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INTERIOR REGULARITY FOR THE QUASILINEAR ELLIPTIC
SYSTEMS WITH NONSMOOTH COEFFICIENTS
Jiti KOTTAS

!

Abstract: The interior C°’qiregularity for a weak soluti-
on of the quasilinear second order elliptic system is investiga-
ted. The positive answer is obtained for systems which are "not
far" from the Laplace equations. This situation is described by

means of the dispersion of eigenvalues of the coefficients mat-
rix. .

Key words: Quasilinear elliptic systems, interior regula-
rity.
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1. Introduction. The paper deals with co» -regularity of
solutions of second order quasilinear elliptic systems with non-
smooth coefficients satisfying certain conditions of the dispersi-
on of eigenvalues . This condition was firstly established by A.I.
Koshelev.(See [3] for references.)Our aim is to obtain a simpler
proof and to this end we use a modification of the method of J.
Netas for smooth coefficients described in [2]. We consider a
slightly more general condition of ellipticity than in [3)

(whirh does not guarantee unicity of solutions of Dirichlet pro-

blem) and we prove that every weak solution is locally Holder-
continuous.

2. Notations and definitions. We consider the quasilinear
system

s 2 3 h]
(2.1) ‘"hEa iga Dx(aij (x,u) Dp u )=0 i=1,...,m,
where u= [ul,...,um) is a vector .function defined on a bounded

domain e R".

The coefficients ai :1x R™—~» R are bounded Carathéodo-
ry functions, symmetric %1 d‘“ -aji~) and satisfying the fol-

lowing ellipticity condition:
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(2.2) There are two positive numbers ?\o, ?\1 such that the ine-
qualities
2 2
?\ol § | é_(lA(x,p)g ; §>é~7‘1|§.|

hold for all § € R ™N peR™ and a.e. x e -

A denotes here the matrix of coefficients (alf);/; i

<{ ;7 1is the inner product on the Euclidean space IR (k=mx n),
| | is the norm generated by this inner product.
In what follows, we shall suppose that m22, nZ 2.

Definition 2.1.  We say that the function ueN2 1o (.ﬂ.) (we
e
shall write N2 loc(.Q_) instead of [Nz loc(‘ﬁ N™ is a weak soluti-
on of the system (2.1) if for each gpe 2 (fL) we have
fn <{A(x,u) Du;Dg> dx=0.
Definition 2.2. The systém (2.1) is said to be regular if
each weak solution of (2.1) is locally Holder-continuous on fl.

We shall use so called Campanato spaces (denoted by
£ 9\(‘0') or L2 ?‘(S).) - see [4) which are for A e 1n,n+2) isomor-

phic to the spaces C%'*(JFL) with o = &22
Introduce now in R" the polar coordinates with the origin
at the point y: \

X1-Y)=T €OS Py, Xp-yo=T sin Py €COS Po, .-y
Xn-1"Yn-17T 8in Py sing,_, cos@ _,,
Xq~Yp=r sing, ... sing , .
and define the symbols alv,..., anv as
av=6v’ av=lav, dvs — L Qv ,
17" 3t 2'°T 3971 3 T sing; ‘ggzz

a_v= 1 Ov
T Teing:..sing. 5 By, 1"

Denote further Dgv= [azv,..., 6nv],
B(y,R)= {xéR";Ix-yl< R},
S(y,R)= x € R™;|x-y|=R}.

It is clear that for x e S(y,R), (DBV)(X) is the vector of deriva-
tives of v in tangent directions to the sphere S(y,R). Put

y RS 1 f u dx ( w is the Lebesgue measure on \Rn)

(ag,R)
and finally 8 (y,R .
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,h (n-2)2 -1

K(n)= o
1*(0-2)
n-

3. Soft theorem. We present here Theorem 3.1 which is weak-
er than Theorem 4.1

way.

, because it can be proved in a transparent

Theorem 3.1. Let #7%2 Then the system (2.1) is regular

Remark 3.2. Each solution of the quasilinear system (2.1)
is also the solution of the linear system' with bounded measurable
coefficients (bff(x):afjﬁ (x,u(x)), which satisfies the conditi-
ons (2.2) with the same constants A 11, hence it is sufficient
to prove the theorem only for linear systems.

Proof: Let'u be a weak solution of the system (2.1) and let
-Qlc c 1. In order to prove that ueC®*(IL) we have to show

that for some > n the function g(xg ,R)=R"P f(x 2 Iu-ux R|2dx
D’
is bounded on the set M={ xJO d[, where d= 7 dlst(ﬂ al).

Using Poincaré inequality

2 . o2 2.
- £ d
/;(x,,ﬂlu uXO’Rl dx<c R ‘[l;(:o,R) |Du] X

we can see that it suffices for some ¥ > n-2 to show the bounded-
ness of the function

o7 2
£(x,,R)=R fb(x R [oul? dx on M.

The function £ 15 bounded on the set .le {d%, hence it suffices
to prove that N R)>0 for all x, e .Q. and a.e. RG]U dl.

The derivative ‘SR exists for all Xg € 12 and a.e. Reg 10,dl and 4
of -y-1 2 -7
= - R Du dx+R
Eod ¥ fa(& |Dul fs( %,R)

For (x,,R)e M we denote v= v(x,xg,R)

the veotor Iunction which is a weak solutmn in W (B(x ,R)) of the
system

loul? ds.

Avi=o 3=1,...,m
and satisfies the stable boundary condition u—veﬁl(a(x R))

Now we shall prove two lemmas to finish the proof of the
theorem.

~

Lemma 3.3. For all (xo,R)eM the inequality
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A+
2 .1 2
G0 [, p0v] x & ~Lyy Js Ry lovI? o
holds.
n-1
Lemma 3.4. Let for some ae]l,m[and for all (xo,R)eM

[ou]? dx £a ylov]? ax.

fBﬁ(g,R) B(XO‘)R

Then
ue CO ) with o= H(25L - ne2).

Proof of Lemma 3.3. It is easy to see that

<A Du;D(v-u)) dx=0

J B(x,, R)
and

fB(X., R)< Dv;D(v-u)) dx=0; hence

2 o
Jaeco, Ry 10V dx:fs(x,,R3< Dv;Du? dx.

Now using the condition (2.2) and the symmetry of A we obtain
2 1 ) i
fscx,,&)'oul °""a‘o‘ fg(,,‘,mw\ Du,Du) dx =

= i-: fB(.x,,R)<A Ov;0v> dx.- 51\-; fa(meKA D('v-u).D(v-u)7 dx £

"a_o' fs(x,,R) ‘DV' dx - fB(\x‘,R) lD(V—u)l dx =

2 2
=§; fB(«,,R)lnv' dx - fB(.x,,R)mvl dx+2 fB(x.,R)( Dv;Du) dx -
A
2 1 2 2
- fs(x"mluul dx =(1l+ K) fB(x,,R)wV' dx - fBCx,,R)muI dx.
An easy calculation gives (3.1).
Proof of Lemma 3.4. For a weak soclution weH%(B(xo,R)) of
the system BwI=0 j=1,...,m the estimate
2 R 2 dS
oo 0101 % X € 221 S, 00l Op¥]

holds. See [2]. o,
As Dgu=Dgv on S(x,,R) and IDBulzé lDuIz, we get from here

2 2 oR 2 4 .
Josol0ul? axda o pylovi® oxe gty oo wl0pvI® o5 -

aR 2 aR 2

It easily follows that
R fs(x,',a)|00|2 ds - D—;-Lfaannlﬂulz dx20.

Put = 821 then
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or -7 2 -7-1 2 .
m(xo,R)=R '[5[ ”R)IDu| ds- ¥R fBﬁ(o;R)loul dx2 0
Q.E.D.

A

4, Hard theorem

Theorem 4.1. Let ;'1>K(n). Then the system-(2.1) is regular.
1

Proof: Let us introduce the function space (see [31)
. 1 4. 2 (.. -

H2’a(-ﬂ-)- §uew2(ﬂ).x°5:pi j:nIDul [x-x4|™" dx < oo}

equipped with the norm
-a !
|U|H2 A(-Q.)=( fnlulz dx+§;ipﬁ_ f‘;.hltlul2 |x-x°| dx) 7,
1)

This space is for A > n-2 imbedded into the space C%'*(JL) with
w= F(A-ne2).

Let h be a non-zero element of I ( Rn), supp hcB(0,1), h20.
Denote hk(x)=ckh(kx), k € N , where c, are constants such
that

fa"' hy (x) dx=1

let f,cc Qlc cl, a-ﬂl is sufficiently smooth

Put R= % dist(-ﬂz, 3-0- ), a%P=0on R\ 2 and ¥ =/

’ aij J k*‘ij
Thenk}im k “p(x) aiﬁ(x) a.e. on £ and matrices KA satisfy (for
*

kZkg) on ‘Q'l the condition (2.2) with the same constants A, A
The boundary value problem N

N ( A{luk,Dy) =0 Vgpeﬁ%(ﬂl ) Up-u eﬁl(ﬂl)
has a uniquely determined solution uke.H (.Sl ) for each k> k

Obviously
lucdulenr® cPor?y) lul 1/2('3‘,11.)'

The space W (.D.l) is reflexive and so we can suppose that u, is
weakly convergent to some vevl2( I) ).

The set V= -{wcﬁ (.0. ), w- u€H1§ is convex and closed, hence it
is weakly closed and v-u ew (_0.1). Now we can apply the well
known convergence /lemma (see [17, chapt 4) to see that v is a
‘weak solution of the system (2.1) and hence - because of the uni-
quéness - v=u. .
The function u is the weak limit of the sequence (u'} k>k°
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in VI%( £,) and hence it is the strong limit in L,( ;) so we can

suppose that

klim u (x)=u(x) a.e. on £,
All functions u, are of the class cloc 4,). Choose x e _0.2,

ne Q(B(XO,ZR)), m =1 on B(xg,R), Dy l< %, and y = [Vl"""f’m]e
€ D(R™. Then
fIR < KAD 1), 0y dx =

f <KAu0m, Dy) dx- Jom < XA Dy, ,Dny)> ox.

Putting o = m we can rewrite the last equality as

(4.1) j;z“ D(uk‘q);Dy> dx=jaw<(1-7 A)(D(ukn)wx Au, Dy ;Dy ) dx -

_ -ka"‘ kADuk,qur) dx.

Now we can apply"
Lemma 4.3. Let Y0, f be from D( R, xoe]Rn, n>3, and

let for all y & 2 (R™)
IR { Dv, Dy dx= f,,,<f,ozy) dx+ fkmgtydx .

Then for A e (n-2,n) and & > 0 exist k=k( &,A )>0 and a=a(A)>0
such that 2
Sl 012 1x-x 1" X‘('1+e)a(.7\)(l+£n—§—)—-) Sl 812 1 | e

k Joml 012 1x-xg 1742 ax

and 1lim a(A)=1.
A—»(m,-ﬁ)i_

We omit the proof of<this lemma. It can be found in a slight-
ly modified form in [2].

Note that we are to prove this theorem oniy for n23. In the
case n=2, every system (2.1) is regular. (It follows e.g. from

Theorem 3.1.)
From (4.1) and from the conclusion of Lemma 4.3 we obtain

for ¢ and ¢ positive
fMjD(ukn)lzlx -xg 1~ X dx £ (1+¢)a(A ) (1 in—%—)——)
f I(I ';/A)D(u n)+y /AukD"HZIX -x |
+Ky f;‘m %Dukﬂnlzlx-xol M2 e
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S,
£(1e &) (e Da(a) (1 227 fR,J(I-ykA )0Cu, 7 >|2|x-x°|"" dx+
-A k 2 -A+2
+K2r‘fm|kAukD’1|2|><-xo| dx+ fx’n' ADu D7 |7 lx-xo dx) &
2 -
£(1+e)(1+ a(A ) (1+ -(-L%l—)(x}%)z fRMID(uk'q)|2|x-xDi-a +
Ky JoaClu ) 2elou %) o

since supp |07 |c P=B(x,,2R)\ B(x_,R) and the function
lellix-x0|-a is bounded on P.

A
Now we have 3§:>K(n) and so we can choose positive g,d" and
A > n-2 such that

- 2
(1+5)(1+dv)a(}\\)(;i+ 0)2(1+ (2:212)<1
8]

and hence

2 -A
|Dun| |x—x0L £ K4|Uk| c=

r
S, 0 1oy
%, Wzggl)
=c(0,,90,, 5 Aqlul 1/0 ).
12 % wL/2a0))
If we take into account the definition of the space H, 1(112) and
its imbedding into Co’x(ziz) we have for x,y e.ﬂz
uk(x)-uk(y)
Ix-y ™

where C does not depend on k. Letting K——>co we obtain the con-

<L,

clusion of the theorem.

5. Open problems

a) Is the estimate a< %E% in Lemma 3.4 sharp ?

b) It is a well known fact that in the case n=2 or m=1 is
the system (2.1) regular. The case _n=2 is the consequence of the
theorem 3.1, but our condition on 59 does not take into account
the number of the equaiions m. It w&uld be better to have condi-
tions in the form

m0
3\-;>K(m,n) .
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