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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

THE O-DISTRIBUTIVITY IN THE CLASS OF SUBALGEBRA LATTICES OF 

HEYTING ALGEBRAS AND CLOSURE ALGEBRAS 

L. VRANCKEN-MAWET 

Abstract: Using Priestley duality, we characterize those 
Heyting and closure algebras whose subalgebra lattice is 0-dis-
tributive (i.e. satisfies xAy = 0 and x A z = 0 => xA(yvz)-O), 

Key words: Heyting and closure algebras, subalgebra latti­
ce, O-distributivity, congruences on quasi-ordered topological 
spaces. * 

Classification: 06D05 

Introduction. In [2],[3] and [5], we study the subalgebra 

lattice of Heyting algebras and closure algebras and characteri­

ze those Heyting algebras and closure algebras whose subalgebra 

lattice is distributive. Besides, our results characterize in 

the class D of distributive lattices those which are subalgebra 

lattices of Heyting algebras or closure algebras. 

In this paper, we extend the class D to the wider class of 

O-distributive (i.e. lattices which satisfy the following weake­

ning of the distributivity law: x A y = 0 and X A Z = 0 imply 

xA(yvz)=0). To obtain these results we use a duality between 

closure algebras and closure spaces and the notion of congruen­

ce on quasi-ordered topological spaces. We recall these notions 

in the first paragraph. 

§ 1 Recalls 

1.1. Definitions, (a) A closure algebra B=(B; A,V, ,~,0,1) 

is a Boolean algebra (B;A ,V, C,0,D with a unary operator (closu­

re operator) satisfying 

(i) 0"=0; 

(ii) V xeB,x<=x~ = x~ ~; 

(iii) Vx, yeB,(xvy)" = x"vy". 

A closed element a of B is such that a = a"". The set of all 
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closed elements of B is a dual Heyting algebra under x+y=(y-x)~. 

We denote it by C1(B). 

(b) A closure space X=(X,x*,-=) is a Boolean space (X,r) with 

a quasi-order satisfying 

(i) V x e X , ( x J = { y € . X | y . £ x | (resp. Lx)=4yc=x|x£y}) is clo­

sed and 

(ii) for any clopen subset U of X, (Uj= U\(xJ|xe Uj is clo-

pen. 

The set of all minimal (resp. maximal) elements of X is den­

oted by MinX(resp. MaxX). 

Let B be a closure algebra. The set M(B) of all maximal i-

deals of B, endowed with the topology generated by the set {ie 

e M(B)|a4lf> acB, and quasi-ordered by the relation ^ defin­

ed by I .£ J ̂se> In C1(B) £ J n C1(B), is a closure space, called du­

al space of B. 

Conversely, if X is a closure space, then the Boolean algeb­

ra of all clopen subsets of X, denoted by (7(X), becomes a clo­

sure algebra if one defines U~ by (U3. 

The Stone duality extends to this more general situation as 

follows £33. 

1.2. Proposition. There exists a dual equivalence between 

the category CA of closure algebras and the category CS of clo­

sure spaces whose morphisms are the continuous maps f:X — > X' 

such that f(lx))= [f(x)), for all xeX. 

1.3. Definition. A congruence on the closure space X= 

= (X,'C,^) is an equivalence such that 

(i) if (x,y)&0 , then there exists a ©-saturated (i.e. 

union of 0-classes) clopen subset U of X with x€ U and ye -U; 

(ii) if x O y^z, then there exists teX such that x £ t 0 z. 

The set of all congruences of X, ordered by inclusion is a 

lattice denoted by Con(X). 

1.4. Examples. Let X be a closure space. 

(a) The identity co and the universal equivalence are con­

gruences. 

(b) The equivalence ^ = 40(p,q) |p £ q £p 1 is a congruence. 
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(c) The dual atoms of Con(X) are equivalences $»(U) with 

two classes U and -U where U is a clopen subset of X satisfying 

one of the following conditions: 

(i) (UoMaxX)^ =(-Un MaxX)?; 

(ii) U and -U are both increasing and decreasing; 

(iii) U is increasing and contains MaxX. 

(d) Let E be a closed subset of X and let us denote by 

0(E) the equivalence generated by ExE. If 

(i) either E is such that xelE) -=» y^x, for all y e E , or 

(ii) E is increasing, 

then 0(E) is a congruence of X. In particular, S(MaxX)eCon(X). 

If E=ip,q3, we write ©(p,q) instead of 0({p,q}). 

1.5. Propositions, (a) Let X e CS and B e CA, the dual clo­

sure algebra. Then the subalgebra lattice of B is dually isomor­

phic to Con(X). [31 . 

(b) Let XeCS, B its dual closure algebra and G e Con(X). 

Then X/Q e CS. In particular, X/f is a pospace (i.e. partially 

ordered topological space) whose Priestley dual (L21) is C1(B). 

(c) Partially ordered closure spaces and dual Heyting 

spaces ([21) coincide. In particular, if B is generated by C1(B), 

the subalgebra lattice of B is isomorphic to that of C1(B). 

Consequently, our study of the congruence lattice of clo­

sure spaces leads to the corresponding properties for the subal­

gebra lattice of closure algebras and also of Heyting algebras. 

1.6. Definitions. (a) A clique is a set Y with a quasi-

order £ defined by x, y e Y =*> x^y. 

An n-clique is a clique of cardinal n and is denoted by nt . 

(b) Let X, Y be quasi-ordered sets. Then X+Y (resp. X €> Y) 

denotes the cardinal (resp. ordinal) sum of X and Y. 

(c) An order-connected component of a quasi-ordered space 

X (abbreviated o . c . c . ) is a subset Y of X such that (Y3 =Y and 

CY)=Y and which is minimal for this property. 

We now investigate the Heyting and closure algebras whose 

subalgebra lattice is O-distributive, that is, satisfies the 

following property: 

x/\y = 0 and x A z = 0 imply x A ( y v z ) = 0. 
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Clearly, this is equivalent to study the closure space who­

se congruence lattice is 1-distributive, i.e. such that 

xvy = l and x v z = l imply xv(y/\z) = l. 

We separate here the case when X is partially ordered from 

the case when X is not partially ordered. 

In what follows, we denote by S(B) the subalgebra lattice 

of a Boolean algebra B. These lattices and their order duels ha­

ve been characterized by Sachs in [4]. 

§ 2. Heyting algebras 

2.1. Theorem. Let X €. CS be partially ordered. Then the fol­

lowing assertions are equivalent. 

(i) Con(X) is 1-distributive; 

(ii) there exist bounded chains C and C' and a (possibly 

empty) antichain Y such that X is order-isomorphic either to 

C €> (C'+Y) or to C+l; 

(iii) there exist Boolean algebras B and B' such that B is 

complete and atomic and Con(X) is isomorphic either to 

Bx (S(B') + 1) or to B. 

Proof, (i) ==> (ii). Let X <s. CS be such that X is partially 

ordered and Con(X) is 1-distributive. The ordered type of X is 

deduced from the following observations. 

oc) Necessarily, X-(MinX ̂  MaxX) is a chain and |MinX-MaxX|^ 

<£ 2. If not, let x,y 6 X-(MinX uMaxX) (resp. x ,y e. MinX-MaxX) and 

t& MinX-MaxX- { x,y$. Denote by V and U increasing clopen subsets 

containing MaxX such that y«*V, xeU, {x,t]r,V = 0, 4y,t}nU = 0. We 

have $(V) v 0 (V u U) = l, $(U) v 0(V uU)-l and ( $(V) A $ (U)) V 

v(|>(VuU)*l, which contradicts the 1-distributivity of Con(X). 

In particular, this means that there exist at most two o.c.c. 

not reduced to a singleton and at most one o.c.c. which meets 

X-(MinX \jMaxX). Precisely, X must satisfy the following conditi­

on. 

$) There exists at most one o.c.c. which is not reduced 

to a singleton. Let C,, C« be o.c.c. such that |C,|z2, |C2|>2 

and x. (i=l,2) the element of MinC.-MaxC,. Let U (resp. V) be an 

increasing clopen set which is decreasing (resp. contains MaxX) 
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and such that C^gU, C2nU=0 (resp. ,̂ + V, x ^ V ) . The congruen­

ces $(U), $(V), 9(VuU) contradict as in oc) the 1-distributivity 

of Con(X). 

In fact, there exist at most two o.c.c. since the following 

condition y) is necessary for Con(X) to be 1-distributive. 

TT) TWO elements of MaxX which are not in the same o.c.c. 

constitute MaxX. Let x, y be maximal elements of different o.c.c. 

We may suppose that the o.c.c. of y is reduced to {y\. If z e 

£ MaxX- -tx,y}, let U be a clopen subset of X which is increasing, 

decreasing and such that { x,z $ £ U s - iyl. We have$(U)v ®(x,y) = 

= l,$(U)ve(z,y) = l , ( £ > ( U ) v t ( 6 > ( x , y ) A © ( z , y ) ) * l > a contradicti­

on to the 1-distributivity of Con(X). 

d> ) There exists at most one minimal element which is not 

maximal. If not, let x -fc ye MinX-MaxX. First, we have 
I x)n (X-MaxX)- i x 3 = C y) n(X-MaxX)- \y}. Indeed, let ze[y) n 

n (X-MaxX)-(tx)r\ (X-MaxX)) and U, V be increasing clopen sets 

such that MaxX u 4x1 £ V, MaxX uizfcU, 4y,z$ c -V and ix,y\c -U. 

We have t}(V)v9(VuU)-l, $(U) v 0(V uU)-l and 9(U u V) v ( $ (V)A 

A $ ( U ) ) 4 - 1 , which is impossible. 

It follows from this that cc = G(x,y) u Q(MaxX) is a congru­
ence. If U' and V' are increasing clopen subsets containing MaxX 

and such that xeU-V and yeV-U, the congruences $(U), <J>(V) and 

oc induce a contradiction to the 1-distributivity of Con(X). 

If X is not order-connected, then X is the cardinal sum of 

a chain and a singleton. We shall now investigate the case when 

X is order-connected. 

If X-MaxX* 0, n H x ) |x e Yj + 0, for each finite subset Y of 
X-MaxX. By a compactness argument, we deduce n \ I x)|xe X-MaxXj# 
4- 0. Hence there exists x £ MaxX such that (x 3 - -i x \ =X-MaxX. 

o o o 
The conclusion follows from the necessary condition e, ). 

E») If. x, ,x2 e. MaxX- ix }, then (x.DsMx,* and (x2-l*ix2l 

imply (x,3- ̂ x,}=(x23~ -ixA. If not, suppose z maximal in 

(X-MaxX)n (x,3-(x23 (if such z does not exist, we interchange x̂  

and x 2). Let U be a clopen subset of X which contains x , x2 and 

not x̂  and let V be a clopen subset of X containing x, and x« and 

disjoint from Un[z). Consider the congruences oC = 0(Cz)), fts 

= 0(UnMaxX) u 0((z3) v ©(-UnMaxX), r = 0(VnMaxX)o> 9((zJ) U 

- 391 -



\j 0(-Vn MaxX). It is clear that oOv/3 =<xvy=l. Since /3 n j is 

not a congruence (for each t e (x«J n (x J, z(/3 a £-* )t ̂  x« would 

imply the existence of u <s I z) n U n V such that z ̂  u( (3 n y )x 2), 

and that [3 ATl M a x X= ft n ^MaxX' w e h a v e necessarily (z,t') f 

<£ (3 A -y for some t 'e (z3. It is clear that (z,t') <£ oc from what 

we deduce the contradiction oc v((3 A y ) + l, 

This completes the proof of (i) ==> (ii) (take C'=(x 1-(xJ 

and Y=MaxX- -i x Q$). 

(ii) =-> (iii). If X is either a chain or the cardinal sum of 

a« chain and a singleton, then Con(X) is a complete and atomic 

Boolean algebra ([23). 

Suppose that X is order-isomorphic to C © ( C + Y ) where C and 

C' are bounded chains and Y is a non empty antichain.Let B (resp. 

B') be isomorphic to Con(C) (resp. Con(c')) ([21). By an argument 

similar to that of Theorem 2.1 in [53, it is clear that Con(X) is 

isomorphic to Bx B'x Con(l 0 (1+Y)). It is also easy to check 

that Con(l © (l + Yty is isomorphic to (Con(l + Y)) © 1; now 1+Y is 

a Boolean space whose congruence lattice is of the form S ( B ) , 

whence the proof is complete. 

The implication (iii) -=-=> (i) is clear. 

Denote by *K the class of all Heyting algebras which are 

Boolean products of chains, all 2-elements chains except perhaps 

one. From the duality and the proposition 1.5, we deduce the 

following corollary of Theorem 2.1. 

2.2. Corollary. Let A be a Heyting algebra. Then the follo­

wing assertions are equivalent. 

(i) The subalgebra lattice Sub(A) of A is O-distributive. 

(ii) There exist H £ $6 and a chain C such that A is isom­

orphic either to H © C or to Cx 2 or to C. 

(iii) There exist Boolean algebras B and B' such that B is 

complete and atomic and Sub(A) is isomorphic either to B x 

x(0 ® S(B')) or to B. 

2.3. Remark. From 1.5 it follows that the subalgebra latt­

ice of a closure algebra generated by its closed elements is 0-

distributive if and only if the order-dual of C1(B) satisfies 

(ii) of 2.2. 
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2.4. Corollary. Let L be a O-distributive lattice. Then 

the following assertions are equivalent. 

(i) There exist a Heyting algebra A such that L is isomor­

phic to the subalgebra lattice of A. 

(ii) There exists a closure algebra A generated by its 

closed elements such that L is isomorphic to the subalgebra lat­

tice of A. 

(iii) There exist Boolean algebras B and B' such that B is 

complete and atomic and L is isomorphic either to B or to B x 

x(0 e S(B')). 

Proof. We have (i)-=-^ (ii) by 1.5 and (i)=r> (iii) by 2.2. 

Conversely, if B is a complete and atomic Boolean algebra, there 

exists a chain C which is a Heyting algebra such that B~Sub(C). 

If B' is a Boolean algebra, we have Sub(B'€>C)^-B x (0 (£> S(B')*). 

This completes the proof of (iii) =-=n> (i). 

§ 3. Closure algebras 

3.1. Theorem. Let XeCS. Then Con(X) is 1-distributive if 

and only if X satisfies one of the following conditions. 

(i) There exist an upper bounded chain C (possibly empty), 

a bounded chain C', a clique Y and an equivalence Y' (in other 

words, Y' is the cardinal sum of cliques) such that X is order-

isomorphic to Y © C ® (C'+Y'). 

(ii) There exist an upper bounded chain C, a clique Y and 

an equivalence Y' such that X is order-isomorphic to Y 0 C © Y' 

and (VnMaxX)f +• (-Vr.MaxX)S , for all clopen subsets V of X. 

(iii) There exist an upper bounded chain C and cliques Y 

and Y' such that X is order-isomorphic to (Y © C)+Y'. 

(iv) There exists a clique Y such that X is order-isomorp­

hic to 1+Y. 

(v) X is isomorphic to 2f . 

Proof. Let Xs CS be such that Con(X) is 1-distributive. 

Since Con(X/£ ) is isomorphic to4<^e Con(X) | £ £ <p} (by the third 

isomorphism theorem ) , it is also 1-distributive and by 2.1, the­

re exist bounded chains C and C' and an antichain Y such that 

X/$ -* C © (C'+Y) or X/f ^ C + l. To determine the form of the £ -

classes, we proceed in four steps. 
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oc) The cliques which are not reduced to a singleton are 

either minimal or maximal. Let p^2{p,q! be a clique which is ne­

ither minimal nor maximal. Its projection into the quotient spa­

ce Y=X/G (MaxX) is again neither minimal nor maximal. Moreover, 

Con(Y) = -fcp e Con(X)| 9(MaxX) £ 9I is also 1 - d i s t r i b u t i v e . 

(a) In the special case when there exists y e Y such that 

y £ -< p? (that means y < z < p implies z&yf^ps), consider an in­

creasing clopen subset V of X containing p but not y . We have 

the contradiction 0({p$uyf)v $(V)=1, 9 ({ql u yf ) v $ (V) = l, 

. $ ( V ) v [ e « p } v y * ) A G({ql^ y* )3 = $(V). 

(b) For the general situation, let x,yeY be such that 

y?-< x*£p*and let V be an increasing clopen subset which separa­

tes x£ from yf . By (a), we may suppose x? = Ixiand xi^ p^ . 

Consider a clopen subset 0 of Y such that yfui pi 9 0 c - { q\o 

o - i x } . The equivalence oC = B (0 n [y ,p]) u 0(-O rs I y ,pj ) is a 

congruence such that oc v $(V)=1. 

Since we have G({xluyf)v$(V) = l and $(V) v t Q({x} o 

^yf) A O G ) ] = $(V), Con(X) cannot be 1-distributive. 

(3) if |Max(X/£ )|> 2, then (VnMaxX)^ *(-Vn MaxX)£ , for 

all clopen subsets V of X. If not, <$> (V) is a dual atom of Con(X). 

Let p£ and q£ be distinct elements of Max(X/f ) . We have$(V)v 

v ©(p?) = l, $(V) v ©(q?) = l, $(V) v ( G(pf) A 0(q?))= $(V), which 

is impossible. 

f) _I_f X/£ -Max(X/£ ) + 0 admits a unique upper bound xf e 

<c, Max(X/| ) (this corresponds to the case when the chain C' of 

2.1 is not reduced to a singleton), then x* = 4 x ] . Indeed, we 

argue as in oc), replace p by x and choose clopen increasing 

subsets V containing MaxX in both cases (a) or (b). 

So far, we have examined the closure spaces X such that X=J= 

4-MaxX and Con(X) is 1-distributive. 

It follows from oc ) , fi), y) that if X4MaxX, then X must 

satisfy one of the conditions (i),(ii) or (iii). Finally, we ha­

ve 

of) if. X/£ is an antichain, then X satisfies (iv) or (v). 

Since |X/^ | £ 2 (by 2.1), the condition (b ) shows that there ex­

ists at most one clique which is not reduced to a singleton. If 

|X/£ |=1 and ,X|>r2, let iU1,U2,U3l be a partition of X in clop­

en subsets. We have e ^ u U2) v @ (U2 u U3) = l, © ( U ^ U ^ v 
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v 9(U1uU3) = l and 0 (Iĵ u u2) v ( 8 (U2 u U?) A SdJjU U 3))* 1,which 

contradicts the 1-distributivity of Con(X). Hence X=2t . The re­

maining possibility is (v). 

This completes the characterization of closure spaces whose 

congruence lattice is 1-distributive. 

Conversely, suppose that X satisfies one of the conditions 

(i) ,(ii),(iii),(iv) or (v). If X = 2f , then Con(X) is isomorphic 

to the 2-element chain. In the other cases, there exists no du­

al atom <$>(V) with (VnMaxX)? =(-V n MaxX) ? . Let oc , ft , <# & 
€. Con (X) be such that oGv/3=l, oc v ^ =1 and 06 V ( / 3 A y) #-1 . 

Since Con(X) is dually atomic ([3J), there exists (by 1.4) an 

increasing subset V of X which is both oc -saturated and (/3A2~)-

saturated and such that $(V) is a congruence. We distinguish 

two possibilities. 

oc) If V is decreasing, then X is not order-connected and 

V coincides with one of the two o.c.c. of X. By changing V into 

-V, we may suppose that V is not reduced to a clique or that |v|= 

-1. Let t be the greatest element of V. Since oc v (I =1 (resp. 
oc v^=l), there exists u (resp. v)e MaxX- -ft} such that t ft u 
(resp. t ft v) from what we deduce 0(MaxX) s ft o y and the con­
tradiction e(MaxX)^ $(V). 

/3) If V contains MaxX, let r be a minimal element of V 

which is not in the o.c.c. eventually reduced to a clique and s 

a maximal element of -V. There exists a least congruence y such 

that 8(r,s)£ y (if 9 (r ,s)<f Con(X), y = 0(r, s) u cp (MaxX)). 
From cc vft =1 (resp. oc v ^ = l), we deduce (r,s) e ft (resp. (r,s)e 
e X )) • It follows that (r,s)e./3r.'y and 0 (r,s) s f c p A <y £ 

c. $(V), which is impossible and concludes the proof. 

In [33 and [53, we explain how to dualize the notions of 

chain, clique, cardinal sum and ordinal sum of closure spaces. 

Since the condition (Vn MaxX)* 4= (-Vn MaxX)* for all clopen 

subsets V of X eCS becomes 

VaeBGCA,a" =1 =̂ > (ac)~=*:l 

in CA, it is possible to translate Theorem 3.1 in CA and charac­

terize the closure algebras whose the subalgebra lattice is 0-

distributive. 

- 395 -



R e f e r e n c e s 

[1] GRftTZER G.: General Lattice Theory, Math. Reihe, Birkhauser 
Verlag Basel und Stuttgart (1978). 

[21 HANSOUL G. and VRANCKEN-MAWET L.: The subalgebra lattice of 
a Heyting algebra, Czech. Math. 3. 37(112)(1987). 

[3] HANSOUL G. and VRANCKEN-MAWET L.: Subalgebras of closure al­
gebras, to appear in Period. Math. Hungaria. 

1.4] SACHS 0.: The lattice of subalgebras of a Boolean algebra, 
Canad. 3. Math. 14(1962), 451-460. 

[5j VRANCKEN-MAWET L.: On the subalgebra lattice of a Heyting 
algebra, submitted. 

Institut de MatruSmatique, Avenue des Tilleuls, 15, B-4000 Liege, 
Belgique 

(Oblatum 3.3. 1987) 

- 396 


		webmaster@dml.cz
	2012-04-28T14:24:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




