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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28.1 (1987) ' 

REMARKS ON 1-GENERICITY, SEMIGENERICITY 
AND REUTED CONCEPTS 
O. DEMUTH, A. KUCERA 

Abstract: Properties of recursive enumerable sets of strings 
covering ail recursive sets of natural numbers or, equivalently, 

FT? classes of a special kind are studied especially in a connec­

tion with modification of the notion of 1-genericity. 

Key words: Recursion theory, tt-reducibility, T-reducibili-

ty, 1-genericity, coverings, semigenericity, TT° classes, NAP-
sets, FPF-functions. 

Classification: 03D30 

The aim of the paper is to study modifications of the notion 

of 1-genericity and their relation to TT? classes. Especially, we 

show that for nonrecursive sets non-semigendricity (introduced 

by Demuth t4l)4s equivalent to strong undecidability (introdu­

ced by Ceitin 121). We also give some results on the structure 

of T-degrees. 

We use the notation and terminology of [43. 

The following notion was introduced by Ceitin C2J. 

Definition (C23). A set A of NNs is said to be strongly 

undecidable if there exists a partial recursive function y such 

that for any recursive set M of NNs and any index v of the cha­

racteristic function of M Y (v) is defined and A n4o,l, . . . , ̂ /(v)!^ 

+ MA-C0,1,..., y(v)?. 

The important fact is that the class of all strongly unde­

cidable sets of NNs can be characterized by special TT? classes 

or, equivalently, by coverings. 

Theorem 1. For any set A of NNs there exists a covering 

which does not coveE A if and only ^f A is strongly undec idab le . 

Proof . The implication -«--̂  is obv ious . The opposite 
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implication is an immediate corollary of a result of Ku§ner 17, * 
Theorem 13. Let us also note that a weaker form of the mentioned 

KuSner's result is in Moschovakis t9, Theorem 11J and implicitly 

also in Celtin Ll3. 

, We have an immediate corollary. 

Corollary 2. A set of NNs, is semigeneric if and only if it 

is neither strongly undecidable nor recursive. 

Celtin 123 studied the notion of strong undecidability only 

for r.e. sets. Nevertheless, for some of his results this rest­

riction is not necessary. Now we give briefly a list of results 

on strong undecidable sets of NNs proved by Celtin 121 where we 

omit the assumption of recursive enumerability whenever possible. 

Theorem 3 (123). No strongly undecidable set of NNs has a 

hyperimmune complement. 

Theorem 4 CC23). Any of the following properties of a set A 

of NNs implies its strong undecidability. 

1) A is a r.e. set and there exists a r.e. set B such that 

A, B are disjoint and form a recursively inseparable pair. 

2) A is a creative set. 

3) A is a simple set which is not hypersimple. 

4) Some strongly undecidable set is tt-reducible to A. 

Remark 1. 1) According to Theorem 3 and to parts 3 and 4 

of Theorem 4 any simple set tt-reducLbXe to some hypersimple set 

must be hypersimple, too (123). 

2) On the basis of Corollary 2 we see that Theorem 3 and 

part 4 of Theorem 4 give us both part 1 of Theorem 9 and Corolla­

ry 12 from L43. 

As we saw in Example 18 £43, the fact that for any recursive 

set M of NNs the set M A S is infinite but not hyperimmune, does 

not imply strong undecidability of B. On the other hand, we will 

show that a kind of uniformity of non-hyperimmunity (of such 

symmetric differences) does imply it. 

Theorem 5. Let A be a set of NNs. Then A is strongly unde­
cidable if and only if there is a recursive function f such that 
for any recursive set M of NNs and for any index v of the cha­
racteristic function of M the symmetric difference MAA is infi­
nite and majorized by the recursive function with index f(v). 
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Proof. The theorem can be easily proved by the method used 

in the proof of Lemma 10 from C4l. 

Now we turn to questions concerning T-degrees of members of 

some TT? classes and also to their connection with 1-generic T-

degrees. 

F i r s t , l e t us reca l l that a set A of NNs is cal led l-peneric 
i f Vz36Ler £ A &(( y*Cz) is defined) v Vtr ( TS 2 6 -**» ^ l ( z ) l s 

undefined))! 

or, equivalently, 

for any r.e. set & of* strings there is a string 0 such • 

that €> £ A and either 6 € <~f or no set of NNs is covered by both 
(6 and £P. 

Any 1-generic set of NNs is, obviously, semigeneric. 

As we saw in C43, there are weakly 1-generic T-degrees which 

contain NAP-sets or, more* generally, FPF-f unctions, i.e. wbiclv 

are NAP T-degrees or FPF T-degrees . Let us recall that a function 
f is called a FPF-function if Vx(f(x) * 9x(x>) holds. On the 

other hand, we shall show that the classes of 1-generic T-degrees 

and of FPF T-degrees are disjoint and that even below any 1-gene­

ric T-degree there is no FPF T-^egree . Since some other classes 

of T-degrees also possess an analogical property, we present a 

more general statement. 

First, we introduce a n o t a t i o n . By Red(#,t,z) we denote 
( V x < l h ( 6 ) ) ( ( ^ ( x ) is defined) &( <^(x)* rf(x))). The predica­

te Red is obviously recurs ive . Further, for any sets A and B of 

NNs and for any NN z we have (A ̂ T B via z) <&=£» Vtf'KA is covered 

by tf ) =#• j 

(B is covered by it :Red( € , tf ,z)i )3-

Theorem 6 . Let A be a 1-generic set of NNs. Then any set 8 

of NNs, Ba-i-r A, is covered by any simple set of strings. 

Proof. Suppose B ..£-, A via z. Let ̂  be a simple set of 

strings. We denote the set 

V* - 36- (Red(cr , x ,z)8c( 0 is covered by f ))} 
by % . Obviously, % is recursively enumerable. 

Suppose that B is not covered by *£ . Then A cannot be cove­
red by % . Since A is 1-generic, there exists a string 6* such 

that 6 9 A ̂ V r ( f 3 ^ * » t # H ) . Consequently, the set of 

strings {p : 3 * ( x 9 € & Red( p , < ,z))} is disjoint with *# , 
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Further, it is obviously recursively nenumerable and, according 

te the supposed B ̂ T A via z, also i n f i n i t e . This contradiction 

to the simplicity of P̂ shows that B must be covered by ¥ . 

Remark 2 . 7Let us note that any simple set of strings is ne­

cessarily a cohering (may be, not a proper one) . Further, for any 

pair A, B of disjoint r .-e . recursively inseparable sets of NNs 

the set of strings 

kX :(3x<lh(< ) ) ( x 6 A 8cf (x)= O v x c B &r(x)= 1)} 

is simple and does not cover any set of NNs separating A and B 

(consequently, it is a proper cove r ing ) . Later we shall study co­

verings tf such that neither & nor Kt : x is covered by &} is 

simple. 

The class of all sets of NNs not covered by a given r.e. set 

of strings forms a TT°c-lass. Since any TT?class can be obtained 

in this way,' Theorem 6 can be reformulated as follows. 

Corollary 7. Let A be a 1-generic set of NNs and let A be 

a TT , class of sets of NNs such that the set of all A -extendib­
le strings (i.e. strings extendible to elements of A ) is immune. 
Then there is no set B of NNs suob that B£j A&.B e A . 

For TT? classes which are not necessarily recursively boun­

ded, we need an additional care. The following notions will be 

useful. 

Definition. 1) By an F-string we mean a finite sequence of 

NNs. 

2) A set £f of strings V-covers (i.e., covers in the sense 

of Vitali) a set A of NNs if for every NN k there is-a string 

6 e ̂  such that lh( & )2" k & € £ A. Analogically, it is defined 

that a set of F-strings V-covers a function. 

Theorem 8. Let A be a 1-generic set of NNs and let i be a 

nonempty TT? class such that there is no r.e. set of A-extend­
ible F-strings which V-covers some function. Then A contains 

* no A-recursive function. 

Proof. The statement can be proved by the method used in 

the proof of Theorem 6. 

Corollary 9. No FPF-function is recursive in a 1-generic 

set. 

Proof. It is easy to see that the class of all FPF-functi-
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ons, say the class *$ , is a TT° class containing no recursive 

f u n c t i o n . Suppose ^ is a r . e . set of ^-extendible F-strings 

which V-covers some f u n c t i o n . Observe that if 6 and t?*p are 

3^-extendible F-strings and lh(€T ) = lh(f ) holds then the F-string 

G * <l> is also ^-extendible. Now, by enumerating $f and applying 

the method just described, we can construct a recursive function 

being an element of & . We have a c o n t r a d i c t i o n . 

Corollary 10 . No NAP-set is recursive in a 1-generic s e t . 

Proof . It follows immediately from the above Corollary 9 

and from Corollary 1 of Theorem 6 of 16J. 

Remark 3. 1) Let /fQ be the class of all 4Q,lj~valued FPF-

fu n c t i o n s . Obviously, *$ is a recursively bounded TT?class. We 

claim that the set of all strings which are not & -extendible is 

an effectively simple set of strings. 

First, there is a recursive function h such that for every 

NNs x and y 9 n ( x ) ^ *s 

a) defined and equal to 6*(y), where 6 is the first string 

of the length > y which appears in 4. W > (under the standard 

enumeration) - if there is such a string; 

b) undefined - otherwise. 

Suppose that <C W > contains only f-extendible s t r i n g s . 

Then (9>n(x)(y) is defined) =-==> 9
>
n(x)(y)4

s 9y(y) holds for any y . 

Thus, Sph(y)(b(x)) is necessarily undefined and the set <C W > 

contains no string of length 2 r h ( x ) . 

2) tet 3̂  be the class of all FPF-functions. Since at most 

one F-string of the length 1 is not ^-extendible, we see that 

the set of all ^-extendible F-strings is not immune. On the ot­

her hand, we can prove', by the method used in part 1, the follow­

ing s t a t e m e n t . There is a recursive function f such that for 

any NN x for which the r . e . set of F-strings with index x, aay 

set 9* , contains only ^-extendible F-strings we have: tf con­

tains no F-strin9 of length >f(x), 
l 

As we saw, there are proper coverings which are simple or 

even effectively simple. Now we shall be interested in proper 

coverings If for which the set of- all strings not covered by </ 

is not immune, i.e. the set \*t : *f covers x} (which is again a 

covering and covers the same sets of NNs as *£ does) is not sim­

ple. The existence of such proper coverings follows from Theorem 
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6t[5, Corollary l.lj and the fact that there are 1-generic sets 
recursive in 0'. 

Definition. For any set & of strings let Cl(Sf) denote the 
set kx : X is covered by SP}* 

Reroark 4. Let < W > be a proper covering. Then the set 
T-Kx . 3s(lh(t )=s&( x is not covered by < W ^ > ) ) } is an infi­
nite r.e. set of strings such that for any set A of NNs A is not 
covered by < W > if and only if A is V-covered by T* 

Reroark 5. A class % of sets of NNs is a TT° class if and ! 

only if there exists a NN t such that 3C is the class of all sets 
of NNs V-covered by < W t > . 

The following result is a modification of £5, Corollary 1.53. 

Theorem 11. Let t be a NN such that < W.> V-covers no re­
cursive set. Then there exists a proper covering *f such that 
CKSf ) is not simple and for any set A of NNs V-covered by <t W +> 
there is a set B of NNs, B « » A, not covered by J/. 

Proof. Let us take a proper covering T such that Z1(T ) is 
not simple and T is a set of incomparable (with respect to £ ) 
strings. Since T is infinite, let us fix a recursive enumeration 

**x*x«N of * such that ^x^^y for x*y-
Suppose W?=0 and wi \ W» contains at most one element. We enume­
rate f̂ in steps. At the beginning of step i we have two lists of 

a4 Mi 

strings * ^ x * 0 » ^ x * x = 0 *
 Let ^V0' ^o" *V "^ (an eff,pty 

string). 
Step i. Case 1. wi \ wi=0. Then ?*i+i = «t and we enumerate 

into if all strings of the form &x * xi for x * aeA. 
Case 2. Let neW^ + 1\W*. 
Subcase 2a. (3 x & a^H cTn s f>%). Proceed as in case 1. 
Subcase 2b. Subcase 2a does not apply. Find k for which $*>k 

is the longest string px» x^ae i, satisfying f>x£r <fn. Observe 
that Pfc^cT^. Let ^ be a string such that f>k* ^ = <*>, and B^ 
the list of ail strings of length Ih(^) and different from % • 
Enumerate into <f all strings of the form 
i) 6^.* x% for x ± ae^x-fk, 
ii) tfk **,._*«& , where «o e P^ t 
iii) # k * xt * % * xy for y^i. 
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Let *.+1= V l , ? X i + i= cTn and ff^- ^k * x. » n . 

This concludes the construction. Informally, the idea is as fol­

lows . Let ?R = -Cx:3y(x £ ae ) ? . The set of strings "ffxlX€i$ V-co-

vers the same class of sets as <t W t> does. For any NNs x, y con­

tained in Td the string f> is coded by 6X, 6 is not covered 

by ^ and 6f & 6 =̂-=> $> £. ro holds, x y x - y 
Observe that any string which is not covered by (y is not 

covered by & , too". 

Let A be a set of NNs V-covered by < Wt > . Then 7fi =N and 
there are an increasing A-recursive function h such that 

Vx((p., N £ A ) and a unique set B of NNs satisfying \/x( 6\(x\ & B). 

Thus, Vy( $> £ A 4=> 6 £ B ) , B S j A and B is not covered by & 

On the other hand, if a set B is not covered by ¥ then the­

re are two possibilities: 

a) there are a NN kc Hi and a set C of NNs not covered by 

T such that B= 6*k* C, 

b) there is a unique set A of NNs V-covered by 4 W.> for 

which Vx( f>x£ A <r& g^Q B), and thus B s=T A. 

We omit further d e t a i l s . 

On the basis of Remark 4 we obtain the following corollary. 

Corollary 12. If A is a nonrecursive non-semigeneric (i.e. 

strongly undecidable) set of NNs then there are a set B of NNs, 

B s-. A, and a proper covering Tf such that Cl(£^) is not simple 
and & does not cover B. 

We would like to, characterize nonrecursive non-semigeneric 

T-degrees. 

Lemma 13 . For any NNs t, z if we take a NN p such that 

Wp= 4y:3x(x£W t&Red( <fx, ©r z) & n ( 3 v< y)(Red( <^x%<fy,z)U 
<fv£ <fy))\9 then 

a) if <.Wt> V-covers no recursive set, then so does <( W 3>j 

b) for any sets A and B, 0 < T Aft,(A^T B via z ) , < W . t > V-co­
vers A if and only if < W > V-covers 8 . 

Proof. Immediate. 

Theorem 14f For any set C of NNs deg--(C) contains a non-

recursive non-semigeneric set if and only if there is a NN t 

such that ^-Wt> V-covers no recursive set but it does V-cover C. 

- 91 -



Proof. The implication *#=- follows from Theorem 11. The op­

posite implication follows from Remark 4 and Lemma 13. 

In a connection with Theorem 6 we will show that T-degrees 

of sets of NNs not covered by some simple set of strings form an 

upper cone. 

Lemma 15. Let f be a recursive function, if a simple set of 
strings. Then there exists a r.e. set T of strings such that 

1) T =Cl((T ) and either CT contains all strings or T is 
simple, 

2) for any sets A, B of NNs such that A *£. ̂  B via f, if co­
vers A if and only if T covers B. 

Proof. We take a r.e. set T of strings, 

*TQ=A4:3f> (f e <f&.{f ^ X\& v i a f ) )* ( c f - u » Remark 83 ) . 

Let T =C1( .T0). 
Suppose <tW. > is infinite and disjoint with T . Then, obvi­

ously, the set ip : .36* (( 6 belongs to < W. > ) & ( f> ̂ t t 6 via f ))\ 
is r.e. disjoint with if and, as it can be easily verified, infi­

nite. It contradicts the simplicity of £P. The proof of 2) is im­

mediate. 

Corollary 16. For sets A, B of NNs such that A -£.. B and A 

is not covered by some simple set of strings, there exists a sim­

ple set of strings which does not cover B. 

Theorem 17. The class of all T-degrees containing a set of 

NNs which is not covered by some,simple set of strings forms an 

upper cone. 

Proof. For any sets A, B of NNs, A -£-~ B, we have A © % 3 E T B 

and A £^+ A © B. It remains to use Corollary 16. 

At the end we return to NAP-sets. We shall study how r.e. 

sets of strings of a smallf measure cover sets to which a NAP-set 

is T-reducible. First, we need a more detailecf information about 

the recursive function e mentioned in C4l. We can suppose that 

for any NN m < W e ( m ) > = C l « W e ( r n ) > ) , where 

Wg (m)= i x:3y z s(m< y< z & ( q (z) is defined) 8*, 

^ % ( Z ) > ^ 2 " Z & x 6 ^ y ( z ) ^ -

Then, in addition to 141 we have the following. For any NNs m, p, 

q 

m < p < q & ( y p ( q ) def ined) & <*« Wc^(q) > ) * 2 " q ^ % ( q ) & w
e ( m ) 
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holds. (Cf.183,£33,t63 .) Further, similarly as in Remark 3 we 

can prove that for any NN m < We(m)^ i s a n e*^ec"tively simple 

set of strings. 

Theorem 18. For any NNs m, z there are a NN p and a recur­

sive function f such that for any NN t 

a) («,« W f ( t ) > ) ^ 2
p . <a(<W t>); 

b) for any sets A and B of NNs for which A ̂ T B via z holds 

and A is not covered by <C W , x> (thus, A is a NAP-set) we have J e(m; ' 

(A is covered by < W t> ) 4==> (B is covered by <C Wf ,,^ > ). 

Proof. Let m and z be NNs. By the s-m-n theorem we have re­

cursive functions h and g such that for any NNs x and v 

W h ( x )= *y:Red( cTx, ory,z)i and 

Wg(v)^w:(u,«Wh(w)>)>2
v.K^^)5. 

• l h t f J 
(Observe, < a ( W x U = 2 . ) Obv ious ly , 2 V . <a,(< W q ( v ) > ) ^ 1 f o r 

any NN v. Let b be an index of g f u l f i l l i n g m<b and l e t p=b+l . 

Then, as we know, W • >>£ W , N . ' » g(p) e(m) 
We can cons t ruc t two recu rs i ve f unc t i ons f and f such t ha t 

o 

for any NN t 

a) 4. W« ( t ) > is a set of incomparable (with respect to Q ) 

strings and °\/ti( ? covered by <C W t> )4==> (f covered by 

< W f ( t )> )) holds; 
b) W f ( t ) = { y : 3 x s(xcWf ( t ) & ( < u « W ^ ( x ) > ) ^ 2

p . ^ ( - f ^ D ) 

5cy€W^(x))}.° 

Then, p and f satisfy all the required properties. 
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