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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,1 (1987) 

DIMENSION STABLE POSETS 
Stephen D. COMER' 

Abstract: The notion of at dimension stable poset is introdu­
ced and the minimal members of this class are investigated. The 
minimal stable posets of dimension 2 are completely described and 
the general crowns which are minimal stable, are determined. In 
particular, there are an infinite number'of minimal stable posets 
for each dimension greater than 1. 

Key words: Poset, linear extension, dimension, crown, gree­
dy , stable. 

Classification: Primary 06A10 

Secondary 06A05 

1. Introduction. Throughout we assume that P is a finite po­

s e t . The underlying set of a poset P will also be denoted by P 

while the order relation is written as & Q (or, as .£ if there 

is no confusion). A collection *£ of linear extensions of P whose 

intersection is the order relation on P is called a realizer of 

P. The dimension of P, introduced by Dushnik and Miller £13 and 

written as dim(P), is defined as the minimum size of a realizer 

of P. 

The class of general crowns S was introduced in Trotter [53. 

These posets will be considered in seqtion 4. For n,k>0 the crown 

S is defined as a poset of height 1 with n+k maximal elements 

a,,...,a . and n+k minimal elements b-,,... ,b k. The ordering in 

S* is defined by bi< a. iff j£fi,i+l,...,i+kj. (Subscripts are 

added modulo n+k.) The set of maximal elements is denoted by A 

and the set of all minimal elements is denoted by B. For bcB, 

let K b ) denote the set of all a c A incomparable to b. For acA 

the set 1(a) is defined dually. Note that |1(a)|=|l(b)|=k+l for 
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all a e A and be B. 

A point x in a poset P is unstable if dim(P-tx})< dim(P). 

A poset is called irreducible if every point in it is unstable. 

Irreducible posets have been extensively studied; in particular, 

the crowns that are irreducible are described in C3j. Posets with 

a "small" amount of unstability seem to have been neglected. We 

call a poset P (d imension ) stable if it has no unstable p o i n t s . 

A stable poset is d-stable if it has dimension d. The class of 

d-stable posets is large. Section 2 contains some simple observa­

tions about the class of d-stable posets. In particular, the 

class is determined by its minimal mepbers, that is, d-stable po­

sets for which the removal of some element produces a poset that 

is not d-stable. We say that a poset is minimal stable if it is 

a stable poset such that removing some pair of elements lowers 

the dimension. In sections 3 and 4 we describe the minimal 2-stab-

le posets and determine the. crowns S that are minimal stable. 

2. Stable posets. In this section we initiate a study of 

d-stable posets. The first result follows immediately from the 

definitions. It says that the class of stable posets is a filter 

(that is an upward closed subset) in the poset of all isomorphism 

types of dimension d posets and that this filter is generated by 

the minimal stable posets. 

Proposition 1. (1) A poset of dimension d that extends a 

d-stable poset is d-stable. 

(2) Every d-stable poset contains a minimal d-stable poset. 

The next goal is to show that every poset is embeddable in 

a stable poset. The following notation is needed for the const­

ruction. For xeP, let L(x) denote the set of all elements in P 

covered by x and let U(x) denote the set of elements in P which 

cover x. The lemma below gives properties of an extension of P 

obtained by adding a new element to act like an old one. 

Lemma 1. Suppose x is a point in a poset P and x' is a new 

symbol not in P. Form a poset P(x) with universe PU^x'l and order 

relation generated by £DU<.'L(x)x {x'}} U(4x "i x U(x)). Then 

(1) P(x) is* a "conservative" extension of P, i.e., for a,b€P, 

a -£p(x)
D iff a £ pb. 

(2) if dim(P)z2, dim P=dim P(x). 
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Proof.% ( 1 ) is clear. (2) Removing the new element x' from 

each linear extension in a realizer for P(x) produces a realizer 

for P by (1). Thus, dim P:£dim P(x). Now, suppose {L,,...,L.^ is 

a minimal realizer for P where d=dim(P)7-2. Form L^ from L. by 

replacing x in L. by either x, x' or x', x making sure that each 

pair is used at least once. (This is possible since d>2.) Cle­

arly each L.' is a linear extension of ^p( x\. Now suppose a,bcP(x) 

and (a,b) 4--p/x) • If a,bcP, then a is over b in some L., hence 

in some l'.. If -ta,b$ = {x,x *}, then, by the definition of the exten­

sions, a is over b in some L'.. If a = x' and x+beP, it follows 

that (x,b)4--==p. So, x is over b in^some L-. Hence, x and x' are 

over b in X1. The case of b = x ' is similar, ̂ so -CL-T,. . . ,L^ I is a 
realizer for P(x) and dim P=dim P(x). Q 

Lemma 2. If x is an unstable element in P, dim(P)> 2 and y 

is unstable in P(x), then y is unstable in P and y#x. * 

Proof. By Lemma 1, if y is unstable in P(x), y=j=x and y%x'; 

so y is unstable in P. Q 

Proposition 2. If a poset is not stable, it is embeddable 

in a minimal stable poset. 

Proof. The result is clear for P with dim(P)=l since such 

a poset is stable if |P|r2. For dim(P)>2 and P not stable, the 

result follows by iterating the construction in Lemma 1. Inducti­

on on the number of unstable elements in P is justified by Lemma 

2. Q 

Note that the construction in Lemma 1 can also be used to 

show that every finite poset has an infinite number of stable, 

extensions. 

3. Minimal 2-stabie posets. In this section we describe the 

minimal stable posets of dimension 2. We begin the classification 

by identifying special posets. A poset is called absolute minimal 

stable if it is minimal stable and no proper subposet is stable. 

For example, all of the posets in Fig. 1 are minimal 2-stable; 

however, Q and R are not absolute since they contain P, as a pro­

per subposet. 

The next result implies that P,, P2, P3 and P. are the only 

absolute minimal 2-stable posets . 
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Proposition 3. Every minimal 2-stable poset contains one 

of P p P2, P3 or P4. 

Proof. Suppose P is a minimal 2-stable poset. If P contains 

an antichain of size -2T3, then P contafns P,. Otherwise, every 

antichain in P has size 2. If P contains only one antichain, de­

leting one of its elements reduces the dimension. So P must have 

at least 2 antichains (of size 2), call one A and another B. 

Every element in A is comparable with some element in B. (Other­

wise, adding it to B creates an antichain of size 3.) If each 

element in A is comparable with exactly one element of B, then P 

contains P2> If some element of A is comparable with both ele­

ments of B, then P contains P, or P.. D 

The classification of all minimal 2-stable posets is obtain­

ed by combining-an absolute minimal stable poset with a chain in 

various ways. Six infinite families r e s u l t . They can be defined 

using the notion of an ordinal sum of posets (see 123). In parti­

cular, let n denote an n-element chain, A ($> B denote the linear 

sum of A and B, and A+B denote the disjoint sum of A and B. Thus, 

for example, (k €> (n+1̂ ) © £)+JL^which is A(0,k,n,m,0) below) is 

the poset Q« in Fig. 2. The posets Q,, Q2, and Q, are ordinal 

sums of Q, P, and R, respectively. 

We now define several infinite families of posets: 

(i) A(r,k,n,m,s)=£ © (k ® (£I+i) & 2)+D ® £ where n > 1 and 

r,s,m,k 20. 

(ii) B(r,k,n,m,s)=£ © Q|(k,n,m)® s where k,m>l and n,r,s,>0 

(iii) C(k,n,m)=k ® (n+2:) €> m where n *> 2 and k,it.>. 0. 

(iv) D(r ,n,m,s)=£ ® Q2(n,m)©s where n,m2rl and r»s>0 

(v) E(r ,k,n,m,s)=£ ® Qs*i)®J2 ®^E +i)®£ where k,n,m>l and 

r,s TQ 

(vi) F(r,ktn,m,s)=r ® Q5(k,n,m) © s_ where n,r,s.>0 and k,m>l.? 

Notice that each class of posets, except D, is closed under 

duals. The posets of type A, B, C, D, E and F listed above are 

all minimal 2-stable. The main result of this section is that the 

list above is complete. 

Proposition 4. Suppose P is a minimal 2-stable poset. 

(1) If P contains P p it is isomorphic to a poset of type A 

Or type B with n>0. 

(2) If P contains P2, but not P,t it is isomorphic to a poset 
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of type C. 

(3) If P contains P-j, but neither P, nor P., it is isomorphic to 

a poset of type D (or its dual), a poset of type E, or a poset of 

type B with n=0 . 

(4) If P contains P., it is isomorphic to a poset of type F. 

Proof. (1) If P is minimal stable and contains an antichain 

of size 3, two elements from this antichain must be removed to 

drop the dimension. The result will be a chain. Thus, P can be 

constructed from a chain L by adjoining a two element antichain 

-£x,y"$ in such a way that both x and y are incomparable to some 

element in L. There are various possibilities depending upon whe­

ther or not each of x and y is incomparable from all elements in 

L, below some element in L, above some element in L, or both . 

The table below enumerates the joint possibilities where the entt 

ry corresponding to a row and column is the type of poset speci­

fied by the c o n d i t i o n s . We write x H L to mean that x is incompa­

rable with all elements of L, x<L to mean that x<c for some 

ceL, e t c . In all cases n > 0 . 

x И L x < L x > L L-<: x < L 

У II L A ( 0 , 0 , n , 0 , 0 ) A(0,0,n,m,0) A ( 0 , k , n , 0 , 0 ) A(O,k,n,m,0) 

У < L A(0,0,n,m,0) A(0,0,n,m,s) B ( 0 , k , n , 0 , 0 ) A(0,k,n,m,s) 
B(0,k,n,m,s) 

L < У A ( 0 , k , n , 0 , 0 ) B(0,k,n,m,0) A ( г , k , n , 0 , 0 ) A (r,k,n,m,0 ) 
B(r ,k,n,m,0 ) 

L< y < L A(0,k,n,m,0) A(0,k,n,m,s) 
B(0,k,n,m,s) 

A ( r , k, п, m, 0 ) 
B (r,k,n,m,0 ) 

A(г,k,n,m,s) 
B(r ,k,n,m,s) 

The proof of parts (2), (3) and (4) is s i m i l a r . 13 

4. Minimal stable crowns. In C33 conditions on n and k are 

given which determine when the crown S is i r r e d u c i b l e . If S is 

not irreducible, it is stable! (This follows from the observation 

that dim(S --Cx})=dim(S^) for all x whenever it holds for some x; 

a result which is a consequence of the faci that the automorphism 

k ' 

group of S
R
 is transitive on the minimal (maximal) e l e m e n t s . ) In 

this section we determine which crowns are minimal stable. 

I, 

Proposition 5. A crown S is a minimal d-stable poset if and 

only if n and k satisfy one of the following conditions: 

(1) k=l and n+l=3q (so d=2q), 

(2) n+k*q(k+2)+2 (so d=2q+l), 
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(3) n+k=q(k+2)+[(k+2)/23+l where k is an even positive integer 

(so d=2q+2). 

Proof . The arguments are only sketched since the techniques 

are very similar to those used in 133 to characterize the irredu­

cible crowns . 

If Sn is a minimal d-stable poset, dim(S^- i x ,yD=dim(sJ^)-l 
for some x, y . Using the observation that, for crowns, stable is 

the same as not irreducible, and comparing the weights of the po-

sets involved with the weights of linear extensions (as in Theo­

rem 5.8 of [3]) it follows that one of the following four condi­
tions must hold: 

(i) n+k=q(k+2) where k=l or k=2, 

(ii) n+k=q(k+2)+2> 

(iii) n+k=q(k+2)+E(k+2)/23+l where k is a positive even 

integer, 

(iv) n+k=q(k+2)+I(k+2)/23+2 

We next observe that in case (i) k=2 is impossible and case 

(iv) is also impossible . The argument for k=2 in (i) and for k 

even and positive in (iv) is similar to the proof of Theorem 5.6 
of D3 in the k even and positive case. This works because if 

Sn- ix»y$ lowers the dimension in these cases, each linear exten­

sion in a minimal realizer must have maximal possible weight. 
This is not the case when k is odd and positive in (iv), but a 

modification of the argument still works. There are four cases 

to be considered depending upon whether x, y are both minimal 

(maximal) in S or one of each and whether |l(x)oKy)| is 0 or 

1 . For sake of this sketch we assume x ,y t=B . Assuming that 

Sn-*Cx,y! has a realizer 4L, , . . . i l-on+il it is possible to show 
(along the lines of the argument in Theorem 5.6 of [33there exists 

another realizer Lp • ••»L2q'L2q+l w h e r e e a c h Li h a S m a x i m a l 

possible weight and L2 , m u s t p l a c e t+l=t(k+2)/23 elements of B 

over k+1 elements of A. This is impossible since each b€B is in­

comparable with a different subset of A s*f size k+1 . 

It remains to see that S„ is minimal stable in case (i) 
* "" n k 
with k=l and in cases (ii) and ( i i i ) . Crowns S_ in (i) with k=l 

t 1 
have the form SZ « where q £ 1. Since S-, 2 is (2q+2)-stable it 

suffices to see that the poset P obtained by removing a-. 2 and 
a3q+3 h a s d i m e n s i o n 2q+l. If 4 L-^,L2,. . . ,L2 2 J is the realizer 
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for si - constructed on pp. 90-91 d"f t3] and if L extends 

tal'b3q*l'b3q'a3q+l'b3q-l3 

(remember, in £33, larger elements are listed before smaller ones), 

the chains -i L, ,L-pL*, ... ,L2n,L , L 2 2 1 restrict to a realizer of P 

with size 2q+l. It follows that S, 2 is minimal stable. 

Case (i'i) is similar. It suffices to construct a realizer of 
Is 

size 2q for the poset obtained from S by removing a . , and 

a . . Again, using the notation from pp. 90-91 of 133, such a rea-

lizer is U1,L3,L4,...>L2q,L2q+2.. 

To show that S is a minimal (2q+2)-stable poset where n, k 

are given in case (iii) the construction in Theorem 4.8 of [33 is 

employed. It suffices to construct 2q+l linear extensions that 

realize S ~{a .,b J where k=2t. Th is is done in the following 

way. Partition A into sets A. and I. as in the argument cited 

and form linear extensions Lo>•••»L2a+l c o r r e sP o nd i n9 t o 

I2,...,I2 .. Now form L' by ordering I, by increasing subscripts, 

placing the last t+1 elements of A , above these elements in 

decreasing subscript order, and finally inserting the elements 
2t of I(a,) in the list a,s high as allowed by the ordering on S . 

The collection -lL ' ,L2,.. . ,L2 ,1 is the desired realizer. This 

completes the proof of Proposition 5. 

From the number-theoretic conditions in Proposition 5 we ob­

tain 

Corollary. There exist an infinite number of minimal d-

stable posets for each d£3. 

Other infinite families of minimal stable posets can be ob-
k ' ained from non-minimal stable S s by removing one, two,... 

.. elements. It may be worth classifying these clipped crowns. 
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