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ANNOUNCEMENT OF NEW RESULTS 

(of authors having an address in Czechoslovakia) 

BOOLEAN FUNCTIONS REPRESENTED BY RANDOM FORMULAS 

P. Savicky (Katedra kybernetiky a informatiky, MFF UK, Malostran-
ske nam. 25, 118 00 Praha 1, Czechoslovakia), received 30.3. 
1987 

Let n>l be a fixed natural number. A Boolean function of n 

variables is any function f :{0 , li n—* { 0 ,1] , cf. [ 1_1. 
We study the representation of Boolean functions by Boolean 

formulas of the following type. 

Definition 1. Let x,,x2,...,x be variables. Let B be a set 

of function symbols all of which have the same number of argum­
ents k > 2. For all i^O let H. be the set of Boolean formulas de­
fined in the following way. 

HQ= 4x1,x2, . . . ,xR, -ix,, n x2, . . . , -i xn$ 

Hi + 1=-U( c^, <-?,,,..., s>k);oce B, 9 j
& H t for j = l ,2 , . . . ,k] . 

Elements of H. for i=0,l,2,... are formal expressions of in­

creasing complexity. Given an interpretation of all symbols oC £B 

as functions oC :i0,1} --> I 0, l\ , any formula of H, for all i>0 

represents a Boolean function in a natural way. 

Definition 2. Let F. be a random variable whose values are 

formulas from H. and the distribution of which is the uniform 

distribution on H.. 

Our aim is to present some results on the distribution of 
Boolean functions represented by the formula F.. For an arbit­
rary set Afc^0,lin and i>0 let F.rA denote the restriction of 
the Boolean function represented by F. to the set A. 

Theorem 1. Let B H & ,vi (i.e. k = 2) and F. be as in Defini­

tion 2. Then for every A£40,l$ n and every f:A—>-t0,l} we have 

if f is not a constant function 

Í u II 

1/2 ií 
.lim P(F. r A=f) 
tv->0° x I 1/2 if f = 0 or f = 1 

The following theorem deals with the selection function 
s(x,y,z) defined as s(0,y,z) = y and s(l,y,z) = z for all y , z £ l O , l V 

Theorem 2. Let B= -Cs^ (k = 3) and F. be as in Definition 2. 

Then for every A&40,l^n and every f:A —>- -C 0,1} we have 

.lim P(F. r A=f) = (1/2)'A' 
i. ->a> 1 

The convergence in Theorem 1 is of the order of magnitude 
0(l/i) and in Theorem 2 0(0*0 where c < l . 

Outline of the proofs. Note that Fi + 1= OC(FJ,F?, . . . ,F![) 
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where fJ are independent realizations of the random formula F. 
and oc is a random element of B independent of F^. Using this we 
can establish a recurrent relation for P(F. i^Asf). We prove The­
orems 1 and 2 for one and two element sets A by a direct compu­
tation using this relation. Theorem 1 in the general case is a 
simple consequence. Theorem 2 for |A|£3 can be proved by induc­
tion on |A|. 

An analogous type of probability distribution on formulas 

was used by Valiant ([23) in a probabilistic construction of mo­

notone formulas of the size 0(n ) , for the majority function. 
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