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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
28,3 (1987) 

REMARKS ON INFLATED MAPPINGS 

V l a d i m í r JANOVSKÝ, Dáša JANOVSKÁ 

Abstract: Organizing centre of an imperfect bifurcation problem 
F(u,A, <xJ=0 is related to a simple root of an auxiliary operator (= the in­
flated mapping). The construction of an inflated mapping depends on a classi­
fication of the organizing cen t re . 

Key words: Imperfect bifurcation problems, organizing centre, numerical 
approximation. 

Classification: 47H15, 65J15, 58C27, 14B05 

*• Introduction. Let U and Y be Banach spaces. We consider an operator 

F:Ux.lR,xlRk—>Y. The variable x of F=F(x) is a triple x=(u,,A,oo), where 

(in a bifurcation context) u and A and oc respectively are the state variab­

le and the control parameter and the parameter of an imper fec t ion . 
A point x 0 =(u 0 , ,A 0 , cx : 0 )eUx .R 1 x IK-̂  is called the singular point of F if 

(1.1) F(xQ)=0 

(1.2) dim Ker Fu(xQ)=m>l, 

where Fy denotes the partial Frechet derivative of F (at x ) w . r . t . the vari­
able u, and «er Fu(xQ) is the kernel of F (x ):U—>-Y. 

Moreover, we assume 

F (x0):U — > y to be Fredholm with index zero 
and 

F G C ° ° ( X , Y ) , where X is a neighbourhood of xQ. 

Let us consider an operator 

L:U —>ffvm linear, bounded 

satisfying the following implication: 

f if v& Ker Fu(xQ) and Lv=0 
(1,3) t then v=0. 

Choose a basis-fa,,...,a \ of ft . Then the condition (1.2) can be reformu-
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lated as follows: 
for each i = l , . . . , m there exists v\ 'e U: 

Fu(xo)vP
}=0, ly[lUx. 

Note that if dim U2m then the property (1.3) is a generic property on 

the class of all linear bounded operators L:U — * " E m . 

The conditions (1.1), (1.4) do not define xQ uniquely. In general, a 

point x satisfying (1.1), (1.4) is not isolated. To make it isolated, we ha­

ve to require more then (1.1), (1.4): If x is an organizing centre of F (i.e. 

"the most singular" point which is locally available) then there is a chance 

for x to be locally unique. 

In this paper, we are trying to suggest a way how to formulate necessa­

ry and sufficient conditions on x to be an "organizing centre". The import­

ant point is that these conditions are stated in terms of F (and its parti-

als). We hint at numerical applications of this procedure in Section 5. 

We quote the papers t33,t43,[53, dealing with the same idea. Our appro­

ach is stimulated by the preprint t13. 

2. Classification of singular points. Following [21, we review basic i-

deas of Liapunov-Schmidt reduction and classification of germs of smooth map­

pings in the context of an imperfect bifurcation. 

Define a projection 

TT:U~*Ker Fu(x0) 

fulfilling the following implication: if ueU then TTu=v eKer Fu(xQ) and Lv= 

=Lu. Let TTC be the complement of TT , i.e., 

Tfc=I-TT (I is the identity U ~ > U ) . 

We set W=TTC(U), i.e., 

W=-tveU:Lv=0}. 

Obviously, W is closed and 

U=Ker F u(x 0)©W. 

Remind that F (x ) is assumed to be Fredholm with index zero. Let 

3UF (x )) denote the range of F (x ) . There exists a projection 

Q:Y-->3i(Fu(x0)). 

Let Qc be its complement, i.e., 

QC=I-Q (I is the identity Y — * - Y ) . 

Then 
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Y={R(Fu(x0))€>Q
C(Y) 

where both components are closed and 

dim Qc(Y)=dim Ker Fu(xQ). 

Thus, for each reY, there exists the unique z eU such that 

Fu(x0)z=Qr, Lz=0. 

We set Fu(xQ)r=z. Then 

(2.D Fu(xQ):Y->W 

is linear, bounded. 

The condition (1.1) can be reduced to a so called bifurcation equation, 

see the coming (2.3): If (v,i\ ,oc)eKer F u(x Q)x ^ x l ^ then we define weU: 

QF(w+v, A,cc)=0 Г QF(w+v, Ä,cc)=0 
(2.2) Ч 

L Lw=0 (i.e., WЄW). 

By means of the Implicit Function Theorem, 

w=w(v,a,o6), weC^I/.W) 

where V c Ker F
u
(x

Q
)x IF^x !K

k
 is a sufficiently small neighbourhood of the 

point (v , 7\ , oo), v =TFu . To be precise, there exists a neighbourhood W 
of TI

c
u

0
 (in W) such that (2.2) is satisfied for w e W and (v,J\,oc)e T if 

and only if w=w(v,ft,oC). Thus, we define 

UM(u,A,06):(TTu,j\,oC)e V , TTc
u c V i . 

It can be easily concluded that 

F(u,^,oc)=0, (u,4,oC) € It 

if and only if 

(2.3) g(v,^,oc)=o, (v,^,oc)e V 
where 

(2.4) g(v,.^,oC)*QcF(v+w(v,^,cO),^,o6). 

Both Ker Fu(xQ) and Q
C(Y) can be identified with E m . Then g could be un­

derstood as a germ of C°°-marjping 

centred at (vQ, ^ 0,oC Q). 

Let us proceed with ideas of classification. Assume the space of all 

germs h of C°°-mappings 
h: R * R - — * ft 

m l m 
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centred at (v 0,A 0). An equivalence (so called contact equivalence) is defi­
ned on this space; the equivalence preserves important topological properti­
es of bifurcation diagrams. The equivalence classes are called orbits. If a 
germ h=h(v,»A) has a finite codimension then the relevant orbit is a semi-
algebraic variety of a finite codimension in the linear space of Taylor coef­
ficients (i.e. the space of all partials of h at (vQ, A Q ) . 

3ust two examples: 

Example 1. Assume m=l, and define 

G=(h,hv,ha,hvv,hv/: R x x K ^ — I*,. 

If G=0 at (v , fl ) and some "nondegeneracy conditions" hold (namely, h + 0 , 
h.^4^0) then (v,,, ft_) is called the winged cusp singularity, see [23, p. 198. 

Example 2. Assume m=2, and define G=(h,hy)
T: IR2 x S^ ~~»JR6. If G=0 at 

(vQ, bQ) and some nondegeneracy conditions hold (e.g. h^^O) then (v Q,^ 0) 
is called the hilltop bifurcation point, see [21, p. 403. 

Each particular singularity (v , ̂ Q ) has to satisfy a set of £ algebra­
ic conditions 

G=0 at (vQ, A 0 ) 

where G: lRm* lRi •—** 1R#; JL is finite if h has a finite codimension. 
The germ g=g(v,% ,<?o) can be viewed as a perturbation of h. Naturally, 

we replace h by g in the particular definition of G. Then 

(2.5) G : R m x R l x l R k " ^ > , R . i 

and the condition on a singular point reads as 

(2.6) G=0 at (vQ, 9v0,oc0). 

The condition (2.6) defines (v0,A0,o(,0) locally uniquely if and only if 

m+l+k= I 

Jacobian of G at (v0,^0,oc0) does not vanish. 

At this place, we can formulate the following conjecture: The conditi­
on (A) is equivalent to the assumption that g=g(v,#,oc) is a universal un­
folding of the germ g(»,» , o O : & m x . E^—*• R m . In such a case, 
k=codim g(-, • ,o<i0). Note that if the codimension k-̂ -3 then there is a fini­
te choice of mappings G. Let us quote 2 , Theorem 2.1, p. 400, where the re­
levant G's are listed. 

The aim of this paper is to indicate how to formulate (2.6) in terms of 
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F (and its partial derivatives w . r . t . u and ̂ ) at the singular point x . 
o 

3 . Construction of inflated mappings. In order to illustrate the idea, 

we assume the following examples: 

Case 1: G=(g,gv,g^)
T; 

Case 2: 6=(g,g v,g v v)
T

; 

Case 3: G=(g,gv,g^,gvv,gvA)
T; 

there is no restriction on dimension m. Conditions 6=0 classify singulariti­

es (v ,A , oc ) in the sense of the previous s e c t i o n . 
For each of the above cases, we derive the equivalent conditions on 

(u ,^ ,oto). It will appear that (
u

0 » ^ 0 » ° O is related to a root of an o-

perator 3* , where $ is constructed by means of F and its partials w.r.t. u 

and A . Let us say that 9 is the inflated mapping corresponding to F. 

Notation: If it is not stated otherwise then the values of F and its de­

rivatives are understood at the singular point x =(u , A 0 , o O . Similarly, 

the operators w and g (and their derivatives) are evaluated at the "project­

ed" x Q, i.e. at (v0,3.0,oo0). 

First, let us remind our assumption on x , see (1.1) and (1.4). It reads 

as follows: 

(3.1) F=0 

(3.2) B v ^ ^ e U , irl,...,m:FuvJ
1)--0, Lv[1)=ai 

where fa,,...,a \ span IR . 

By definition of g, see (2.4), it is clear that (3.1),(3.2) imply 

(3.3) g=0, gy=0. 

We shall discuss consequences of the assumptions g« =0 and g =0 and 

9vA =0-
Let us differentiate both (2.2) and (2.4) w.r.t. <k . It yields 

fl-V* + F » 3 =0' L wA =0 

and 

H-QCV^X^-
Obviously, g* =0 if and only if 

(3.4) 3v<iJ,U:Fuv^=0, Lvjfro. 
Namely, 

< 3 - 5 > ŮW 
495 



It follows from (2.4) that 

Bw=QC£Fuu-(I+-v>2+Fu-vvJ-

Let us calculate both wy and w w from (2.2). Differentiating w.r.t. v, 

QlFu.(l4«v)3 =0, Lwv=0. 

Since F ^ ^ Q (i=l,...,m), 

(3.6) wvVi
1)=0> i=l,...,m. 

Differentiating (2.2) again, 

Q^uu*(I+wv)2+Fuwvv:) =0> Lwvv=0-

It is simple to conclude that g w = 0 if and only if gvyv^
 )vl1)=0 for 

1.6j .£i-=*m, which is equivalent to 

, -." (2) 

(3.7) 
r 3\f\ÍJeU ( lÁjá i^m ) : 

1 F v(25 +F v ( 1 ) v ( l ) -0 Lv(2)-0 L V i j +řuuvi v j ~U» L v i j -°' 
Namely, 

(3.8) vg^v^vj". 
Similar calculations yield the following assertion: g. =0, Qv-,=0 are e-

quivalent to (3.4) and 

3v<$ ( jeU(j=l,...,m). 

°-9) < vSL^v^vSM"-0. 

with the interpretation 

(3-10) "Sl.j"**? <>- •>• 
Me resume the above calculations in 

Proposition 1. Assume Cases 1 - 3 of the definition G. Then the conditi­

on 6=0 at (vQ, A Q, oCQ) is equivalent to the following conditions at 

Case 1: (3.1),(3.2), (3.4); 
Case 2; (3.1), (3.2), (3.7); 
Case 3: (3.1), (3.2), (3.4), (3.7), (3.9). 
The listed conditions define a root of an operator f . In Case 1 , 

• # *U* R X X R k x t U l
m + 1 — • tY]"* 2 
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is defined as follows: if (u, a ,oc,v[l\ .. • iV m
1 ) ,v^)eU X R . K ff^xtUj1"4*1 

=0 then 

F(us,A,oc) 

and Lv>1^=ai for i=l,...,m and Lv^^O then 

(D „Ü)ч (3.11) .r(u,>>0e,vjl; v ^ ! > 

Р
а
(и,Л,-ь)у$

1) 

F ^ u . A , * ) ^ 

\F
||
(u

l
^

l
o6)v

l
2}+F

A
(u-,A

f
o&) 

Thus ? is defined on an affine subspace of UxlR-x R^xCU] . A simple 

shift of variables v\ ' makes it possible to define & on the linear space 

U x l R 1 x E k . K l U 0 l " H " 1 , where 

(3.12) U
o
=*ueU:Lu=0i 

A root (u, * , < * , V ; 1 \ . . . , V £ T O has a clear interpretation: (u,i\,oc)=x„ 
(i.e., it yields the singular point), the vectors is/) ,•••,vi \ span 
Ker Fu(x0) and v ^ . 

The definition of & in Cases 2 and 3 is simi lar . 

Remark. We have chosen comparatively simple examples of G. If, say, the 
condition G=0 includes the requirement that Hessian g degenerates in one 

direction then a definition of 5* is not so straightforward. Nevertheless, we 
believe that any condition G=0 on an orbit of the germ g(-,»,oc ) centred at 

(v , ̂  ) is equivalent to a condition .^=0 at (u0,A0,oC0, plus auxiliary va­

riables) where 3* is the "inflated mapping" corresponding to F. 

4. Gradient of the inflated mapping. Since the conditions G=0 at 
(v , A , oc ) and ̂ =0 at (u , J\0, oc0,.\.) are equivalent, one is ready to be­
lieve that the gradient DG at ( y

0*^ 0»°O is invertible if and only if the 
gradient 03* at (uQ, A0,oCQ,...) is invertible. The invertibility of DG is 
formulated in the assumption (A), Section 2. We wish to discuss the statem­
ent: (A) holds if and only if D3f is invertible at (uQ, ao,oC0,...). 

We illustrate this statement on an example. Let us assume Case 1 of Sec­
tion 3. The relevant *5 is defined by (3.11). Frechet derivative D f at 
(u0,^0,<x0,Vp...,vmJp with respect to a direction 

(cTu, d-%, </* t(/y[)}..t ^ v ^ e U x f R - x H^Ciy 1** 1 can be simply calculat­

ed: 
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(4.1) Of ( c r u , ^ I r f k , < A / ^ . . , < / v ^ J ) a ( r , r ^ . . , r ^ ) ) T 

where 
(4.2) r=Fucfu+FacfJ\ ^Jce 

(4.3) r[l)-«m<f"*u>M *UlC***ll'>*u*l1) 

for i=l,...,m, and 

r -2i-«:uuo^Fuarfarfu.*«>viii+ 

(4.4) J 
I ^ u a ' H f t < ™ ̂ cc ** +Fu * £ & 

remind the convention that F (and its partials) are evaluated at x_=(u_, A_, 
(*\ (-[} o o u 

< * 0 ) . We skip the argument (uQ, ̂ Q, < V
V 1 >' • -^m+P of ̂  and D^ » t o ° -

Our aim is to prove that the linear mapping 
Dtf-.U**-* R k x t U 0 l "

H ' 1 — > W m + 2 

is regular (i.e. it is invertible, with a bounded i n v e r s e ) . 

Proposition 2. Assume Case 1 of Definition G. Let (uQ,A0,o6Q,v^ 

••*>vm+P ^ a r o ° * of *ne relevan"t ̂  » see (-*•-•--)• Then tne assumption (A) 
is equivalent to the statement that D^1 , being evaluated at 

<uo> V ^ l ' - - - ^ ^ is r e 9 u l a r * 
Proof. By making use of formulas (4.1)-(4.4), we try to calculate the 

inverse of D # . We use the notation 

«fv="TT<fu, dw=n CoTu; 

i.e. cfu= <fv+ </w. 

Projecting both sides of (4.2) by the operator Q onto the range of F , 
and making use of F* (see (2.1)), we calculate cTw as an affine operator of 
<$% and doo . Namely, 

(4.5 ) <fw=w. JA *w, cfoc +R, R=F> 
»A OC U 

where 

( * • « « ^ " ^ > V=-FUFCC-

Projecting both sides of (4.2) by the projector Qc, one can check that 

(4.7) gv<fv+gAcTa+go0<fo=Qcr. 

Similarly, (4.3) and (4.5) imply 
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(4.8) 

where 

(4 .9) 
"vv~ ruruu» wvA *wvvwa "FuFuA ' «.».- -ғ.ŕ.. 

WVo-. = W VV W c</ t / u c C ' 

Projecting (4.3) by Qc, i t yie lds 

(4.10) ( g v v cfv+g^cTA +gVo< <& )v^1 )=Qc[r ( 1 )--Fu uRv ( 1 )J . 

Fina l ly, as a consequence of (4.4), we obtain 

crvií^w.^ďv+w.^ďA+w^ďoC + 
(4.11 ) 

where 

(4.12) 

Moreover, (4.4) implies 

(4.13) 

vm+Г*vЛŁ 
"П* * 3 . c C ь 

+ й ( l )

+ w R R ( 1 ) - F + г ( 1 ) 
+Rłтн-l+wvÄ к» V r V m + 1 

W V = w v* WA ^ v * Woc -wvvwoc WA " F u F a* 

'n =2 wva WA "wwwA wa " FuF>*' 

O v a ^ j t t ** ̂  <** = Q C r r l Í Í-( F uu w ^ + V R ; > • 
Let us resume the above c a l c u l a t i o n s . According to (4.5), (4.8) and 

(4.11), the vectors </w, dv> (i=l,...,m), cfv^+l a r e a f f i n e operators of 

( oTv, dj\, cToc). Continuity of these operators follows from the boundedness of 
Fu+-

Denote DG(cTv,cT^,^oc) the Frechet derivative of G at (v , A ,oc ) with 

respect to the direction (<fv, cf^,dbc). Then the conditions (4.7), (4.10) 

and (4.13) read as follows: 

'Qcr 

• t t - S " - ^ * 
(4.14) DG(ďv,ďA,ďöC)= 

\ QCfr^l-(Fuuw^ + W « 
where R=F*r. Thus, DT. is regular if and only if (c/v, cTA, cToc) depends conti-
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nuously on (r,r^ ,...,rm ') via (4.14). 

We claim that the latter is equivalent to the assumption (A). For, note 

that G=0 counts /6=m(m+2) algebraic conditions. Identifying both Ker F and 

QCY with JKm, the assumption (A) states that the linear operator 

DG:Ker F yx R^x IR k—> tQ
cY.]m+2 

is invertible. 

-*• Conclusions. The aim is to find a mapping $ such that an organizing 

centre of F would be related to a simple root of f . Our point is to link 

the construction of the mapping $ with a classification of the organizing 

centre. 

We have demonstrated this idea on three particular examples, see Propo­

sition 1. The classification is not known a priori but it can be guessed us­

ing an auxiliary information (e.g. by means of codimension). 

If the root of & is simple (for an example, see Proposition 2) then 

the Newton method can be applied to approximate the root. 
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