of quintuples p= <{A,B,W, F0 F > where both
= (A,B,W,F°Y and p1 <{A,W,B,F ) are elements of 5"‘1. If p,qeP, then let
p£€q iff both p iq and plé ql.
If peP, let p= <AP 8P WP, FOP F1Py,

The notions of isomorphism, closedness are extended into elements of
in a straightforward way.

So far we have defined a notion of forcing P . To show that it works as
expected, we need 3 technical lemmas, rather simple as stated but cumbersome
to prove them. Using them we construct a generic model.

The lemmas below use some new notions. To begin with, if e, /Je APy Aq,
D=APA A%, then let us denate by E(ec,3)=EP*%(ec,3) the set {S 1GuoHg
:0ef, (), 081, (A)Y. Elac, @) may be {S3. If « € APu AT, then put
% - { () ifoc€AP
o otherwise.
~-5-



Definition 5. Assume p sﬂq. Let te Po’ t=<A,B,W.F>. We say that t is
(p,9)-good, iff the conditions (A) - (E) below are satisfied.
(A) A=APu A9,
(8) B=BPuBY,
©) w=wPuul,
PLFA L’ 2
(D) For each x¢V0,° Fx-ququFx, where dom (Fx)-dom (Fx) \
\ (dom FRy dom FJ) and for each <, B> e dom (F)) F (ec,8)s ULF i n @B):
:te P29 e, @)%,
(E) For each x,y 6V,  if<ec, 3> € dom (F;) and {3, oY € dom (F) then
} y
Fe(ee,p)n Foly o)+ 8 implies x=y and <et, B> =(, o> .

Obviously, if p&,q, then there are (p,q)-good elements of :Po. The
first lemma we have promised, is the following one.

Lemma 2. If t is (p,g)-good, then t €.

Proof. The general form of a condition is the following

(Vx,ysvo’o)( V<« , 3> € dom F_ and<7,d"> & dom Fy) if ... then
Fx(ec BIn Fy(q-,d')=ﬂ).

We say that F (e, ) is new, if(ec,Bd€dom F . It is clear from the i-
somorphism of p and q and the condition (E) of the (p,q)-goodness that if one
of the conditions 1 - 5 fails in t, then we can assume that either Fx(ec,ﬂ)
or Fy( ¥, &) is new, but not both.

Let us verify conditions 1 - 5 one by one. Let D=APn A9,

Condition 1. Let{‘af’ée){ﬂyf}‘ws %<ﬂ,7,d’ n=t(e¢,r),
k=t(e¢, o), x €V . As we remarked, exactly one of F.(3,07) and FB(.C,g)
must be new. If Fa,gcc,ﬂ) is new, then o¢, B3 § D. Without loss of generality
we may assume e« 6AP\D, Be A\ D. Because ac< g, o, hence 7,0 ¢ O. But
{oc, 73€B=BPUBY and {8,536 W=WuWI, thus 7 aAP\ D and o € A9\ D. Hence
F (o d’) is also new, a contradiction. Thus F (3 ,d") is new and, for examp-
le, 7€ A°\D, e AIND. Since {3,736 WL W, BeAT. As Fy(ec,B) is old,
wer% As yeA°\D,{r, 73€B, oc must be in AP, Thus cc @ D. Thus
Uy, ) 8T, -

By the definition of (p,q)-goodness we have

- ~ s q .
Fily, &) 8 ULFgpn, (5,3t 6 B Uar , 8O GUTFQn (3 8):t 6T (30
SUFJ(F &)y eVn b
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Since t(a,g )=t(ec ,5) and t(et,d" )=t(et ,&) hence applying condition 1 for
q we get that every member on the right side is disjoint from Fg(«,,ﬁ' ). For
Fglee ,@)=Fi(et, B) and F (,0")=F [(,") hence F (7,8 )N Fylec,3)=8.

Condition 2. Let ec,y,/s,n,k,x,y be such as expected. As above, it can
be seen that F, (3-,3) must be new and oc must lie in D. Hence P NUy,.B8)
ng,k.

Now

F (o s 3% ULFdin (F,8):t e E7%(3, )3 We must check that each

. s R =F4q s

Fgﬁﬂ (%, B) appearing in the right side is disjoint from F_(ec,@)=F &P
,Fq(.c ). We want to apply condition 2 for g. But b(et, B, F,X,Y,n,K) holds
and teE™ Uy, @IET, | . Hence bles,,F,x, t y,n,k) holds, too, therefore

by condition 2, .
~
Fiet, B Fepun (B0, thus

Flec,3)N Fy(q—,{!)=ﬂ.
Condition 3. Let 3,4,d,x,y,n,k be such as expected i.e.
W, ,d",%,y,n,k). Now Fy('r,d') must be new and 3 ¢ D. Hence .
Folz.d)s U{F“y.y(?,?):te 72Uy, ad)F.
Let s be an arbitrary member of Ep’q(g— ,d ). Since 3¢ D, we have

S‘Tn,k' From w(p"frfa’HY!n,h) we get w( {S»‘r,d',X,(SY‘Y’",k)- Applying
condition 3 for q,

q o AW

F ('r ﬂ)n (57\)’(?’6')_”.
Therefore

Fx(7 N )f\Fy('y,d')=ﬂ.

Condition 4. In this case it is impossible that exactly one of Fx(7'ﬁ)
and Fy(';',d") is new.

Condition 5. Obviously, Fx(.c,ﬂ) and Fy(oc,p) are new at the same ti-
me. The lemma 2 is proved.
Lemma 3. Let p,qe P, PR 0, vc u<w, Lew ), D=APA AT,

ve APND, @ &AND, (¥ )=, Dety @), Dct, (w)<». Let t= CAB,W,F>
be a (p,q)-good element of '.Po such that

(> py € dom F_ implies
if « §{v, ,.stnenF (e, @)CFIyn @, &)

-7-



if ot 64, m} then F (e, B)c Flpyn (&, )
%
Then r=CA,Bu{», u}, W,>e P .

Proof. Assume on the contrary that r & ?1. We know t e (Pl, and the di-
fference between r and t is only one edge, {, fd. Therefore we must check
only cases when edge {v,u} acts in conditions 1 - 5.

Condition 1. Let o« ,(,y ,0",X,n,k as expected. In this case ¢ must
be » , and y must be @ . Since f, (W)<»<f, (), £<n.

(i) Fg(gc ) is new. Since Fm(qc Blc F(G (& ,(3) [?(3' /s) there-
fore it is enough to prove

F(G ST BInFl(F,d) 0.

If '3‘<[3 d' then because £<n and xeV n,k we can apply condition 4 for q to
obtain it. If T§<7 & , then because l<n, xeV t(ec ,7)=n£t(ﬁ,§),
we can use the condition 3 for q and obtain the desued result.

It Fe ¥ ﬁ , then because £ < nét(a?" ?) we can apply Condition 3.

(ii) F «(7,d") is new. Since F (3— J)ICF <G ),\ (¥, &) hence it is en-
ough to prove

~ q ~ N
Fg(z' ,Bn F<G£)Ax( ¥.0) B

because Fﬂ(uc 3 )=Fg(§ ,ﬁ), :Fg(f? ,’(2 ). But o« <f3,d" , hence 5‘* =’é<ﬁ,§'
For GZ *Hi’ we can apply Condition 3 in q to obtain the desired result.

Condition 2. Let {ec,'r}eB, BeA, x,y,n,k as expected. Then & = ¥ and
T = . Since £, (w)<»<f (@), £<n.
. s s 4 qQ ~ o~y -Q ~ %
(1) F (ec,B) is new. Since Fx(e(,,/s e F(Ge)’\(“’ﬂ)“f:(l}&)"x('? 2B, we
need i

FEGBAX( F.8n F‘y‘(g )8,
For b(e¢,f,7,%,y,n,k) and £ <n, <GL)"X*Y, thus what we have hoped, is
really true.

(i) Fy(y,B) is new. Since F (7, {s)cF«;)ﬂ F.5)= F(G?n &, 3,

we need (Ge)"y#x For b(ec, 3,9 ,x,Y,n,k) and £< n, it is clear.

In the remaining cases, the edge {v ,‘u,} cannot act, thus the lemma 3 is
proved.

Lemma 4. Let p,qeP), pF g0, »< wew,, Lew , D=APn AT, e A"\D,

@weAIND, a(»)= @ .Dct, (»), Def, (w)<» . Let t=<A,B,W,F> be a
-8 -



(p,q)-good element of P such that <ot ,f3>€ dom F; implies
if Ba{w, @l then F (ot ,B)C Figpn, (£, &)
if Bg{v,u} then F (¢, f)c Fi“f"(;’ﬁ)'

Then r= <A,B,W U», u¥,F> e ®.

Proof. Assume on the contrary that r & .’Pl. Keeping in mind that the
difference between r and t is only one edge, {v» , y.} , we must check only ca-

ses when the edge {v,q.q.?; acts in conditions 1 - 5. In the condition 2 and 5
the edge {» ,u} cannot act.

Condition 1. Let o, 3,9 ,d",x,n,k as expected. Now {f3 ,o§ must be
{'\7 ,443

(1) Fylec,B) is new. Since Fylet,3)E F?Ha(g,ﬁ):F?Ht)(&',ff) we must

prove Fy, S (&,B)On FIC%,d)=0. For n=t(&,3), k=t(F &), xeV . we get

~ 3
b(«.,?,’q-f(k%) ,X,0,K). Thus we can apply condition 2 in g to obtain what we
had to prove.

(i1) F (4,97 is new. Since F (y,d")c r‘in,\x(;,g)=F‘1‘_Q,\x(?,§),

we must prove Fg(z,ﬁ)anHBﬁx(?,ﬁ)m, For o< f,fi and t(&',?)ﬂ(ec,?‘):

=n we can see b(&, § .7 ,ﬂ,(Hz)"x,n,t(GZ,E)). Indeed, for arbitrary je « and
zeVy o <6y #LXH DI X and P (GO ZXH X, Thus FI(&E, BN F?Hz,ﬂx(;,fs‘ﬁ
=@ by condition 2.

Condition 3. Let @,y ,d%,X,y,n,k as expected. Now 3= » and d= &

(1) F (g, M) is new. Thus F (4,B)c F?H‘)nx('-},ﬁ)ﬁ?”t)nx(?,3").

Since f, (wi<v< £ (w), L<k. Th}xs(Hz)"x*y by w(f ,q,d7,%,y,n,k), the-
refore

q N Qe 2y
F(HL)'R(T’J)“ Fy('g sd°)=p

o s . . . . q ~ ~ - q ~
(ii) Fy('( d") is new. Since Fy(,r,d’)c_ F(Hz)"y('r’d') F<H¢Y\y(7,ﬂ)
and x#(HL)"y because £< k,

FgHz)"y(¥’ ) F?(("f, f)=0.

Condition 4. Let B ,9,d”,x,y, as expected. Now {f ,d'3= £» , ¥ .

. : . . ~ o~ 0 ~ =K
(i) Fx(';, {‘.;) is new. Since F (4, fe F(qH‘Y‘X(T B )'F(HIY‘X("' ,d)
and CH Y™ xY, F “c"‘x(:; N FIGE 3 )=

-9 _



(i) F (4 ,d°) is new. Since F (o, d" )c FI (¥ ,5)=F9 .8
X R W Y T T ) a0 B
and: x$<Hg"Y, Fg(‘f BN Fng)"y (%, B)=0. ‘ v

This completes the proof of Lemma 4.

We are going to use the following notions. If G is V-generic over & ,
let

A=U{AP:pe G}
B=u{e°:pe G}
w=U{WP:peGt, and if x e &%, i=0,1,
F-U{FPpe .

If i=0,1, let fi be a choice function for Fé, that is,
thral—o
fl(«,,{s)eFE(«,{s).

Let us define the function f as follows:

Dom (£)= A = A

0 ifx=f3
flec,p )={2-f°(=¢, R+l if < p
2.f1([3,ec)+2 if «>f3

We claim that in VJ,, B and W are azz—chromatic graphs on A =U , and f is
a good colouring of Bx W . To see it we need some observation.

Lemma 5. For arbitrary o« € U , Dac=-t'pe:S’l «€AP} is dense in ﬂ"l.

Proof. Let p=<A,B,W,F>e P . We'may assume o ¢ A°. Let r=<AU{x},
B,W,6Ye® such that r&p. If 46 (ec,»), 6 (» ,ec):x € @ veAUfc}?
consists of pairwise disjoint subsets of e« , then it is easy to see that
riPl.

Lemma 6. If CH holds, P satisfies @,-c.c.

Proof. Let {p‘: oL < (oz}: P . Since the closed elemen{s of P form a
dense subset, we may assume every p ” is closed. Since 2w=c01 there are only
W, isomorphic types of elements of % . Thus there are w < {3402, p dz p’,.
Then, by Lemma 2 P and PB are compatible.

- 10 -



Lemma 7. If CH holds, then vg’s- chr ($)=Chr (W)= ©,.

Proof. Assume on the contrary that pe P and pe"h: Y — @, is a good
colouring of B ". Let ip :eceU}, 3: U— @, be such that

. Px.
P« S are closed, « € A » B 4P and
pd.‘_ "E(“ )=g?;)n .

Since there are only ol=2“’ isomorphic types of the elements of 2 , there
is a stationary subset S of U and there are g n,TE wl such that:

(i) (Ve , €S) py anedpg are isomorphic and L, p Shows it,
(i1) (VYa€S) glec)= T,

Pec
(iii) (Ve eS) A ne=7,

th

p,
(iv) (Ve €S) &« is the g element of A

Since S is stationary and for each oc€ S<f (ec):ne @? is unbounded in o ,
there is an n € @ such that f is not essentially bounded on S, that is, for
each ﬁ<w {xesS:f (oc)> ﬂ} is statlonary in @,.

Thus there are oc< ¥ < @,: both f (ec )n'S and f (7)nS are stationary.
Let v, €S, v< w such that £ ()= 3~ £ ()= By (iv) a(®»)= . By
the definition of isomorphism

ar ()= a(E (» )=F (a1 (»))=f, ()= e -

P. P P, P

Since D=A “na is an initial segment of both A Y and A “, Deceoc and
Dc oy . For fn((“')=°"<?'=fn(")<" y fn(y.)< ».

Thus we can apply Lemma 3 for pg , p:‘_,v , & and n, and Lemma 4 for
p}, y pi‘,v, @ and n. Hence we obtain p=<A,B,w,F°,F1) such that pe & and
P£p,,P. and {»,«le B. But

prh(» )=h(@)=T A {»,3eB A h is a good colouring of J3 .
Contradiction. Thus Chr (33)=w2. Similarly, Chr (W)=w2,

Proof of main result. Assume the CH and let us regard V?. By Lemwa 6 3

satisfies ¥,-c.c. Since P is &-closed, CH remains true and the cardinali-
ties of V and v® are the same. By Lemma 7

v® vohr (®)=Chr W)=w,".

By Lemma 5, U=A.
et ,8,9 « U ,{, 3B, {3,046 W . Assume on the contrary
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t(e, )=tz ,d). Since BAW=D, w# B oF g+ . Since £~ {04
={(y,v):iveU} , kB and yd . Since (e, B) is odd iff ¢ >3 ,
we can see o < f3 iff 4y < J. Let p= (A,B,W,Fo,Fl)eg, such that « ,3,2
Jd e A.

(i) o« <3 . Thus oy <J . We may assume & <2 . Since x<f,7,d",
by condition 1 for p°= ¢ A,B,W,F%), Fg(ec,ﬂ)n Fg(g,dm. But flec ,3)=

=2:8%ec, 3042, (g, 02+, )42, t%(ec, @) F(et, B), 12y ,07) €
€ Fg(x,d), thus £(at, B)1(q, ).

(ii) o > . Similarly, using pl instead of p°. Therefore f really
shows Chr (B x W)= @,- On the other hand, for each n e @ the complete graph
on n vertices cah be embedded into B> W, thus Chr (B=xW) z ¢ .

This completes the proof of the main result.
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