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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,4 (1987)

REMARKS ON PERIODIC SOLUTIONS, WITH PRESCRIBED
ENERGY, FOR SINGULAR HAMILTONIAN SYSTEMS

Carlo GRECO

Abstract. In this paper we are searching for periodic solutions,with
prescribed energy,of Hamiltonian systems X=H_, y= -H (X,ye R"), where
H(x,y) has the classical form: H(x,y)= 73Y|2+v(x) He suppose that V(x) —p

~—> -00as x —»5 (5S¢ RY), namely that the potential V is singular at x &S.
't'g words: Classical Hamiltonian systems, periodic sclutions, singula-
rities.

Classification: 34C25, 58F22

§ 1. Introduction. Let S be a closed not empty subset of R' (n22),
and let Ve C®(R"-S,R) be such that:

(1.1) V(x)—» - 00 as x —» S;

(1.2) there exists a neighbourhood N of S, and a function Ue Cl(Rn—S,R),
such that:
(1) U(x)—» - oo as x —>S
(i1) V()2 ()2 for every x ¢ N -5
(|| is the norm in K7). The equation:
(1.3) = v (x)
‘where X=dx/dt and V (x)= the gradient of V at x) describes the notion of a
dynamical system in a conservative force field (t is the time-variable, and
V is the potential of this tield). Because of (1.1), we say that the poten-
tial ¥ is "singular” at xeS; moreover, we observe that (1.2) is verified if,
for instance, V(x)= -1/|x|® with e Z 2, while it does not hold if

1 £ « <2. The main problems concerning (1.3), are to find periodic solutions
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of (1.3) with a prescribed period, or with a prescribed energy (if x(t) is a
solution of (1.3), its energy is, of course: h= %1&(t){2+v(x(t))).

The existence of periodic solutions of (1.3), with a prescribed period,
was first investigated by Gordon [6] under the hypothesis (1.2). More recen-
tly, the same problem has been studied in [13,12]3,03],08]. In (6], there are
also some results of the existence of (non-periodic) solutions of (1.3),

with prescribed energy which join two given points of R'-S (see also [71). In
this paper we are searching for periodic solutions, with a given energy, of
(1.3). To this end, we shall follow the method developed by Seifert in [12]
and, more recently, used in [5),[9] in the case of a nonsingular potential.
Then, we search for closed geodesics of the so-called "Jacobi metric" associ-
ated with the potential V.

Fix heR, and set:

N= £x6 R™-5|V(x)£ h}, B= {x e R™-5|V(x)=h};
let us consider M=Nv S and Y={w & C({0,1),M)] @ (0), w(1)€B}. In [9] it is
proved that HO(Y,B,Z)*O or :n'k(Y,B)*D for some k21; in other words, there
is an arcwise connected component o¢ of Y different from B (ec € HO(Y,B,Z) -
-§0}), or there is a not trivial class B (Be :n'k(Y,B)- 403) of continuous
maps £:0% — Y with £(s*"1)c B, where 0¥ is the disc in R¥, and $€"1= 20X,
Set Y* ={we Y| e "does not cross" S}; the first result of this paper con-
cerns the case in which one of the following conditions is satisfied:

(1.4) H, (Y*,8,2)%0;
1.5) “ar | (Y%,B)#0 for some k¢ N.

More precisely, the following theorem holds:

Theorem 1.1. Suppose that (1.1) and (1.2) hold, that M is compact, and
that V'(x)# 0 for every xe B. Then, if (1.4) or (1.5) is verified, there ex-
ists a periodic solution of (1.3), with energy h.

Remark 1.1. Let us observe that the hypotheses (1.4), (1.5) are veri-
fied, for example, if M is a ring-shaped domain rlﬁ |x| & £, or a torus, and
S is a finite set. On the other hand, (1.4) and (1.5) do not hold if, for in-
stance, M=Br(0) (the ball in R") and S= 4 0}. Theorem 1.2 below just deals
with such a situation.

Remark 1.2. Theorem 1.1 also holds for dynamical systems with kinetic

energy % aij(x)iiij, where £aij(x)} is a positive definite matrix.
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Remark 1.3. For every be B, let us denote by xb(t) the solution of
(1.3) such that xb(0)=b and )'(b((])=0;xb(t) is, of course, constrained within
the "potential well" N. If such a solution reaches B again at some t=To,
then the function x(t) such that x(t)=xb(t) if t e[O,TOI , and x(t)=
=xb(2T0—t) if te [TO,ZTDL is a 2T -periodic solution of (1.3), with energy
h; it is called "brake orbit". As in [12),[5) and 193, the solutions obtai-
ned in Theorem 1.1 are, more precisely, brake orbits.

Remark 1.4. For general dynamical systems with singularities, we can-
not expect the existence of brake orbits; if, for example, S= {0} and V is
spherically symmetric (that is V(x)=V(|x|)), M is a sphere, and the curve
xb(t) coincides with the radius from b to 0, so it cannot give rise to a bra-
ke orbit. A periodic solution of (1.3), with energy h, which lies completely
in the interior of N, is called "interior orbit". The existence of such or-

.

bits is examined in the next theorem.

Theorem 1.2. Suppose that Rn=R2, and S= {£0}. Suppose moreover that:

(1.6) lim V(x)|x|2: -
X0

(1.7) lim V(x) = o0
Ix\» o

(1.8) lim inf [V'(x)|>0
Ix1?

(1.9) lim sup |V (x)|< e@
Ix\»é

(1.10) lim |v"(x)|=0.
Ixl-o

Then, there exists hoe R such that, for every hZhO, there exists an interi-
or orbit (see Remark 1.4) of (1.3), with energy h.

§ 2. The geometrical framework. Fix he& R, suppose V' (x)=0 for évery
x € B, and consider the metric dsz=a(x) d‘ijdxidxj on N, where a(x)=h-V(x)
(notice that ds is degenerate on B). We now define a coordinate system in a
neighbourhood of B. Let z]',zz,...,zr"l be the local coordinates on B (we re-
call that B is an (n-1)-dimensional manifold); then, if be B, we can repre-
sent xb(t) (same notations as in Remark 1.3) by the n-1 coordinates of

b:zl,zz,...,zn'l and 2" = the arc length of x with respect to ds:
b|C0,t3

t
2= [ a0 2101t VE fatx, (et

So, if d'1>0 is sufficiently small, we get a neighbourhood of B in N, para-
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metrized by Bx10, & 1]. such tnat By m{z": '} are parallel surfaces orthogo-
nal to curves z =const.,..., 2" ~L.const. ,2'(s)=s (see [5),19] for more det-
ails).

If (el & d'l, we set Ny =N- {0<2"<d}end Mgy =Nsu 5 (clearly By =
=BMp).

The next step is to modify the metric ds; let us denote by d(x) the
(euclidean) distance in R" of x from the set S of singularities. For (@ > 0
(small), let o @ C* (R",10,11) be such that qp (x)=1 if d(x)& /2, % (x)=0
itdx)ze , and congider the function VP(x) (l—‘{P(x))V(x)«-'x (x)n}, where
P-min {V(x)|x &M, d(x) 2 {©/2}. Then, we can define the new metric ds2
=2y (x) d' dx,;dx, on M ® NuS, where ar(x)—h-\b(x). as shown by [12], § 6
(see alao tll]), if 0« d’ < d <d'1, there exists a modified metric d%, on
Mf such that Md' is geodesioally convex with respect to ds! , and S, =d§°

on M’. Set /\.d. ={ve Cc(l0,1), MJ)W is piecewise smooth, and 'r(o), 7(l)e
[ B '&, and introduce the energy functionals E 'E' A --» R with respect
to dgp and (ﬁ' , namely:

4 1 ?
Eolr): foag,(?(t))l'i(t)lzdt, o= [ 1500 2ot

(] |~ 1s the d§,-norm). Since d§;. is obtained by multiplying ds(, by a real
function 21, we have E“(y)ﬁ'gp('r). The main reason for considering the ge-
odesic convex metric dg’f,, is to define a curve shortening procedure on M 7

3
let us denote by T the distance on Md.3 with respect to d%,. Then, there ex-~

ists 9 > 0 such that: 19 1t Tx,y) e 7, there exists a unique shortest ge-
odesic arc which joins x to y; 2°) it 'J(x,Bd.)é n , thers exist a unique
3

point r(x)ae Bd‘ , and a unique shortest geodesic arc which Joins x to r(x).
3
Fix K> 0, and let XK. {rs /Ldal%(y)ﬂ('}; choose me N in such a way that,

if ye ]\.K, and |t'-t"| &1/m, then E(Y(t'),'r(t"))‘ m . For eny ye 7\K, we
denote by &g the curve obtained from 4 in the following way: 1° step. We
join the points r((1/m)), y(1/m), p(2/m),..., y((m-1)/m), (g ((m-1)/m))
by the shortest geodesic arcs. 2° step. We consider the centres Cl‘ ,C of
these arcs, and join r(C ), Cl'CZ’ 1Cos r(Cm), as before, by the shortest
geodesic arcs. Then, the map D: K - KK is continuous and f-decreasmg,
moreover E, (27 )-gr(av)’n if and only if 4 is a geodesic of d%' which
starts from and reaches B‘- orthogonally (see [51,[9)). As we shall see la-

ter, by the curve shortening procedure we can obtain the geodesic of ds%
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then, we can get a geodesic of ds by the limiting procedure by [12] (see also
[9) and [5), p. 88). We close this section with the sketch of it.
Suppose that, for every d';, there sxists a geodesic r¢ A G of n%,

such that the euclidean distance dist(Im(g),5) of Im(g) from the set S af
singularities, is 2 ¢ . Since % =ds, on Mp, the part of g which lies in
2

Md‘z‘ gives rise, after s reparsmetrization, te a3 solution x:[0,7J~» M . of
(1.3), with x(0), x(T)QM‘.z. As @), &y —»0, we get a sequence x (1),
t€ (0,7, of solutions of (1.3), such that V(x (8))=» h,V (x (1)) = h; by

[13), we know that O« c 4T €c,, where ) and c, do not depend on n. Let us
consider a subsequence, still denoted by (xn)n, such that Tn-urotlcl,c?l,
and x.(0) ~» b @B, Then, for the solution x (1), we have V(x (T ))=

sd}'m.\/(xn(Tn))xh, 80 x, reaches B at the time T , and it gives rise, accord-

ing to Remark 1.3, to 8 2T -periodic selutien of (1.3).

§ 3. Proof of Thoorem 1.1. We start with a lemma.

Lesma 3.1. Let V be such that (1.1), (1.2) hold, ang fix K, 8 > 0,
h&R. Then, there exists r»0 such that, if o 2 @<r, amd Pe{y ¢ €([0,1),
M%)Ir is piecewise smooth} verifies the conditions:

(3.1 In(¢)ndx|d(x) x e}u s and
* 2
co [ aa(e) | | “dt 4K

for every ¢ ", then we have dist(Is(2),S) x p for every g o M.

Proaf. Since (3.1) is still verified if § is decreased, we can assume
x|d(x) 6 & ¢ X', Set Asmax 41U(x)}ld(x)=g}, and choose r¢J0.ak.in such 3
way that V(x)&2h and |U(x)|> VZR+A for d(x)&T (see (1.1), Q.2)). tet @
and I be as in the statement of the lemma, let 9 ¢ ", and suppose, by con-
tradiction, that dist(Im(g),5)«e @ . Ihen, there exists an interval [t',t*)c
€[0,1) such that g ([t',t*Deixlp 4000 6 g}, dlp(t))=@ and d(pp(t))=
* & . Because of (3.2) and (1.2);, #e have:

‘.
K ;f.'ae( Pl 1%t t‘(.a’(y)lj-tzdh _C'(w('))ag.rzm 2

2
» . s
z- %L’V(?Hi"z‘"’-%mu (‘r>tzl;‘rlzdt!§[ Lvapy dft! -
= HuCp U NI,
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50 |UCy (1)) & Ul (1 D)-UCx (t")|+|ulg (t"))| 4 VZK+A; but this is impo-
ssible, since d(¢(t))=@< T.

Proof of Theorem 1.1. Set A’;. ={ye Ad‘ |4 does not cross S}; we have
two cases. 1° case: suppose that (l 4) holds. Slnce H (Y¥,8,2) =
atH (AJ Bd' ,2), there exists o« &H (jfd. Bd‘ - ‘0}
Let us consider @, 6 a6, and set K= f a(a )|c.) I dt,
e = % dist(S, Bd‘Z) Finally, we take r as in Lemma 3.1, and fix Sbe]ﬂ,rf.

Then the set " ={ye o | (o)4K}, verifies (3.1) and (3.2) (we recall that
(1)6 r), therefore dist(Im(y),5) z @ for every gy € I . Set
c=inf {Ex(9 )| ¥ € '}, and observe that c>0; otherwise there would exist a

sequence (7n},.c tataocl\d.3 such that the arc length of 4, with respect to ds

goes to zero. Then, for large n, *n clearly cannot belang to o5 SO we have
a contradlctxon Let us consider now a minimizing sequence (7n)n clM

(wl_l.m (rn) =c); since ﬂifr e " and Ec(ﬁav )“ES.(';'H (D is the

curve siortemng procedure on (M 3,dé'@)) we have: .;1.1,'29 Ep(mrn)z

=~1_£rg’ E“(7n)=c>0.

Therefore (see [10), Appendix), a subsequence of (Tn)n converges to a geode-
sic —yel\d. of d, , with dist(In(4),5) > @ . Notice that Im(y") is not

sD
completely contamed in M-Md- ; for if not, we would have Im('y e M—Md- for
large n, so we can project y on Bd" along the curves zl-const .y zn 1

=const., 2"(s)=s. But this is 1mpossxble since o, € o6 . Finally, by the
limiting procedure sketched in Section 2, we get the result
2° case: suppose that (1.5) holds. Let ﬂo‘"km'd'3’ﬂd3)' {£0% (notice that

“k(A'd's’BdB)” ﬂk(Y",B)), choose f & (3, set

K= max -(j:a(a)llblzdtlw eIm(fo)}, €= —21— diSt(S’Bd‘})’ and take r, @ as in
Lemma 3.1. Then, for every 7 & = {geIn(f)|f e Ro %(y)é K}, we have

dist(Im(g),5) 2 @ . Set $- it sﬁol-E;‘,(—y)‘K for every ¥ & Im(f)}, and
c;ini max {'E}('r)lo; e Im(£)}. As before it is not difficult to check that

c>0. Let us consider (f )n€ @ such that max T, (7)|a~‘ Im(f )} goes to
c as n ~» o . Then, since 3 of @ & , we have:
¢ & max {E!(ﬂq-))fe Im(f, )} émax {‘%(T)IT‘ Im(f )}, therefore there exists
(3'n) such that 7n‘1m(f ), and E’,({D-r )—=b cC.
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~
Since ‘E}(afn)éfe(?numaxﬁv(r) l7€ In(f, )}, we also have Eg(qr ) —>
— C; S0, a subsequence of (‘Tn)n converges to a geodesic ¢ o dE'P ,with
dist(Im(4),S)Zz @ , which start from and reach Bd' orthogonally. From (9],
3
we have that the curves zl=const.,.. .,zn'1=const., and d'3£ e d'i, are ge-
odesic of d’é’P . Therefore, the part of 4 contained in M-Md- coincides with
1

one of such curves, and Im(';) is not completely contained in M-Md-.

2

At this point, we can use the same argument as in the 1° case.

§ 4. Proof of Theorem 1.2. The aim of this section is to prove Theorem
1.2, so we assume, from now on, that R'=R? and S-= {0%. Let Py ={y e C((0,1],
3
MJ})I')- is piecewise smooth, and 9 (0)=9(1)}, and T‘d. ={ye Py '1" is ho-
3 3
motopically not trivial in Rz— {£033. .
Let us consider the manifold Mdi’ with the boundary Bds and metric d%;o
3

(for some gn > 0 fixed); since Md' is geodesically convex, we can still use
3

the curve shortening procedure on M s, as in Section 2, but in this section,
3

we apply it to the closed curves e Pd' . In fact, if K>0, for every o €
3

e
(as in Section 2) by &4 , homotopic to 9 with an aE'v-decreasing homotopy .

Moreover, ifﬂ&&n‘; ‘gv(vn)il_i’mute(m'rn)>0, then a subsequence of (Tn)n

& Py with 3 (% )£K, there exists a closed.curve, which we still denote
3

converges to a closed geodesic of d¥, (see [10]), Appendix).
The idea of the proof of Theorem 1.2 is to start from a curve g & l"ﬂ,.3 »

and to consider the sequence: o oM 7n+1=s7n' If we choose a very
small @ , we get a closed geodesic g of c!§'P such that dist(Im(g),00z @«
On the other hand, ¥ is not contained in M “3~M°5 » provided M is sufficiently

large (that is, provided the energy level h is sufficiently high, see (1.7)).
Since d’é', =ds on {x| |"|PP. xeMdi} , ¥ is a closed geodesic of ds.

Then it gives rise, by a reparametrization of the time, to a solution of
(1.3) with energy h. To carry out this programme, we need some lemmas. Set
ﬂ7ﬂo=max £l t)]|t€[0,133; the lemma 4.1 is due to [6].

1
Lemma 4.1. We have j; I-,'rlzdtz-llfl:ror every ¥ 6 PJ}.
1.2 2 .
Proof. Let pe Pd'3’ and suppose }; I# 1%t < Bpll;; then, since
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lg - t")] & f:livlzdté(j: 14 12d)1/2, there exists a disc De R%-

- €0} such that Im(4q)c D. Therefore ¢ is homotopically trivial, and we
have a contradiction.

Lemma 4.2. Suppose that (1.6) holds, and let 5 € M., heR, and K» 0,
Then, there exists r1>0 such that, if 0<9< £y, and if H? [0,50]-—’ f"
3

is a continuous function which verifies the conditions:

(a.1) H(0)=q

(8.2) f‘ a ()| § |%dtéK for every 7 & Im(H)
o ¢ ?

we have I'rloz r, for every & Im(H).

Proof. Fix c>» 2K, and choose a 0< r1<|1l°so small in such a way that
V() é-c/|x|2& 2 tor 0<|x|4r) ; let @ and H as in the statement of the
lemma, and set, for simplicity, o, @ H(s) (s &[0,5)). We argue by contra-
diction and suppose that lguloa-l for some € ¢ Cu,sol. Since <1, <
< |,l|0=|,r°|o, and since s —» "fs'o is continuous, there exists )
sel0,5.] such that @ < Nl <r;. We claim that V‘o(75(t>)‘ /byl
for every t€[0,1); in fact, if we fix t&€ (0,1} and choose x,y€ R® such
that x= 9 (%), and |y|=l75l°, we have two cases. 1° case: |x| 4@/2. Then

Vs,(x)ﬂll,,‘ V(y)& -c/|y|%. 2° case: |x|>@/2. Then \g.(x)=(l—1,(lxl))\l(x)*

+ 3CIx1my £ (1- oCIx1IVO0+ ggVOOV0& -c/|x1%¢ -c/ly1?, so the claim
is proved. Finally we observe that, since mq&2h and V( (1)) £2h, we have
V,(fs(t))i 2h (te[0,1]). Then the inequalities (see(4.2) and Lemma 4.1):

Ka fla(pol sl ot fF e lirgl ot 2
1 . 12 c 1.2 c

z- Vol yglTat 2 4,10tz 3,
7 Jo Yp(as)l 75 P L 7

give c#£2K, so we have a contradict..n.
Lomma 4.3. Suppose that (1.6) holds, let 3 & P,;, he R, and set
4 .
k= [ a(q)14 |%0t. Then, there exists £,>0 such that, if 0<p< r), there

exists a closed geodesic g€ 'y of d‘é" , such that ?;‘(T)‘K and
dist(In(y),0) 2@+ 3

Proof. Let r;>0 be as in Lewsa 4.2, set g=r;, and choose r>0 a8 in
Lemma 3.1. Then, we fix r,&J0,rl with ry <dist(Is(y ),0), pe )ﬂ.tzﬁ, and
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consider the sequence: 9= 7, 7n+1=37n’ where & is the curve shortening
procedure on M J}, with respect to d’i,, We have that:

(4.3) Th€ Pd'3 and dist(Im(yn),O)z @ for every néN.
In fact, if ng¢ N is fixed, there exists a homotopy Heg C([0,1], Pd')such that
3

H(0)=7 , H(1)=7,, and 'E;(r)éK for every 9 € Im(H). We claim that

(4.4) dis’c(Im(T),D) @ for every g€ Im(H);

clearly (4.4) implies (4.3). In order to prove (4.4), we set, for simplicity,
7 H(s) (s &[0,1)), and suppose, by contradiction, dist(Im( ’t),0)< @ for
some €€ [0,1}. Since dist(Im(®),0)>r,>@ , there exists soelo,-gl such that
s € Fd'3(that is it is homotopically not trivial in R {0}) for every 5. g

€(0,5 1, and dist(In(q_ ),00< @ . Then the continuous function H:[0,s}—»
)

-*l"‘} verifies (4.1) and (4.2) (we recall that EP(g-)‘fe(f)), so we have

“'lsloz r, for every 56[0,50]. On the other hand, since @< r,<r, and since

the set I"'=H([O,so]) verifies (3.1) (we recall that ¢=r1) and (3.2), becau-
se of Lemma 3.1 we have dist(Im( ’ls)"“’ z @ for every se [0,50] . In particul-
ar, dist(Im('r"s ),0) 2 © » S0 we have a contradiction. At this point, by

o]

standard argument (see [10]), we know that a subsequence of ( Tn)n converges
to a closed geodesic ¢ of dg's., with e l"d. and dist(Im(r),U)zQ because
3

of (4.3). Therefore, the lemma is proved.

Proof of Theorem 1.2. Because of (1.8), (1.9) and (1.10), there exist
R,H;,H, >0 such that, for every xtRz, x| 2R:

.5 H & Vo022V 00l and IV 001 %21V (0| 41y

For any be Rz- {0} we denote, as in Section 2, by xb(t) the solution of the

Cauchy problem:
X = -V '(x),
{ x(0) = b,

x(0) = 0;

notice that, because of the standard existence theorem (see (4], Th. 1.2),
and the assumption (1.9), there exists t,>0 such that, for every |b| >R,
xp(t) exists on [O,toj. Observe that, from (1.6) and (1.9), we have:
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(4.6) V(x) &c|x| for every x= 0,

where c >0 is a suitable (large) constant. Then, we set:
. 3
ty=min {t , Jf/HZ}, A=H it /3 Viz,

and choose a piecewise smooth closed curve m such that n is homotopically
not trivial in R2- {0%. Clearly, because of (1.7), there exists h,€ R such
that, for every h2h_ we have Im(y Yedx|V(x)£ h-1}, and:

4.7 V(x)2 h-1 implies |x|ZR;
1 1
(4.8) °<hfo % 1 2at- fo V(|4 %dt4 J\—Z(h—l)z.
Cc

Fix h2h, set a(x)=h-V(x) (x#0), M= §03U{x|V(x)£ ht,
and B= dM. Then M is compact and V'(x)#0 for every x&B (see (4.7), (4.5)).
Moreover we have: (d2/dt?)(a(x, (+)))=(d/dt)(a (x (1))% (1))=
=" (%, (£))%, ()+a" (x (1)) L% (1), % (1)), namely:

2
d . 2 in . .
(4.9) d? alx, (£))=V O () |-V (x, (1)) [xb(t),xb<t)l.

We claim that
(4.10) a(x,(t)) &1 for every beB and t¢[0,t,1:
otherwise, there would exist béB and T & to,tll such that a(xb(t))él on
[0,%3 , and a(x,(2))=1.
Then, since-% Iib(t)lzw(xb(t)):h, from (4.9) and (4.5) we have:

(/012 (alx, (1)) & [V (xy (831 262 V" G (4D (=¥, (£)) & 1V (£ [ %+
+2|V"(xb(*t))|£H2 for every t¢[0,v] . Then a(xb(t))é% H2t2 on [0,%], so

2,1 2

1=a(xb('¢))‘% H, ¥°< 5 H,yt]; but this is not possible because of our choice

of tl. At this point, we go back to the construction of the neighbourhood

{z"s d’li of B, as sketched in Section 2, and observe that we can take o3=
= the minimum of arc length of xb(lo,tll) with respect to ds , that is:

d)=min {VZ j;‘ alx,(£))dt|b e B}

If beB, from (4.9), (4.10) and (4.5), we have:
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(/02 alx, (1) 2 [V (g (D)1 221V (o (1) [ (h-Vx, (1)) 2 [V (x (42|
—2|V"(xb(t)) |2 H,. Therefore:

(4.11) a(xh(t)) is increasing and a(xb(t))z%— Hl'c2 for every te [0,t)].

1,
In particular, since d'1= vZ ,{;1 a(xb(t))dt for some b6 B, we have
&' 2VZ H t2/6. Set da= & /3; we claim that a(x) z A on B . In fact, if
1 171 379 d3

X€ Bd%
=V7 _{;ta(xb(t))dt. From (4.11), we have d'3 2VZ Hy 1:'3/6; on the other hand,
by the mean value theorem, d7= vZ a(xb(g Ne&vVZ a(xb(‘t' Ne=vZ alx)z;

therefore d'gl.( V7 a(x))%6 J'}/ﬁ H), so a(x)’z H, d‘3/12=H16§/9n12 z

, there exist beB and & IU,tll, such that x=xb(’t.'), and d;=

3.3 ,23 X 1 12
z Ht]/37+12, and the claim follows. Let us now set K= fo a(q)| 4| dt, and

consider Ty, @ and the closed geodesic 7 € Pd'3 of dé'e as in Lemma 4.3.
We know that dist(Im(4),0) = @ . On the other hand, we have (see Lemma 4.1):

1 ]
2 Y 1 <12 1~
Mylg « jol—,,-| dt & 3 j;a(g-)lr[ dté § E (9)&K/A,

so, because of (4.6) and (4.8), V(g ())& c|g (t)| & c vK/A € h-1. Therefore

In(g)c{xe My | Ix| z ga} , and 9~ is a closed geodesic of the Jacobian me-
1

tric ds.
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