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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

AROUND A NEUTRAL ELEMENT IN A NEARLATTICE 

A.S.A. NOOR and W.H. CORNISH 

Abstract: Nearlattices, or lower semilattices in which any 
two elements have a supremum whenever they are bounded above, 
provide an interesting generalization of lattices. In this con­
text, we define different types of elements in a nearlattice S 
and then for a fixed element n, using the ternary operation J , 
study the behaviour of S =(S;n) where x r.y = (x A y ) \'(x A n) v 
v (y A n); x , y 6 S . 

Key words-; Standard element, neutral element, n e a r l a t t i c e . 

Classification: 06A12, 06A99, 06B10 

1 . Introduction. A nearlattice is a lower semilattice which 

has the property that any two elements possessing a common upper 

bound, have a supremum. Cornish and Hickman 111 called this the 

upper bound p r o p e r t y . For detailed literature, we refer the rea­

der to consult [13,12] and [ 7V 

A nearlattice-congruence $ on a nearlattice S is a congru­

ence of the underlying lower semilattice such that, whenever 

a,5Eb,, a 2-=b 2($) and a,va 2, b, vb„ exist, a, v a2 s b, v b«( <£ ) . 

In the second section of L4], a fundamental contribution was ma­

de by Hickman. Defining a ternary operation j on a nearlattice S 

by j(x,y,z)=(x Ay) v(y A z ) , he showed that the resulting algeb­

ras of the type (S;j) form a v a r i e t y . 

Standard and neutral elements, as well as standard ideals 

in a nearlattice were extensively studied in [ 2 ] . An element s 

in a nearlattice S is called standard if for all x,y,teS, 

t /\[(xAy)v(xAs)3 = ( t A X A y ) v ( t A X A s ) . An element n in a 

nearlattice S is called neutral if it is standard and for any 

t, x , y e S , nA[(tAx)v*(tAy)3 = (n A t A x ) v(n/\t/\y). Clearly, 

every element of a distributive nearlattice is n e u t r a l . An ele-
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ment n of a nearlattice S is called superstandard if it is stan­

dard and for any x,yeS, nA[(xAy)v(xAn)v(y/\n)3 = (x A n) v 

v ( y A n ) , whenever (x A y) v (x A n) v (y A n) e x i s t s . Of course, eve­

ry neutral element is superstandard. But in the pentagonal lat­

tice -vO,a,b,n,l} where 0 < a < n < l ; 0 < b < l : aAb = n A b = 0 and 

a v b = n v b = 1, n is superstandard but not neutral. 1.73 provides 

an example of a standard element in a lattice which is not super-

standard . 

An element n in a nearlattice S is called medial if m(x,n,y)= 

= (x A y) V (x A n) v (y A n) exists for all x,yeS, while n is called 

sesquimedial if 3(x,y,z) = ([(xAn)v(yAn)3AC(yAn)v(zAn)3) v 

Vj(x,y,z) exists for all x,y,z€S where j(x , y ,z) = (x A y) v (y A z). 

Since 3 (x ,y ,x)=m(x ,n ,y) for all x,yeS, any sesquimedial element 

is medial. A nearlattice S is called medial if m(x,y,z)=(x A y ) v 

v(y A z) v (z A X ) , exists for all x,y,zeS. Of course, every ele­

ment of a medial nearlattice is sesquimedial (see Lemma 3.1). 

Let n be a fixed element of a nearlattice S.By an n-ideal of 

S, we mean a convex subnearlattice of S containing n. The n-ideal 

generated by a,,...,a is denoted by <a,,...,a > . Clearly 

^ a l ' ' ' ''am>n = < a1 >n v" ' • ' v < a m V W h e n S i s a l a t t i c e »<ai> • • • >am>n = 

= {a,A...Aa An, a, v ... v a v n> . Thus, for a lattice S, the set 1 m ' 1 m n ' ' 

of finitely generated n-ideals of S is a lattice and its members 

are simply the intervals [a,b3 such that a ^ n ^ b , and for such 

intervals, [a ,b3 v[a,,b,3 = [a A a,,bvb,1 and L'a ,b3 n£a, ,b,] = 

= L'a va, ,b A b,3 . The n-ideal generated by a single element is cal­

led a Principal n-ideal and the set of Principal n-ideals of S 

is denoted by P (S). When S is a lattice, it is not hard to see 

that P(S) is a lattice if and only if n is complemented in each 

interval containing it. 

For a fixed element n, the binary operation x r. y=m(x,n,y) = 

=(x Ay)v (xAn) v(yA n) has been studied by several authors in­

cluding Jakubik and Kolibiar £51 for distributive lattices, Sho-

lander [8] for distributive medial near lattices and Kolibiar 

[63 for an arbitrary lattice with n as a neutral element in it. 

Sholander [81 showed that for a distributive medial nearlattice 

S, (S;o) is a semilattice. On the other hand Kolibiar [63 showed 

that if n is a neutral element in an arbitrary lattice S, (S;o) 

is a semilattice. Recently, Noor 173 extended their work and 

showed that for a neutral and sesquimedial element n of a near-
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lattice S, S =(S;rO is not only a semilattice, it is a nearlat-

tice. Moreover, the n-ideals of S are precisely the ideals of S . 

According to T7J, we refer to S as an isotope of S. 

In Section 2, we introduce the notion of a nearly neutral 

element in a nearlattice and then generalize and extend some of 

the results in [7J. We show that for a medial superstandard ele­

ment n of a nearlattice S, S is a nearlattice wherein On(x,y,z)= 

=j n(x>y,z) if ^nd only if n is nearly neutral and sesquimedial 

in S. We also show that for a nearly neutral and sesquimedial 

element of a nearlattice S, n is neutral if and only if the near-

lattice congruences of S are precisely the nearlattice congruen­

ces of S . 

In Section 3, introducing the ternary operation M (x,y,z) 

we show that for a sesquimedial neutral element n of a nearlatti­

ce S, S is medial if and only if S is so. 

2. Nearly neutral element of a near lattice. An element n 

of a nearlattice is called nearly neutral if it is standard and 

has the property n A ((t A x A n) v (t Ay)) = (t A x An) v (t A y A n) for 

all x,y,teS. Of course, a neutral element is always nearly neu­

tral. Observe that in Figure 1, n is nearly neutral but nA(avb)> 

> ( n A a ) v ( n A b ) shows that it is not neutral there. 

The following result shows that every nearly n e u t r a l element 

is superstandard, but in the pentagonal lattice -[0,a,b,n,lj whe­

re 0 < a < n < l ; 0 < b < l ; aAb = n A b = 0; avb-nvb-1, n is superstan­

dard but not nearly neutral. 

Proposition 2.1. For an element n of a nearlattice S, the 

following conditions are equivalent, 

(i) For all x ,y , t 6 S, 

n A((tAXAn) v (tA y)) = ( t A X A n ) v ( t A y A n ) . 

(ii) For all x ,y e S, 

n A ( ( x A n ) v y ) = ( x A n ) v ( y A n ) , whenever (xAn)vy 

exists. 

Moreover, if n is sesquimedial, (i) and (ii) are also equi­

valent to each of the next two conditions. 

(iii) For all x,y,zeS, (x n y) A n = (x A n) v (y A n) and 

3n(x,y ,z) An=(x ny) A (y n z) A n, where x n y - ( x A y ) ^ 

V ( x A n ) v ( y A n ) . 

- 201 -



(iv) For all x,y,zeS, (x n y) A n = (x A n) v (y A n) and 

J n(x,y,z)An^xny. 

Proof. (i) -=> (ii). Suppose (xnn)vy exists. Then 

nA((xAn)vy) = n A[(((xAn)vy)AXAn)v(((xAn)vy)Ay)] = (xAn)v(yAn). 

(ii) -==> (i) is trivial. 

Suppose now that n is sesquimedial and (i) and (ii) hold. 

Then nA(xny) = nA( (xAn)v(yAn)v(xAy)) = nAC(((xAn)v(yAn))An)v 

v(xAy)] = (xnn)v(yAn)v(xAyAn) = (xAn)v(yAn). Also, 

3n(x,y,z)An = nA[(((xAn)v(yAn))A((yAn)v(zAn)))v(xAy)v(yAz)J = 

= n A[((xny)A(ynz)An)v(xAy)v(yAz) 

= ((xny)A(ynz)/\n)v(nA((xAy)v(yAz))) = (xny) n(ynz)An. 

Thus (iii) holds. 

Clearly (iii) implies (iv). 

Finally suppose (iv) holds. Let x,yeS be such that (xAn)vy 

exists. Then 
J
n(

x> v »(* A n)vy)=L((xAn)v(yAn))A(yAn)v(nA((xAn)vy)))lv(xAy)\r/y = 

= (xAn)v(yAn)vy = (xAn)vy, and so by (iv) nA( (xAn)vy) -£ xr>y. 

Thus, nA((xAn)vy)^ nA(xny) = (xAn)v(yAn); it follows that 

nA((xAn)vy) = (xAn)v(yAn) and (ii) holds. P 

The following result is found in [7, Th. 2.1]. 

Proposition 2.2. If n is a standard element of a nearlat-

tice S, then (S;£) is a partially ordered set and the map 

x —»<x> is an isomorphism of (S;£) onto P (S), where on S, 

x£y if and only if (xny)v(xAn)v(yAn) exists and is equal to x.D 

Let n be a medial element of a nearlattice S. For any x,y£ S 

define the binary operation xny = m(x,n,y) = (xAy )v(x/\n)v(yAn). 

Recently Noor in [7.1 proved the following result. 

Theorem 2.3. If n is a medial and standard element of a 

nearlattice S, then S is a semilattice if and only if n is su-

perstandard in S. 

Moreover, when n is neutral and sesquimedial then S is in 

fact a nearlattice and the n-ideals of S are precisely the ideals 

of Sn. D 

Our next theorem generalizes and extends the above Theorem. 

To obtain this, we need the following lemma, (i) is found in 
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£7; Lemma 2.4], and the proof of (ii) is similar to the proof of 

(ii) in [7; Lemma 2 . 4 V 

Lemma 2.4. In a nearlattice S, 

(i) a subset K of S is an ideal of S if and only if for all 

x,y<=K and a e S , j(x,a,y) €. K. 

(ii) If n is a superstandard element of S such that S is 

a nearlattice wherein 
S 

Jn(
x>y>z) = 3 (x,y,z) = (xrv/Mynz) , 

then a subset K of S i s an n - i d e a l of S i f and on ly i f 

i t con ta ins n and 3 ( x , a , y ) € . K f o r any x ,y t K and a e S . D 

Corollary 2.5. Suppose n is a superstandard element of a 

nearlattice S such that the isotope S of S is itself a nearlat- „ 

sn 

tice wherein 0 (x,y,z) = j (x,y,z). Then the ideals of S are 

precisely the n-ideals of S. D 

Theorem 2.6. If S is a nearlattice and n e. S is medial and 

superstandard, then the following conditions are equivalent. 

Ci) n is nearly neutral and sesquimedial in S. 

(ii) The isotope S =(S;n) is a nearlattice wherein 
sn
 n 

3 (x,y,z) = 3R(x,y,z) . 

(iii) S has the upper bound property and n-ideals of S are 

precisely the ideals of S . t- j n 

(iv) Any finitely generated n-ideal contained in a princi­

pal n-ideal is a principal n-ideal. 

Proof. (i) -«---> (ii). Suppose n is nearly neutral and ses­

quimedial in S. Then, clearly 
J
n(

x>y>z) = ((xny)A(ynz)An)vj(x,y,z) , 

and so by [2;Th. 2.43, 3p(x,y,z)s j(x,y,z)(0 ) and 

xny sxAy(8 ). Hence (xny )/\3 (X ,y ,z) s x/\y(@ ) and simi­

larly (ynz)A3 (x,y,z) syAz(8 ). Therefore, 

C(xoy)A3n(x,y ,z)3 v[(ynz)A3n(x,y ,z);]v[nA3n(x,y ,z)] s 

"2 (xAy)v(yAz)v(nAj(x,y ,z)) = j(x ,y , z) (G>n) . 

Since the left hand side of this congruence exceeds the 

right hand side, by L2;Th. 2.4], 

left hand expression 

= j(x,y,z)v(nA(left hand expression)) 
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Thi 

j(x,y,z)v(nA3n(x,y,z)) = 3 n ( x , y , z ) . 

IUS, 3 (x,y,z)e<xny,ynz> . On the other hand, 

(xny)A3n(x,y,z)2xAy(0 ) implies (xny)A3 (x,y,z) = 

= (x/\y)v(nA(xny)A3n(x,y ,z)), and so ((xny )A3 R(X ,y ,z))v( (xny)/\n) = 

= (xAy)v(xAn)v'(yAn) = xny, Hence , xny e <3 (x ,y ,z)> and similar­

ly ynz€<3n(x,y,z)>n. Thus, <xny,ynz>n = <3n(x,y,z)>n and so by 

Proposition 2.2, (xny)«j(ynz) = 3 (x,y,z). 

(ii) -=*-> (iii) follows immediately from Corollary 2.5. 

(iii) -^9- (iv) is an easy consequence of the isomorphism of 

(S ;£) and (P (S);£), and the upperbound property of S . 

(iv)=-»(i). Let a,b,ceS. Since anb,bnc£b, <aob,boc>n c 

£<b> by Proposition 2.2. Thus, by (iv), there exists tcS such 

that <anb,bnc>= <t> , and so (aob)A(bnc)An= tAn. Now, anbit im­

plies anb=((anb)At)v(anb)An)v(tAn) = ((anb)At)v((aob)An), and so 

anb s(anb)At(en). Hence aAb sanb ==(anb)At = aAbAt(6R). 

Similarly, bAc^bAcAt(© ). This implies 

j(a,b,c) s(aAbAt)v(bACAt) (Op) 

and so j(a,b,c) = (aAbAt)v(bACAt) v(nAj(a ,b,c)). Also, j(a,b ,c)At === 

~(aAbAt)v(b/\cAt)(© ), and so 

j(a,b,c)At = (aAbAt)v(bAcAt)v(nAtAj(a,b,c)). 

Thus, j(a,b,c)ot = (j(a,b,c)At)v(j(a,b,c)An)v(tAn) = 

= j(a,b,c)v(tAn). 

Again, a n b s a A b ^ ) . So (anb)Aj(a,b,'c) & aAbAj(a ,b,c) = 

= aAbO ), and hence (anb)Aj(a ,b,c) = (aAb)v((anb)Aj(a ,b,c)An). 

This implies (anb)nj(a,b,c) = anb; that is, anb £j(a,b,c). Simi­

larly, bnc 9. j(a,b,c). Hence, tcj(a,b,c), and so t = tAj(a,b,c) = 

= j(a,b,c)v(tAn) = j(a ,b,c)v( (anb)A(bnc)An) = 3 (a,b,c), as n is 

superstandard. Hence n is sesquimedial, and 3 (a,b,c)An = tAn = 

= (anb)/\(boc)/\n. Also (xny)An = (xAn)v(yAn), as n is superstan­

dard. Therefore, by 2.1(iii), n is nearly n e u t r a l . D 

The following lemma is due to Hickman [4; Proposition 2 . 2 ] . 

Lemma 2 . 7 . In a nearlattice S, an equivalence relation is 

a nearlattice congruence if and only if it is a congruence for 

the algebra ( S ; j ) . Q 

Now we consider the influence of 3 on congruences. The fol­

lowing theorem is an extension of [7; Lemma 2 . 6 ( i i ) ] } . 
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Theorem 2 . 8 . Let n be a sesquimedial, nearly neutral ele­

ment of a nearlattice S. Then the following conditions are equi­

valent . 

(i) n is neutral in S; 

(ii) an equivalence relation on S is a congruence for the 

algebra (S;3 ) if and only if it is a n earlattice-congruence of 

S . 

Proof. (i) => (ii) is proved in [7; Lemma 2 . 6 ( i i ) 3 -

(ii) => ( i ) . Define a relation © on the nearlattice S by 

x s y O ) if and only if xAn = yAn. This is clearly an equivalen­

ce relation on S. 

Now suppose xs-y(O). Then XAn = yAn, and so by 2.1, for any 

s,t€.S, nA3 (x,s,t) = (xns)A(snt)An = ((xAn)v(sAn))A((sAn)v(tAn))= 

= ((yAn)v(sAn))A((sAn) v (tAn)) = OA3 (y,s,t). Thus, 3 (x,s,t)ar > 

s 3n(y,s,t)(S ) . Similarly, 3 (s,x, t) s 3 (s,y , t)( © ) and 

3n(s,t,x)s3 (s , t ,y)(O ) , and so 0 is a congruence for the algeb­

ra (S;3 ) . Thus, by (ii), 0 is a nearlattice congruence on S. 

Now, clearly x = XAn(0) and y-syAn(O) for all x,yeS. So for any 

tcS, (tAx)v(tAy) s (tAxAn)v(tAyAn)( 0 ) , and hence, nA[(tAx)v(tAy)J : 

= nA[(tAXAn)v(tAyAn)] = (tAXAn)v(tAyAn), which implies n is neu­

tral in S. Q 

Combining Theorem 2.6, Lemma 2.7 and the above theorem, we 

have the following extension of [7,Th. 2.73* 

Theorem 2.9. Let n be a nearly neutral sesquimedial element 

of a nearlattice S. Then n is neutral if and only if the nearlat­

tice congruences of S are precisely the nearlattice congruences 

of sn. a 

The following proposition will be needed to prove one of 

our main results in Section 3. This was known by Kolibiar [6] in 

case of a bounded lattice with n as a central element. 

Proposition 2.10. If n is a nearly neutral sesquimedial 

element of a nearlattice S with 0, then 0 is neutral and medial 

in S . Moreover, the double isotope (S ) is precisely S. 

If, in addition, n is neutral in S, then 0 os sesquimedial 

Sn ( S n )o 
in Sp and 3Q (x,y,z) = j (x,y,z) = j(x,y,z) = 3Q(x,y,z) for 
all x,y,z £ S. 
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Proof. By 2.6, for all r,x,ycS, 0n( (rnx)u(roy)) = 

= OnJ (x,r,y) = n/\Jn(x,r,y) = Jn(rnx ,0 ,rny) = (Onrnx)u(Onrny). 

Also, rr>((xny)u(xnO)) = rnJn(y,x,0) = rn((XAO)v(xAy)) = (rAn)v 

s/(xAn)v(rAXAy) as n is nearly neutral and hence standard. On the 

other hand, (rnxny)u(rnxnO) = Jn(y,rnx,0) = ((rnx)An)v(yA(rnx)) = 

= (rAn)v(xAn)vLyA(((rnx)Ar/\x)v((rnx)An))] = (rAn)v(xAn)v(r/\XAy). 

That is rn((xny)u(xnO)) = (rnxny)u(rnxnO); consequently 0 is ne­

utral in S . 

Now, clearly xny ,xnO,ynO £ x/\y , and so (xny)u(xnO)u(ynO) ex­

ists and it is & xAy. Thus, 0 is medial in S , and so ((S ) • A ) 

is a semilattice by Theorem 2.3, where 

XAy = (xny)u(xnO)u(ynO). 

Suppose xny, xnO ,yn0 £ s f o r some s e S . Then s A n ^ ( x n O ) A n = 

= XAn. S i m i l a r l y SAn^yAn , and so sAn^xAyAn. A l so , 

xny = (xny)ns = ( ( xny )As ) v (Cxny)An) v(s/\n) = 

= ( ( x n y ) / \ s ) v ( ( x n y ) A n ) . 

Then 

XAy = (xAy)A(xny) = (xAyAs)v(xAyAn) = (xAy)ns . 

This implies xAyss, and hence 

XAy = (xny)u(xnO)u(ynO) = XAy; 

in other words, (S ) = S. 

Finally, suppose that n is neutral in S. Since 0 is neutral in S , 

((xn0)u(yn0))n((yn0)u(zn0)) = (xAy)n(yAz)nO = 

= (xAy)n(yAz)nO = L(xAy)n(yAz)JAn = 

= (xAyAn)v(yAZAn) = nAj(x,y,z) 

as n is neutral. Also it can be easily shown that xny,ynz c 

Sj(x,y,z) = JQ(x,y,z). Therefore 

K(xnO)u(ynO))n((ynO)u(znO))J u (xny)u(ynz) 

exists in S ; whence 0 is sesquimedial in S . The rest follows by 

2.6. a 

It should be noted that the above proposition is not true 

when n is merely nearly neutral. For example, in Figure 2 which 

is the isotope of Figure 1, 0 is not sesquimedial. 
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3. Medial nearlattices. Recall that a nearlattice S is me-

dial if for all x,yeS, m(x,y,z) = (x/\y)v(yAz)v'(zAx) exists. A 

nearlattice S is said to have the three property if, for any 

x,y,zeS, xvyvz exists whenever xvy, yvz and zvx exist. Nearlat­

tices with the three property were discussed by Evans in [31, 

where he referred to them as strong conditional lattices. It is 

easy to see that a nearlattice S has the three property if and 

only if it is medial. 

Lemma 3.1. Every element of a medial nearlattice is sesqui-

medial. 

Proof. Suppose S is medial and n is any element of S. For 

any x,y,z&S, ((xAn)v(yAn) )A( (yAn) v(zAn)), xAy^m(x,n,y) and 

((xAn)v(yAn) )A( (yAn)v(zAn)), yAz ... m(y ,n ,z). Thus using the upper 

bound property and the three property of S, (((xAn)v(yAn))A 

A( (yAn) v(zAn)))v(xAy)v(yAz) = 3 (x,y,z) exists in S. O 

Suppose S is a medial nearlattice and a,b,c&S. If avb, bye, 

cva exists, we define m (a,b,c) = (avb)A(bvc)A(cva). Of course, 

when S is distributive, m (a,b,c) = m(a,b,c). For a fixed ele­

ment n of S, let us introduce a ternary operation M , defined by 

M (x,y,z) = m (xAn,yAn, zAn)vm(x, y, z); x,y,zeS. Notice that 

(xAn,yAn,ZAn) always exists in S. But also we have: m 

Lemma 3.2. In a medial nearlattice S with neS, M (x,y,z) 

always exists for all x,y,zeS. 

Proof. Notice that m (xAn,yAn,zAn), xAy± m(x,n,y), 

m (xAn,yAn,zAn), yAZ£m(y,n,z) and m (xAn,yAn,ZAU), ZAX£m(z,n,x). 

Then by the upper bound property and the three property both 

m (xAn,yAn,zAn)v(z/\x ) and m (xAn ,yAn , zAn)v(xAy) V(VAZ) exist. 

Thus a second application of the three property yields the exis­

tence of M (x,y ,z). D 

Note that if n is nearly neutral in a nearlattice S, 

M (x,y,z)= ((xr.y)A(ynz)A(zr\x)An)vm(x,y ,z) ,and when n is neutral, 

M (x,y,z>\n = (xoy )A(ynz) A(zr.x)An. Also if S is a lattice and n 

is neutral, M (x,y,z) = (m (x ,y ,z)An)vm(x,y ,z) = m (x,y,z)A 

A(nvm(x,y,z)). 

Of course m(x,y,z) and M (x,y,z) are symmetric in x,y and 

z, whereas j(x,y,z) and 3 (x,y,z) are not. Thus, the operations 
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m and M are better behaved and easier to handle than the opera­

tions j and 3 respectively. 

The following proposition is easily verifiable and so is 

given without proof. 

Proposition 3 . 3 . For an element n of a medial nearlattice 

S, M (x,y,z) = m(x,y,z) for all x,y,zeS if and only if (nl is 

a distributive l a t t i c e . 

Hence in a distributive medial nearlattice S, M (x,y,z) = 

= m(x,y,z) for all x , y , z € S . D 

Now we present the following interesting result which ex­

tends Theorem 2 . 6 . 

Theorem 3 .4 . Suppose n is a neutral sesquimedial element 

of a nearlattice S. Then the following conditions are equivalent. 

(i) S is medial; s 

(ii) S is a medial nearlattice and m n(x, y,z) = M (x,y,z) 

for all x,y,z £ S. 

Moreover, (i) does not necessarily imply (ii) when n is 

merely nearly neutral. 

Proof. (i) =-> (ii). Since n is neutral, 

M (x,y,z)An = (xoy)A(you)A(zox)An. 

By [2,Th. 2.41, 

MR(x,y,z)s m(x,y,z)(9n) 

and x o y s x A y ( © ) . Thus, (xoy ) A ( M (x ,y ,z) -a XAy(Q ) . S i m i l a r l y , 

(yoz)AMn(x , y.z) s yAz(© n ) , 

and 

( zox )AM n ( x , y , z ) s Z A x ( 9 n ) . 

Then using the technique of the proof of (i) =•> (ii) in Theorem 

2.6, we obtain <xny,yoz,znx>n = <M (x,y,z)> , and (ii) follows 

from the isomorphism of (S ;S.) and (P (S);£). 

(ii) «-̂  (i). Adjoint a new 0 in S and form (S;0) Then by 

2.10, 0 is neutral and medial in (S;0) . Thus (S;0) is medial 

as S is medial. Hence, by (i) «-£• (ii), ((S;0) ) is medial. But 

((S;0) ) = (S;0) by 2.10, and so S is medial as required. 

For the final assertion consider the lattice of Figure 1, 

where n is nearly neutral but not neutral. But its isotope, 
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given by Figure 2 is not medial. Q 

It is well-known by Kolibiar [61 that if L is a lattice 

with 0 and 1 and n is central in it, then L is also a bounded 

lattice with n and n' as the smallest and the largest elements 

respectively, where xuy = m(x,n',y) for all x,yeL. 

An element n in a lattice L is called central if it is ne­

utral and complemented in each interval containing it. 

We conclude this paper with the following extension of Ko-

libiar's result. 

Proposition 3.5. Suppose L is a lattice and neL is stan­

dard. Then the isotope L is a lattice if and only if n is cent-
r n J 

ral in L. 

Proof. Since n is standard, (L;£) and (P (L);£.) are isomor­

phic by 2.2. Thus, L is a lattice if and only if PR(L) is a lat­

tice, i.e. if and only if n is complemented in each interval con­

taining it. Consequently, the result follows by C2,Th. 3.5]. 

Figure 2 
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