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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,1 (1988) 

ON CHROMATIC NUMBER OF PRODUCT OF GRAPHS 

-.* Lajos SOUKUP* 

Abstract: It is shown that if ZFC is consistent, then so is ZFC + 6CH + 
"There are two graphs, B and W, with cardinalities and chromatic numbers c^2 

such that the product of B and W has chromatic number to ". 
Key words: Chromatic number, product of graphs, consistency result. 

Classification: 03E05, 03E35 

1. Introduction. The aim of this paper is to prove a theorem about the 

chromatic number of product of infinite graphs. Our set theoretical termino­

logy is the standard one as can be found, e.g. in [5j. For example, we iden­

tify a cardinal number with the smallest ordinal having that cardinality, and 

use o ,co,, etc. instead of 45Q-j-5i. 

Let us recall that given graphs B=<U,E>, and W=<V,F> (for black and 

white, respec t i ve ly ) their product is defined as 

BxW=<rUxV,U<g o,h o>,<g 1,h 1>}:^g o,g 1UE,{h o,h 1UFj>. 

That is, the set of vertices of Bx W is the product of the set of the verti­

ces of B and W and the set of edges is the product of the set of the edges. 

S.T. Hedetniemi raised the following problem [4j : Given a natural num­

ber k, must the product of.two k-chromatic graphs be also k-chromatic, or may 

this number be less than k? 

The case k=3 is trivial, the product cannot be 2-chromatic. 

M. El-Zahar and N. Sauer solved the problem for k=4 in [23. In this ca­

se the chromatic number of the product must be 4. The problem for k2 5 is o-

pen. 

A. Hajnal asked what happens for infinite cardinals. He succeeded in 

proving the following results, see [33: 

£ ) The preparation of this paper was supported by the Hungarian National 
Foundation for Scientific Research, grant no 1805 



Theorem. (1) If Chr (B)=caQ, Chr (W)= k<o> 0, then Chr (BxW)=k. 

(2) If 9t is a strongly compact cardinal, a < ac, and 

Chr (B)= «t , Chr (W)= A , then Chr (BxW)= 9i. 

(3) There are two graphs, B and W on <tf,, such that Chr (B)= 

= Chr (W)=<yp but Chr (BxW)=<i>0. 

The problem how small the chromatic number of the product can be still rem­

ains open. Here we are going to give a partial answer by proving the follow­

ing result. 

Theorem. Con (ZF) implies Con (ZFC+GCH+ there are two graphs B and W on 

o>2 such that Chr (B)=Chr (W)=a>2, but Chr (BxW)=a>0). 

2. A simple case. In order to make a bit easier to follow our construc­

tion, we present a proof for a weakened version of the main result, namely, 

we drop the assumption CH. 

Theorem. Con (ZF) implies Con (ZFC + there are two graphs B and W on 

a>2, such that Chr (B)=Chr (W)=<U>2=2 , but Chr (BxW)=*>0). 

Proof. Define the notion of forcing Q=<Q,.4> as follows. Its underly­

ing set Q consists of quadruples <a,B,W,f> where 

*^o 2 
(i) a*I«o23 , B,Wfita) , and f is a function, f :a*a ~ > G > Q * 

(ii) B A W = 0 , 

( i i i ) for each «c, /3c a we have 

r 0 i f oc = A 
f (oC , £ )= < > 0 and even i f «c < ft 

'•odd i f<st>/3 

( iv) i f toC,/5i*BuW and r * a» <*< T t n e n f(cC,y)-*-f(£ >r) a n d 

f(r»oc)4f(r»/3), 
(v) for each {«c , / .UtB and -Cr,cf}cW, f(oc,a*)4-iX/3 ><r). 

The ordering on Q is as expected: i f p= <ap,Bp,Wp,fp)>cQ and 

g= <aq,Bq,Wq,fq>6Q then p * q i f f 

aq f tap 

Bq=Bpn Caq32 

Wq=WPAtaqJ2 

fqSfp . 

The elements of Q are the approximations of the edges of B and W, and the co­

louring of the product. It is easy to see that Q satisfies c.c.c. Now let ($, 
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be V-generic over Q and put 

:B = U{B p :pe< j ] 

t ^ U - ^ . p e t ^ 

F = U { f P : p C ^ 

53 and W are the sets of edges of graphs on co* and their product has chrom­
atic number at most c*> since F is a "good colouring" of 0B x Wr by o> col­

ours. On the other hand, for each n e o> the complete graph on n vertices can 

be embedded into fixKT, thus Chr (.B x Vf) * a>Q. 
Finally, Chr (tB)=Chr ( W = o x follows from the following fact. For each 

**? 
A c la>73 and -tp^ :cC€A}c Q in V there are two different elements oC, ($€ A 

and q-fp^ ,p^ with {oC ,fi}e Bq. 

Obviously, this construction can be carried out for every regular cardi­

nal in place of t*>2. 

3. The proof of the main result. We use a generalization of a method of 

J.E. Baumgartner 11]. First of all we sketch the idea. The elements of the 

poset (P we are going to force with are quadruples <A,B,W,F>, where A is a 

countable subset of o>o, B and W are edge-disjoint graphs on A approximating 

SI and W, and F is a set of functions, F= f F :x t co<Cl>|. The union of F^'s 

in the generic set will be a good colouring of tB x. Vf* 

The poset $> will be a>-complete, therefore we need to show i-»2~c*c* As 
usual, we have to "amalgamate" p and q € !P whenever they satisfy certain as­
sumptions. Assume r is a full isomorphism between p=<AP,BP,WP,FP> and 

q=<Aq,Bq,Wq,Fq>. If oc« A p\A q, ft e A q\A p, then we must define the "colour" 

of-(«c, (l\ in the amalgamated condition. Our idea is that Fq .(ar(oc),/J) con­

sist of the potential colours of {<c ,/3} . However, we need to define 

F.0v(ot,#), too. Its candidates are the members of F
q v(:rr(oc),/3). In ge­

neral, the elements of F ? k ^ x ( 3 r ( o c ) , / 3 ) ) are the candidates to be elements 
of Fx(oC,/.J). 

Now we start the detailed construction with some notions. Let 

% ={oC<<->2:Cf(°«0= coJ, -Un:n€<->} be a set of functions from 71 into o>2, 

such that for each oC 6 11, <f (oc ) :n * o > i s increasing and unbounded in oc . 

Let {S,6 ,H :n £ o>j be the following enumeration of co:S=0, 6n=2m-2, HR= 

=2n+l. 

If ot, j€ll, oC <<tf , let t(ec ,y>)=mir\ in: cc*fn(r) I • If n,keo, let 
Tn,k= *S'6m'H,e ^ n » * * k * ™* Vn,k=Tn,k<0 • 
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Definition 3.1. Let tf>o=<Po,.*> be the partial ordered set whose under­

lying set P consists of quadruples<A,B,W,F>, where 

(1) Acio>234C0b, B,W£tA32, F = { F x : x C o < t t { ; 
(2) BoW=0; 

(3) F- is a function from I A3 into [cul^J 
(4) I f x c o><6>, x%0 then Fx is a function from Ax A into t o ] * * . 

The ordering on P is as expected: if p=<Ap,Bp,Wp,Pp>€ P , 

q=<Aq,Bq,Wq,Pq>€Po, then p*q iff 

A q£A p 

Bq=BpntAq32 

W^ntA1*]2 

F qcF p for each x e ca<€t>. 

Definition 3.2. Let (P, be the subset of & consisting of quadruples 

p= <A,B,W,F> € (PQ satisfying conditions 1 - 5 below. 

Condition 1. If { * ,r3cB, {/*,effc W, -x</3,r,oT, n = t f o r , r ) , k=t(e* ,<T), 
xcVn,k tnen F0(*»0)oFx(r,<r)=0. 

Condition 2. If{«*, rlcB, fi € A, cc <fl, r , x,yc VQ Q, n=t(<sc,r), 

k=t(«,/3) and for arbitrary Z«V n k and i< n <Gi>
/>x+Z^ly and 

x - K G ^ Z ^ y , then F x ( o C , / J ) r i F y ( r ,/3 )=0. 

Condition 3. If{/$,<TlcW, r e A, fi<r,<f, x . y c V ^ , n=t(/S,r), 

k=t(ft,<f) and for arbitrary ZcV R k and i-< k <H.>^x*Z
/,,|y and 

x . t < H . > ^ Z ^ y , then Fx(r,/S)AFy(r,<T)=0. 

Condition 4. If</3,<f>cW, r « A, r</3,cf » x,ycVQ and for arbit­
rary i c w <Hi>

/^x^y and x ^ H . ^ y , then F x ( r ,/J ) n F y ( r ,<f)=0 -

Condition 5. If «c,/$cA, x,y€VQ>0, x*y then Fx(oc,/3 )nFy(<*,/3)=0. 

-tf «c>/3»r, x,y,n,k are such as in 2 above, we denote this fact by 

b(«c,/3,r,x,y,n,k) and if they are such as in 3, we abbreviate this by writ­

ing w(/$,r,<f,x,y,n,k). 

The notions strongly closed, closed, the lemma 1 and the method of Lemma 

7 are due to 3. Baumgartner £1J. 

If os^ £ <*«<i>2, let b^«c^| 0 *>v We say that A *fa>23**
>is strongly 

closed iff A n ^ t ^ and for each ©c € A A is closed under h ^ and hjj" and 

for each *c c A and p c *> f («C)cA. For arbitrary A cf.*^***, scl(A) is 

the smallest strongly closed set containing A. If p c IPJ , p is closed iff 

Ap*scl Ap A 14 . For ^ is ̂ -complete, the closed conditions form a dense 

subset of JR. . .. 4 _ 



Lemma i . I f a, b are strongly closed and a A a*=b A <«x , then anb is an 

i n i t i a l segment of both a and b. 

Proof. Let ^ =a A a ^ b nct^, v ea r th , ^ € a, 'ty < v. Then h^ (v ) c a n 
r\a>x=b r\a>v Thus v=h~1(h (v))fe b. 

Definit ion 3. Let p , q € P p p, q closed, p= <AP,BP,WP,FP>, 

q= <Aq,Bq,Wq,Fq>. We say that p and q are isomorphic and sf shows i t , in signs 

i f f the following conditions hold: 

(a) * r .sc l A0 -—-r scl Aq, nr is order preserving, 

(b) (scl A P ) A ^ ( s c l Aq)Ad>1 > 

(c) i c c , / 3 U B p i f f f * r ( o c ) , j r ( / 3 ) U B q , 

(d) { c t , /3 leW p i f f<5 r (oc ) , J r ( /3 ) i€W q
> 

(e) Fp(oC,/3)=Fq( jr(oc),Jr(/3))> 

( f ) t (oc , /3 )= t ( * r (oc) , * r ( /3 ) , 

(g) s f r ( f k (oc) )=^( j r (oc) ) . 

By Lemma 1, D=A°nAq is an initial segment of both Ap and Aq. 

At present we are ready to define the poset & = < P, *£ > , which adds the 

desired graphs to the ground model. 

Definition 4. (P consists of quintuples p= <A,B,W,F°,F >, where both 
p*=<A,B,W,F°> and pX= <A,W,B,F1> are elements of <Py If p,q€P, then let 

p*q iff both p°-6q° and p ^ q 1 . 

If P € P , let p= <A
p,Bp,Wp,Fop,Flp>. 

The notions of isomorphism, closedness are extended into elements of 

in a straightforward way. 

So far we have defined a notion of forcing 3* . To show that it works as 

expected, we need 3 technical lemmas, rather simple as stated but cumbersome 

to prove them. Using them we construct a generic model. 

The lemmas below use some new notions. To begin with, if oc , ̂ € A p u A q , 

D=ApAAq, then let us denote by E(oc ,/3)=Ep,q(oc,/3 ) the set -SS,(^ ,H^ : 

:DS^(oc), DSf^(/3)V E(oC,/3) may be-fS^. If oC c A pv Aq, then put 

^ = r Í T ( « ) if©G€Ap 

oC otherwise. 
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Definition 5. Assume pe^q. Let ttPn, t=<A,B,W.F>. We say that t is 

(P»9)~goodt iff the conditions (A) - (E) below are satisfied. 

(A) A=ApuAq. 

(B) B=BpuBq. 
(C) W=WpuWq. 
(D) For each x * V n F =F p uF q i / F ' where dom (F')=dom (F v ) \ 

U j U X X X X X X 

\ (dom FpO dom Fq) and for each <<*, p> c dom (F^) F̂ (oc ,0 )& UiF^^&ji): 

:t«Ep'q(*,/3)?. 
(E) For each x ,y*Vn n if<oC,/3>fcdom (Fx) and <y, cf> € dom (F') then 

Ex(<*,/3)nFy(y,cf) .#0 implies x=y and <o£,/3>=<r,«0 • 

Obviously, i f pS-f^q, then there are (p,q)-good elements of JPn. The 
f irst lemma we have promised, is the following one. 

Lemna 2. I f t is (p,q)-good, then t c ^ . 

Proof. The general form of a condition is the following 

<Vx,y«V0)Q)(V<aC,/3>6dom Fx and<y,«f>€ dom F ) i f . . . then 
F x ( * , / ! ) n F y ( y , < f ) = 0 ) . 

lute say that Fx(oC,/3) is new, if<oc,/3>€ dom Fx. I t is clear from the i -
somorphism of p and q and the condition (E) of the (p,q)-goodness that i f one 

of the conditions 1 - 5 fa i ls in t , then we can assume that either F (oC,/3) 

or F ( y , ^ ) is new, but not both. 
Let us verify conditions 1 - 5 one by one. Let D=ApnAq. 

Condition 1 . Let-foc,x*€ B, ^/3,<rl# W, «&</3,y,<T n = t ( * , y ) , 
k=t(o£,<f), x #V k . As we remarked, exactly one of F (-|-,<jr) and Frt(*ctfi) 
must be new. I f F0(«c,/3) is new, then « c , / 3 | D . Without loss of generality 

we may assume «c«Ap \D, /3 ft A q \D . Because <* «* y , d* , hence ar»«^$ n- But 

te,<r}€B*BpuBq and{/3,<riUW=WPi/Wq, thus y « A p \ D a n d cT« AqS D. Hence 

F ( / » # ) is also new, a contradiction. Thus F x (y,«f ) is new and, for examp­

le, r « A p \ D , <*"€AqND. sin c e - f /3,^f€ W=Wpu Wq, 0 € A q . As F0(<*,/3) is old, 

ot€Aq. As y«A p \D , f<>r , rJ#B, ** """^ b e i n AP- T h u s <*#0- T n u s 

E p » q ( T ^ ) f i T n > k . 
By the definition of (p,q)-goodness we have 

F . ; (T.* )«WF?W*'* ) , t , E P , q ( r ' ' ) , f i U f F«rx (r . '>» t«Tn fk-* 
s l*^,?) :yevn k . . 
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Since t(«rf»y)st(ec ,?) and t(oc,tT)=t(o& ,cT) hence applying condition 1 for 

q we get that every member on the right side is disjoint from F S U C - , ^ ) . For 

F0(*,£)=F§(oC,£) and Fx(r,cr)=:Fx(T,<r) hence F x ( r , o O n F 0 U , 0 ) = 0 . 

Condition 2. Let e£,y,/3,n,k,x,y be such as expected. As above, it can 

be seen that F (r,/3) must be new and ec must lie in D. Hence Ep,q(-y,/$) c 

i-Tn,k-
Now 

F'(7,(i)*lHFq
ty,y(r,p):ttE

p,q(a-,/S)l. We must check that each 

F2ty* ^?»5) appearing in the right side is disjoint from Fx(«c ,/3)
sFq(Jc,j5>* 

?Fq(«c,p!). We want to apply condition 2 for q. But b(t*,/3, ar,x,y,n,fc) holds 

and tfcE p , q( r,p)£T n J <. Hence b(c*,jj,y,x, t y,n,k) holds, too, therefore 

by condition 2, 

F q(«c,p)AF q
t r y(r,p)=0. thus 

Fx(ct,/%)AFy(T,/3)=0. 

Condition 3. Let (i,<y, d*,x,y,n,k be such as expected i.e. 

w(/i ,y,<f ,x,y,n,k). Now F («y,<f) must be new and /3 c D. Hence . 

Fy(r,iT)aUCF
q
try(f,3

:):tcEp,q(r,<r)>, 

Let s be an arbitrary member of Ep,q(y ,<f). Since /3 c D, we" have 
s t Tn,k' From w(P»T»or»x»y»n»h) we get w(p,7-,cr,x9<sy*y,n9k). Applying 
condition 3 for q, 

Fx (?'r^F<Vy (?>?)=0-
Therefore 

Fx(r»p)AFy(r,«T)=0. 

Condition 4. In this case it is impossible that exactly one of F (̂ ,/3 ) 

and F (<y,cT) is new. 

Condition 5. Obviously, F^ocfi) and F (<*,/3) are new at the same ti­
me. The lemma 2 is proved. 

Lena 3. Let p,qc J^, P-5-.̂ q, i> < ̂  <6>2> ^ * « , D=A
pr*Aq, 

V c A p \ 0 , ^ c A q \ D , *(*)=<««., DcfjG*), Dcf, (p)<*. Let t= <A,B,W,F> 

be a (p,q)~good element of # Q such that 

<oC > 0> € dom Fx implies 

if ^ 4 { v , ^ t h e n F x ( ^ , p ) c F
q
s > ^ x ( 2 , ? ) 
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if oc €«{>>,(*l then Fx(oc,£)c
 F^G >~ X(GC >/? ̂  

Then r ^ A . B u i v , <<*$, W,F>ed !>
1. 

Proof. Assume on the contrary that r 4- ̂ i • We know t 6 <P,, and the di­

fference between r and t is only one edge, £•"*>. (ml. Therefore we must check 

only cases when edge -£y,<u,? acts in conditions 1 - 5 . 

Condition 1. Let cC»/3»,y»or»)<»n,k as expected. In this case oC must 

be V , and -y must be fA, . Since f» (p,)< i> < f (^t), .•£«<: n . 

(i) F0(*6,/5) is new. Since F^(<^ ,/3 )c F^G s(c? ,^ )=F
q
>(y ,^ ), there­

fore it is enough to prove ^ 

If §*</3,d" then because ^ < n and xe V .we can apply condition 4 for q to 

obtain it. If %<^,d: , then because .-f<n, x eV . t(cc ,^ )=n£ t(J3 , ^ ) , 

we can use the condition 3 f o r q and obtain the desired r e s u l t . 

If 3f<yi% , then because Z < n ^ t ( d " , y ) we can apply Condition 3. 

(ii) Fx(f,<f) is new. Since Fx(^-,cT)c
 F < Q y>x ($*><?) hence it is en­

ough to prove 

because F^oC ,/3 )=F^(2,/-fr=Fg(^,$ ). But oC</3,cT, hence ? =oC</?,dT . 

For Gg4-.Hi> we can apply Condition 3 in q to obtain the desired result. 

Condition 2. Let-(oC,xi6B, p e A, x,y,n,k as expected. Then oC = V and 

TT = ("*. Since f . (^ ) -c •>><c fn (<-0, ,6 < n. 

(i) F xU,/3) is new. Since F̂ (a*,/S )c Fq
Q y ^ ( £ , /S)=F?G r x ( ¥ , p ) , we 

need ^ ^ 

For b ( * , /3 ^ x ^ r u k ) and Z < n, <G<e>
/Nx-%y, thus what we have hoped, is 

real ly true. 

( i i ) F y ( r , r 3 ) is new. Since F (̂ ? , / 3 ) c F q
G ^ y ( ? ,/3)=Fq . / # , £ ) , 

we need<Gje>
/Ny + x. For b(oC,/3 ,y»x,y,n,k) and £< n, i t is clear. 

In the remaining cases, the edge -fv l ( U . } cannot act, thus the lemma 3 is 
proved. 

Lemma 4. Let p,q *9X, P - ^ q , v < ,vt,<ci>2, i e t-> , D=Apn Aq, v s A p \ D, 

(U«Aq \D, <*(>>)= (U, . Dcf^ (•* ), Ocf^ ( . * ) < v . Let t= <A,B,W,F> be a 



(p,q)-good element of 3>Q such that <«£,£>€ dom Fx implies 

i f /3 + -fv,(U.} then Fx(oC , p ) c Fq
s>^x(ot, Ji) 

i f / 3 4 - { * , M then Fx(oc ,£ )c F
< H s ~ x ( 2 , £ ). 

Then r= <A,B,W U{v , f t V > e ^ . 

Proof. Assume on the contrary that r ̂  3* Keeping in mind that the 

difference between r and t is only one edge, «{ v , (U,*V , we must check only ca­

ses when the edge {y,(u,\ acts in conditions 1 - 5. In the condition 2 and 5 

the edge "l>>,^ cannot act. 

Condition 1. Let oc, £,r,of,x,n,k as expected. Now {ft ,cT| must be 

(i) F0(oc,/$) is new. Since F0(oC ,/3 )£ F Ĥ ^(2,(3 )=F
q
H >(5',^') we must 

prove Fq
H >(oC ,/? )n F

q ( r ,Jf )=0. For n=t(2 , r ) , k=t(r ,?), X€VR k we get 

b(oG,9S'r y <Hg> ,x,n,k). Thus we can apply condition 2 in q to obtain what we 

had to prove. 

(ii) Fx(r,<r) is new. Since F x( r ,<T)c F
q
<H><Nx(? ,3

s )=Fq (̂ ,̂  ), 

we must prove F^(2,p )n FqH y> x( r, $)=0. For oC<r,/i and t(oc ,r)=t(t>c , r ) = 

=n we can see b(ot, p ,%. ,0,<Ĥ >̂ x,n,t(oc ,/S)). Indeed, for arbitrary jeo and 
Z€Vo,o <Gj>*^<^>"x and 0*<G.>*%Z/\H€>^x. Thus F

q(2 , j?)A FqR ^ ( ^ ,£)= 

=0 by condition 2. 

Condition 3. Let (J , r ,cT,x,y,n,k as expected. Now /$= v and cf= <cc 

(i) Fx(r,/*) is new. Thus Fx(r,/3)cF
q
H >^x(r ̂ >=F<H£>^x

(r ̂  }-

Since f£ (^)<V< fk(^u), ̂ <k. Thus <Hg>^x.#y by w(/3 , r ,<T,x,y,n,k), the­

refore 

(ii) Fy(y,<f) is new. Since F ^ r ,<T)c F Ĥ ̂ ( r ^ ^ H y * / ? - f l ) 

and x*<Hfc>^y because l< k, 

F<V >y (*''* ) n Fx (T.i»HI-

Condition 4. Let p , r ,cf ,x,y, aS expected. Now ift ,<H = i* , ̂ i . 

(i) Fx(T,fJ) is new. Since F x( r, p ) c F^ ̂ ( f ,(?)=F̂ H > 

He>~x*y, F̂  (?,?)nFq(~)3i)=0 ' 
^ . < r ) 

aпd< „. .-..,, „ ,., ... . 
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( i i ) F x ( r ,<-) i s new. Since F ' ( r ,« f )c F5" y , ( £ , ? ) - F J y* ( r , j 
and: x * V ~ y , F ^ , j J ) . , - 9 ( r , ^ ) = 0 . <> ^ y 

r < H ^ y 

This completes the proof of Lemma 4. 

We are going to use the following notions. I f G is V-generic over (P , 
l e t 

•A = U{AP:p*Gi 

& = U{BP:pcG} 

KT=U{Wp:p€Gt, and i f x e <*><a\ i = 0 , l , 

F*-:U{Fx
P:pcGt. 

I f i =0 , l , le t f 1 be a choice function for F i , that i s , 

fitlAI2-*** 
f i U,p )eF 1 ( oc , / J ) . 

Let us define the function f as follows: 

Dom (f )= A x A 

f(oc,/$)= 

f 0 if oc = /S 

2-f°(oC,/*)+l ifoc</3 
2-f1(p,oc)+2 if oC>/3 

We claim that in V , % and W are a>7-chromatic graphs on A = 1i , and f is 

a good colouring of tBx'W l* . To see it we need some observation. 

Lenma 5. For arbitrary ocelt , D^-fp e CP-, occAp} is dense in (P^. 

Proof. Let p= <A,B,W,F>eO\. We*may assume oc $ Ap. Let r=<'AU-Coc| , 

B,W,G>e# 0 such that r£ p. If *Gx(oC,-»), Gx(v ,oc):x € w
< a >, v e A U{oc!} 

consists of pairwise disjoint subsets of <*> , then it is easy to see that 

reP 1. 

Lame 6. If CH holds, (P satisfies &.>2-c.c. 

Proof. Let -fp^ : oC< Ct>2$ c (P . Since the closed elements of (P form a 

dense subset, we may assume every p u is closed. Since 2*
> = ca, there ate only 

<u, isomorphic types of elements of (P . Thus there are (M, </3 *-<*>.> 2> p £ p.. 
Then, by Lemma 2 p^ and p- are compatible. 
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Lenma 7. If CH holds, then V^l» Chr (#)=Chr (ttT)=Q2. 

Proof. Assume on the contrary that p e (P and pf-»"h: H—* <», is a good 

colouring of :B". Let^p^ :cCe1l;f, g : U — * <o, be such that 

P< 
Poo s are ciosed, OG € A , D ^ p and 

P ^-"h(oO=gtot>. 

Since there are only a*, =2° isomorphic types of the elements of iP , there 

is a stationary subset S of U and there are J , TJ ,trc CO, such that: 

(i) (VcC,/3cS) p^ and^- are isomorphic and 3^ « shows it, 

(ii) (Votes) g(oc)=r , 

(iii) (VooeS) A ^ n ^ x ^ , 

(iv) ( Voc, eS) oc is the P th element of A * . 

Since S is stationary and for each oC€ S <f (oc ):n c <o) is unbounded in oC -
there is an n € co such that f is not essentially bounded on S, that is, for 

each /3^co2 {ot€ S:fn(oc) > fi\ is stationary in &~. 

Thus there are O C < T < < ^ 2 : ootn fn ( ° c ^ n S and fn ̂ T ^ n S are stationary. 

Let v,fu€S, v * ft such that fR(v )= y , fn(ft)=« . By (iv) .jf(V )= <«,. By 
the definition of isomorphism 

5T(r)=
:^(fn(v))=fn(3r(v))=fn(<y4,)= <x. 

p» D** Dv *V 
Since D=A A A is an initial segment of both A and A , D c oc and 

D c r . For fn(iA.hcC*c<r =fn(v)-< V , fn((u.)-c V. 
Thus we can apply Lemma 3 fo r p° , p°^,V , f<. and n, and Lemma 4 fo r 

Py » P<L»>,><U ' an<- n> Hence we obtain p=<A,B,W,F°,F > such that p€& and 

p.* 0^,0^ and iv,(*\e B. But 

pft~h(v )=h(fO= tr A - f^ j fc l feB A h is a good colouring of 3$ . 

Contradiction. Thus Chr (..B)=&>2- Similarly, Chr (ttf)=a>2, 

Proof of main result. Assume the CH and let us regard V . By Lemma 6 (P 

satisfies Jfi2-c.c. Since {P is € -closed, CH remains true and the cardinali­

ties of V and V*^ are the same. By Lemma 7 

V^j-r "Chr (rB)=Chr (ttr)=6>2". 

By Lemma 5, U = A . 
Let oc, £ , f m U , <cC,-y?€ S , f/3,cf} # 'Mr . Assume on the contrary 
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f ( o t , / 3 ) = f ( r »c/ ) . Since # 'n t< /=0, <* # /J or tf**/' . Since f " 1 101 = 

= <(y , v ) : V € ^ ! ,oc * / 3 and fr4><r . Since f(«C,/3) is odd i f f oC > fi , 

we can see oc < ft i f f <y< c f . Let p= <A,B,W,F°,F > € ^ such that dt ,/3 , y , 

d"c A. 

( i ) oC < (i . Thus ^ < <f. We may assume oc < tf . Since oc< ft ,3^,0^, 

by condition 1 for p°= ^ B ^ F 0 ^ Fgte ,£ )n Fg(y ,cf )=0. But f U ,/3 )= 

=2.f°(oC,(5)+2, f(y,<r)=2.f°(r ,cT)+2, f ° U , / 8 ) c F g ( ^ , / S ) , f ° ( r ,</")€ 

^ ( f r . * ) , t h" s f (rf , /5)+f(y,cT). 
(ii) cC > (I . Similarly, using p instead of p°. Therefore f really 

shows Chr { ( B H W ) - (J . On the .other hand, for each n c co the complete graph 

on n vertices can be embedded into CB>* W , thus Chr (C B x W ) «T co . 

This completes the proof of the main result. 
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