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ANNOUNCEMENTS OF NEW RESULTS 

(of authors having an address in Czechoslovakia) 

CONVERGENCE CRITERION FOR MULTIPARAMETER STOCHASTIC PROCESSES 

Petr Lachout (MFF UK, Sokolovska" 83, 18600 Praha 8, Czechoslovakia), received 
1.7. 1987) 

Bickel and Wichura [1] extended the tightness criterion from processes 

on 0(0,1) (see Billingsley 12J) to processes on D(0,1) , k > l . However, they 
impose an additional condition that the processes should vanish along the 

i> 

lower boundary of <0,1> . This means that their criterion does not apply to 
many empirical processes of interest. 

We shall provide an improved tightness criterion for processes in 

D(0,1) without the above additional condition. 

Definition: Let kcN, d=l,...,k, j=0,... ,k-d, $>:<Q,l>k —*<0,l> k be a 
permutation of coordinates and X=(X(t), t€(o,l> be a random process.Define 

(1) A X ( d , j , , ) ( 4 X 4 < a i ! | 1 ) g . _ a ) 

'&&m™ P P " " ' ^ l ^ d ' 0 °>.-»•;:•» 
* ** * X'ft. 

for every 0 * a.< b. .41 , i = l , . . . , d . *" 
We shall prove the following theorem. 

Theorem: Let X=(X(t), t c<0,L> ), k*N, be a random process right-conti­
nuous in every coordinate. Let .44, d i«* » d=l,...,k, j=0,...,k-d and 

9f:<0,l> —-*<0,1> being a permutation of coordinates, be a bounded measure 
with continuous marginals. 

If there exists oC,/3>0 such that 

(2) P(| AX(d,j, ?)(A)|> y, |AX(d,-j,9)(B)|>y)^y"*
l i c r

(u d > j^(AuB)
1 4* 

holds for every y>0,' d=l,...,k, j=0,...,k-d and every permutation ^ and for 
311 * 4 

A =*x«<a i 'b i>'B-*V-i 'V' 
AAB=0, clo AAC IO B.-I-0, then there exist an absolute constant Q>0 and a fun­
ction R: (0, l>-*<0,1>, | i m 0 R(&)=0, such that 
(3) P(supfmin | |X#^ ( t ,u ) -X . * ( s , u ) | , |X »y(s,u)-X *? (v ,u ) | } | 

| 0 A t < s < v 6 1 , v - t< e , u€<0,I> , gp is a permutation of coordinates} 

>y)*Qy"*R(e) for every t c ( 0 , l > . 
If k=l then the criterion (2) reduces to the criterion in Billingsley pj 

(see Theorem 15.6) while it is an improvement of the criterion of 113 if k> l . 
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