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COMMENTATIONES MATHEMATICAE UNIVEKSITATIS CAROLINAE 

20,1 (1987) 

INTERIOR REGULARITY FOR THE QUASILINEAR ELLIPTIC 
SYSTEMS WITH NONSMOOTH COEFFICIENTS 

Jin KOTTAS 

Abstract: The interior C'—regularity for a weak soluti­
on of the quasilinear second order elliptic system is investiga­
t e d . The positive answer is obtained for systems which are "not 
far" from the Laplace equations . This situation is described by 
means of the dispersion of eigenvalues of the coefficients mat­
r ix . 

Key words: Quasilinear elliptic systems, interior regula­
rity. 

Classification: 35B65, 35360 

1. Introduction. The paper deals with C°'^-regularity of 

solutions of second order quasilineNar elliptic systems with non-

smooth coefficients satisfying certain conditions of the dispersi­

on of eigenvalues .Jhis condition was firstly established by A . l . 

Koshelev.(See 133 for references.)0ur aim is to obtain a simpler 

proof and to this end we use a modification of the method of 3. 

NeSas for smooth coefficients described in [21. We consider a 

slightly more general condition of ellipticity than in C33 

(whiten does not guarantee unicity of solutions of Oirichlet pro­

blem) and we prove that every weak solution is locally Holder-

continuous. 

2. Notations and definitions. We consider the quasilinear 

system 

(2.1) ^ Z .2, M a ? ? (x,u) DA u
3)*0 i*l,...,m, 

where u= £u ,...,um3 is a vector function defined on a bounded 

domain Sic (Rn. 

The coefficients a*? : .ft*. iR1*1 — * R are bounded Carath^odo-

ry functions, symmetric (i.e. a?? =a!?^) and satisfying the fol­

lowing ellipticity condition: 
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( 2 .2 ) there are two positive numbers ft , ft, such that the ine­

qualities 

\ \ $ |2-^<A(x,p)f if>£\\l\2 

hold for all | e IR m*n, p e R m and a .e. x e il • 

A denotes here the matrix of coefficients (a?f)f '^l' " *'"• 

K ; > is the inner product on the Euclidean space IK (k-iiixn), 

| | is the norm generated by this inner product . 

In what follows, we shall suppose that m > 2 , n ^ 2 . 

• i l Definition 2.1. ' We say that the function u & l , ( 

shall write W2 loc(il) instead of £ W* loc(il)3 ) is a wea 

,(Jl) (we 

sak soluti­

on of the system (2.1) if for each 9? € 13) (SI) we have 

J <A(x,u) Du;D9?>dx = 0. 

Definition 2.2. The system (2.1) is said to be regular if 

each weak solution of (2.1) is locally Holder-continuous on il* 

We shall use so called Campanato spaces (denoted by 
o n * 

S&2 a(il) or L2:x(ii) - see C4J) which are for ft e 3n,n+23 isomor­

phic to the spaces C0,0C(IL) with oc = A^I! 

Introduce now in B n the polar coordinates with the origin 

at the point y: 

x1-y1=r c o s y p x2-y2=r sin <?l cos92,..., xn-rvn-rr sin ?r • • sin ̂ n-2 cos *Vl> 
xn-yn=r sin 9 l ... sin ^ 

and define the symbols d,v,..., d v as 

n - r sin 9 > r . . s i n <p^2 3 ^ . - / 

Denote further D„v= [ $ 2 v , . . . , ̂ nvD, 

B(y,R)= Kx e l R n
; | x - y | < R } , 

S(y,R)= 4x s fcn;|x-y|=Rj. 

It is clear that for xeS(y,R), (D«v)(x) is the vector of deriva­

tives of v in tangent directipns to the sphere S(y,R). Put 

u R= iflî  -«ti f u dx ( (U/ is the Lebesgue measure on JRn) 

and finally B ty>*> • 
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K(п)-
 n _ 1 l 

7 'J I 

5
- Soft theorem. We present here Theorem 3.1 which is weak­

er than Theorem 4.1, because it can be proved in a transparent 

way. 

Theorem 3.1. Let ^-^^—. Then the system (2.1) is regular 

Remark 3.2. Each solution of the quasilinear system (2.1) 

is also the solution of the linear system* with bounded measurable 

coefficients (bf /* (x)=a^/
5
 (x,u(x)), which satisfies the conditi­

ons (2.2) with the same constants & , •*,, hence it is sufficient 

to prove the theorem only for linear systems. 

Proof: Let'u be a weak solution of the system (2.1) and let 

J2.cc XL. In order to prove that u e C°i€C( .XL ) we have to show 
that for some $ > n the function g(xQ,R)=R~" Jl. ^ |u-ux R| dx 

is bounded on the set M= Xfc«x30;d[, where d= A dist( -XL , Q£l). 
Using PoincartS inequality 

f |u-uv p|
2 dx^c R2 X , ^v |Du|

2 dx 

we can see that it suffices for some ̂  > n-2 to show the bounded-
ness of the function 

f(xn,R)=R-
y /B(x R) |Du|

2 dx on M. 

The function f is bounded on the set Jl-x-ld}, hence it suffices 
to prove that M(x Q,R)> 0 for all xQ c XI-̂  and a.e. Rc30,d(. 

The derivative ̂  exists for all xQ e J-̂  and a.e. Rc30,d[ and ' 

& = - T R ' ^ I r |0u|2 dx+R-r f . |ou|2 dS. 

For (xn>R)e M we denote v=v(x,xri,R) 
u 1 

the veotor function which is a weak solution in Wi(B(x ,R)) of the 
system 

Av3=o j = l,...,m 
and satisfies the stable boundary condition u-ve §2^ B^ xo» R^* 

Now we shall prove two lemmas to finish the proof of the 
theorem. 

Lemma 3.3. For all (x ,R)eM the inequality 
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(3-1} / a f J , „ R ) , D u , 2 d x ^ - ^ / 8 ^ , R ) > 0 v , 2 d x 

holds. 

Lemma 3.4. Let for some a e 31 ,~-~|[and for all (xQ,R)e M 

Then 
/ •C^W , 0 u | 2 d x r f i 4 x ^ ' D v l 2 d x ^ 

u6C0,flf(I1) with ocx 1(12̂ 1 . n+2). 
Proof of Lemma 3.3, It is easy to see that 

/ B ^ , R ) < A 0 U : D ( V - U ) > d x = ° 
and 

f$(x R ) ^ D v » D ( v ~ u ) ^ dx*0; hence 

W , R ) , D vl 2 dx".fc6tJ,R>
<Ov'0u> dx-

Now usinQ the condition (2.2) and the symmetry of A we obtain 

k , R ) , 0 u l 2 d X * ^ /B<*,,R)<^Du>0u>dx " 

*k W R > < *
 Dv'0v> ^ - - i - /BCye)R><^0(v-u),0(v-u)>dx^ 

*r0 / B ^ , R > , D v | 2 dx" W * > ,0(v-u)|2 dx * 
= ^ W R ) | 0 V | 2 dX

 - / B O C R ) ' 0 ^ 2 dx+2 /BCof./R><Dv;Ou>dx -

' /eU.,R>,0ul2 dx "(1+ 3£> k » ) l D ^ dx - 1BC*wR>,Dul2 dx-
An easy calculation gives (3.1). 

Proof of Lemma3.4. For a weak solution we W2(B(xQ,R)) of 

the system Aw^-^0 /j*l,...,m the estimate 

2 dS 
/B(»..,R>,Dw,2 dx*rrrr Js<x.M0*" 

holds.. See £23. 
As DgU*0gV on S(x fR) and |Dgu| «* |0u| , we get fro« here 

/B(«.,R>.,DUI2 dx*9/8C1(#,R>,Dv,2 dx*n?f / S U ^ V 2 dS • 

" H-T 4cNfR>
,DBul2 d S*n-T / s ^ R ) ! 0 " ! 2 dS-

It easily follows that 

« / S ^ R ) ! 0 - ! 2 dS - ^ rB«vw|Du|2 d x *°-
Put f* 2 ~ . Than 



W(xo'R)eR"rjG^,R)|0u|2 ^ ^ " ^ - t ^ ^ l ^ l 2 d x * ° * 
Q.E.D. 

4. Hard theorem 

Theorem 4.1. Let -*p>K(n). Then the system (2.1) is regular. 

Proof: Let us introduce the function space (see C33) 

H« .(il)= ̂ uewj(il); sup_ fj0u|2 I x - x V * dx -*- <*>} 

equipped with the norm , 

| U | H 2 , / " a ) l ( ^ ' U | 2 d X V P ^ - -k|Du|2 l x- xol^ d x> 7' 
This space is for .ft > n-2 imbedded into the space C0' (JX.) with 

oC= -|(A-n+2). 

Let h be a non-zero element of 2) ( Rn)» supp he 8(0,1), hiO. 

Denote hk(x)=ckh(kx), k e W , where ck are constants such 
that 

4* vx) dxsi 

l e t J--2
 c c -^ic c -^» ^-^"i i s sufficiently smooth. 

Put R* ^ d ist(Jl2 , $1-^), a^asO on [Rn\ Jl and k a ^ . ^ k * a * f . 

Then lira kaf f(x)=a1^(x) a.e. on Jl and matrices k A satisfy (for 
M,-+co i j l j 

k > k„) on St. the condition (2.2) with the same constants A , X,. 
o x o* 1 

The boundary value problem 

4<kAfluk,0y> =0 V y e S ^ J i p , uk-u e§*( Jip 
1 has a uniquely determined solution ukeW£(I---) for each k> k . 

Obviously 

Juki«J(il)^cCAo'A> lulwl/2
(/aiXl>-

The space wi(lL.) is reflexive and so we can suppose that uk is 

weakly convergent to some vewi(Jl,). 

The set V* 4,w € td2( il1), w-uc8 2| is convex and closed, hence it 

is weakly closed and v-ueW^il,). Now we can apply the well 

known convergence lemma (see til, chapt. 4) to see that v is a 

weak solution of the system (2.1) and hence - because of the uni­

queness - v=u. 

The function u is the weak limit of the sequence iu^ ^>k 
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in wi( SL) and hence it is the strong limit in L2(-Q-2) so we can 
suppose that 

.liro u
u
(x)=u(x) a.e. on li­

lt-*®
 K 

All functions uk are of the class c i o C ( - ^ - i ) - Choose x

0 e i X 2 , 

TJC 3 ( B ( x 0 , 2 R ) ) , «l =1 on B(xQ,R), | 0 ^ | < | , and y = t ^ , . . . , Ym3e 
e S)( IK n ). Then 

4-n<
k
A

n
v"

k
n)»

n
Y>dx = 

- X^<
k
Au

k
P^,Dy> dx-/^<

k
/^Du

k
,D^

r
> dx. 

2 
Putting f = T-f-r-. we can rewrite the last equality as 

( 4 1 > 4-< D ( u k 1 J ) i D Y> d x =^< ( i-T k ' A ) ( I ) ( u k' > i> + 'r k Auk D l . : ° r > d x -

• "
y
4 *

< k
A

Du
k>

D
'

,
l

,
f>

 dx
-

Now we can apply 

Leroroa 4.3. Let v,g,f be from 2)((R
n
), x * R

n
, n > 3 , and 

let for all f « 3 ( I R
n
) 

/R,»<Dv,Dy>dx- ґ ^ f . D ү ) d x + /R<r.Bydx 

Then for A & (n-2,n) and e > 0 exist k=k( e , A ) > 0 and a=a(-j\ ) > 0 

such that 2 

JjDv|2|x-xJ-*dx*ei+e)-U)(l*%f.L) Vl f l 2 l x - X

0 l"* d x + 

+k / I RJвl2lx-x0F* ł 2
 dx 

and lirn a ( A ) = l. 
a-*(*t^2)+ 

We omit the proof of this lemroa. It can be found in a slight­
ly modified form in ".2"}. 

Note that we are to prove this theorem only for n_^3. In the 
case n=2, every system (2.1) is regular. (It follows e.g. froro 
Theorem 3.1.) 

From (4.1) and from the conclusion of Lemroa 4.3 we obtain 
for & and cf positive 

/ R J D ( u k*O I 2 l x -x o r* dx*(l+e)a(A )(l+ -£§--). 
• 4j (I-yk^)D(uk n) + r

k/AukD-i|2|x-x0|-A dx + 

+K, ^ J ^ D u . D r i ^ l x - x J - ^ d x ^ 
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* U + «.)<-+ «Oa(A )<l+ ( ^ p ) / ^ J C I - r ^ )D(ukii ) | 2 , x - x o r A dx+ 

^ 2 t v i k A u k o n | 2 | x - x o r A ^ / R J k A D u

k

D n i 2 i - x 0 r A + 2 ^ ^ 

^(X
+
0(l^)

a
(A)(l

+
i^i-)(^)

2
/

R
JO(u

k12
)|

2
,x-x

0
,^

 + 

+K3 4 ^ i u k i 2 + i D u

k i 2 > d
* 

since supp |DTJ , c P=B(x
0
,2R)\ B(x

0
,R) and the function 

ID* . I |x-x
0
,~ is bounded on P. 

Now we have Tr^KCn)
 ar|

d
 s o w e G a n

 choose positive 6 ; C " and 
i\ > n-2 such that 

OL -•?. ? 

( l + e ) ( l + C Г ) a ( Л
, ) (ÿ I з г ° ) 2 ( i + ІŁŞ2)<1 

and hence 
. 2 . „ ,-Ä v* •'•'" љ,' гb> 

- c C H 1 . l J 2 . ^ . ^ l « l | J i / 2 ( t U > i )

) -

If we take into account the definition of the space H« <% (-&
2
) and 

its imbedding into C
0
' ( i L 2 ) we have for x,y c il

2 

u
k
(x)-u

k
(y) 

i - n — £ — i^c» 
|x-y| 

where C does not depend on k. Letting k -~>oo we obtain the con­

clusion of the theorem. 

5. Open problems 

a) Is the estimate a< —-» in Lemma 3.4 sharp ? 

b) It is a well known fact that in the case n=2 or m=l is 

the system (2.1) regular. The case n=2 is the consequence of the 

theorem 3.1, but our condition on -r°- does not take into account 

the number of the equations m. It would be better to have condi­

tions in the form 

*n 
^ > K ( m , n ) . 
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