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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,1 (1967) -

LARGE TREES IN RANDOM GRAPHS
Ludék KUCERA and Vojtéch RODL

Abstract: The aim of this note is to estimate the size of
the largest tree which occurs as an induced subgraph in a random
graph 6(n,p). We give some upper bounds and lower bounds for all
values of p (p&c/n, c>1) and in particular we give a positive
answer to a question of P. Erdos and Z. Palka showing that if
p~c/n for some fixed c>1 then the size of the largest tree is
at least gn where g is a positive constant depending on c only.
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Introduction. Consider the probability space Q}(n,p) con-
sisting of all graphs on n labelled vertices, where each edge is
chosen with probability p, independently of all others. In this
note we investigate how large trees occur as induced subgraphs
in almost all G e q?(n,p). In the paragraph 1 we investigate the
size of maximal trees (i.e. such trees that are not contained in
any larger induced tree). We show that maximal trees have to be
either quite small or very large, i.e. there is an interval in
which the size of the maximal tree will almost never occur. In
the paragraph 3 we first prove (for p=0(l1) the existence of some
large induced trees in G(n,p) (Lemma 3.2) and this together with
the result of the paragraph 2 implies the main result of the para-
graph 3 - Theorem 3.3 giving the lower bound for the cardinality
of the tree that almost surely occurs as an induced qubgraph of

G(n,p).

In the paragraph 3 we use the Chernoff inequality (I1], see
also 13]) which we state here:
Let m be a positive integer and 1>q>0, 1 >J’>0 two reals. Let
k @ qm(1- d’) then

Sj‘( Mad(1-0)™ I gexpim(1-q+ d'q)logr——ﬂaga +q(1—6')109—%—_?)} .
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Easy calculations give that if d'< 1/2 then we have also
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0 % Med1-0)" Ig exp {-nas?( § +0 )i exp {-mw o’} -

1. Upper bound
Theorem 1.1. Let £>0'be a fixed real number. If n,k are
natural numbers and p is a real number such that 1/n<p<l1 and
il) Kz 2(log(nep)) , (1+ €) oéoneg ‘3
109 T_—p—
then G (n,p) contains almost surely no induced tree on k vertices.

Proof: Let A be a fixed k-element subset of the vertex set
U. Denote by A the event that the subgraph of Q*(n,p) induced on
A is a tree. Then cleaﬁly

~ (5)-(k-1)
Prob(A)=kk'zpk'1(l—p) 2
and thus k

(5)-(k-1)
Prob(A holds for some AcV, |A|=k)é(2)kk'2pk'l(l-p) 2 <
(k-3)k :
< %(z)kkpk(l-p) 7z - n[nep(l-p)(k'z)/zjk.
If k satisfies (1) then
k-3 log(nep) . (l+e¢) logn
a1 lo * Z log(nepy
9 T

and thus

(l-p)(k-J)/Z)é exp [ -log(nep) - lié %%gT%EﬁT log T%BJ .

Hence

n[nep(l-p)(k'”/”] K& n exp(- -l-ii' Kk ‘}%g'(%e'ﬁ)' log I-l-—p) £

&n exp(-(1+€)log n)=n+%. Q.E.D.

Elementary calculation immediately gives:

Corollary 1.2. Let o> 0, then 'g(n p) contains almost su-
2{1+J)10g(nep)

rely no induced subtree with more than -————-ﬁ;ﬂ-—-g- vertices.
Note that the bound of Theorem 1.1 is not s#ttsfactory if p
is small, the most interesting such case is if p=c/n end c>1 is
a small constant. The slight modification of the above proof
. -8 -



however gives the following

Theorem 1.3. Let c, ¢ be real numbers such that O<x<l< ¢
and ’

(2) ¢ exg(-cfc/zo)c <1 -

(1- ) .
If n is a natural number and p=c/n then g.(n,p) contains almost
surely no induced tree with k& o¢c n vertices.

Proof: Set 7 for the LHS of (2). Then, similarly as above
the required probability is bounded by
k-1
Q) k_n-k
(z)kk—zpk-l(l_p) 2 P 1 nn

k _k k(k-3)/2
- ——k kK P (1-p) £
kp k*(n-k)"" P P

[c'exp(-d. c/2)(1-p)—3/2)¢n £ (,r(l_p)-}/Z)ocn

1
P -0,
olen (1- og) 1)/
it y< 1. Q.E.D.
Note that
c exp(-e«c/2) 2
O R by £ P e

The RHS of (3) is a decreasing function of o and tends to 2/e
with o —>1. This means that if o«  is the (only) root of the
equation eec(l-oc)(l’“)/“ =2 then there is no induced tree of k=n

vertices if C).(n,%) for any o> o6y and c>1.

2. Lswer bound

Theorem 2.1. Let c>1 and J > 0 be fixed real numbers. If
n is a natural number and (* €,Pp are real numbers such that
pZc/n, 0<e<m-1 and log np> wlog log(nep) then the size k of
an arbitrary maximal induced subtree of G (n,p) satisfies almost
surely one of the following conditions:

either (24 &)
2+ log n _
k<=ZTogpn— " Xo
or
. 2(10 (nep)) log n
(4)  Min(k,,k, )éké_n;;g?_—ﬂ_ + (1+97) I__(_L)'og hepy * 3
where
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(s) klz log np- y.lgg log np
log 155
and

' k.= Sea-1-e)log np |
(6) "2 + v Tog np

Proof: Let A be a set of k vertices of G(n,p) and let
véA. The probability that v is joined to exactly one vertex of
A is kp(l--p)k"l and therefore the probability that no such vertex
exists is '(l—kp(l-p)k'l)n_k. A
Hence, the probability that A spans a maximal induced subtree is
exactly ‘

*)-(k-1)
pA=kk‘2pk“1(l_p) 2

(1-kp(1-p)*~1yn-k,
Tr;o probability Pk that there exists a k-element set A that spans
a maximal induced tree, is therefore bounded from above by

k
()= (k-1

)
Pk X pp=(DKK 2R (1op) (1-kp(1-p)H Mk

Py %(Eg)kkkpk exp(-(n-k)pk(1-p)¥) £
€7) ¢n [(nep) exp(-(n-k)p(l-p)k)lk.

1t kg lo@ np- gelog 10g(nep) yrn (1-p)*z exp(- log(np)+

log 5
+ prlag log(nep))and hence

exp(-(n-k)p(1-p)¥) € exp(-(n-k)p(np) 1 (log(nep))®) &

€ exp(-(1-k/n)(1+alog np)).
If now

n(e-1-¢ )log np
ké 1+ (AﬁognJL;

then the RHS of (7) can be further bounded from above by

ninp exp(-(1+¢)log np)]kd n(np)'Sk .

2+ d')log n -(1+4)
1t k;i—‘:{.érg?— then P, &n .

As 2Pkin"‘f =0(1) the theorem is proved. Q.E.D.

Now we give two consequences of Theorem 2.1.

‘Thearem 2.2. Let f£=f(x) be a function that tends to the
infinity as x ~» oc . Given constants © ,d >0, a natural number
- 10 -



n and a real number p such that p&f(n)/n, then the size k of

any maximal induced subtree-of @ (n,p) satisfies almost surely
one of these conditions:

(2+d°)1log n
either k<-—_€T6§—%E——

or k>_log np-(1+ &ilog log np |
log FE

Proof: Since np tends to the infinity,
k1/n &(log np)/np —>0, but k2/n tends to (@-1-¢e)/u>0.
It follows that kl«<k2 for large n.

Theorem 2.3. Given constants a>1, r>0, a natural number
n and a real number erF'l then the size of any maximal induced
subtree of G(n,p) is almost surely at least
log np- a4 1log log np i

log T%E

Proof: k, is less than (2+d)/ & and since

(log np3/log log(nep) tends to the infinity, we can choose € so
that ko< 1.

3. Large trees. Llet k, ky, k, be the numbers from Theorem
2.1. Results of the previous paragraph show that the existence
of an induced subtree of the size k, implies almost surely the
existence of an induced tree of the size Min(kl,kz), (Note that
the interval between ku and Min(kl,kz) is non-empty for all cheoi-
ces of p.)

Theorem 2.3 shows that the proof of the existence of a tree
of the size greater than ko is trivial, provided p is not too
small. Now we are going ‘to prove that if pn>1 and, say,
p=0(n'1/2) then the random graph G(n,p) contains almost surely
an induced subtree of the size d'p~ 4 for some d > 0.

Suppose that the vertices of C}(n.p) are v ,...,v.. Define

sets ul,vl,...,uk,uk of vertices and sets Tl"
vertices as follows:
V,=0,

"’Tk of pairs of

- 11 -



Ui= -——-V:l if V14=0

{vm'&otherwise, where m is the smallest integer such that
a-1
Yo ®5¥1 Y <
V1+1= the set of all vertices v ¢?,,, Uj adjacent to fome uEUi,

T;= the set of all pairs fv_,u}, where v el;, u ¢ and

;:4 J
u is adjacent to no vqeui, g<s.

k is defined by the condition

o1
5§|uja<p’1“ea,, lu 1.
Note that each set Ui is contained in some component of the
graph. ’
In order to show the existence of large trees it is suffici-

ent to prove the next two lemmas:

Lemma 3.1. Let c>1 be a constant. If np>c then the set
u c-1 -1/4&

K contains almost surely at least T P vertices.

Proof: To construct the sets Ui and Vi, it is sufficient
to check which elements of Ti are edges of the graph Q(n,p).
Let & > 0 be a constant and suppose that the size of U, is less

c-1 -1/11 _
than =T P . Tt/zzote =T, L;“ uT;_l, :/l]l and u= ?%1 IUil.
It is u-|U |z p” -%;;{.p' s o

t 2 (u-1U, | ((n-u) 2 Cu- U, D (n-2p72/4) 2 Cu- U 1) (1= €)n
for sufficiently large n.

The probability that less than (1- ¢)pt elements of T are
edges is at most exp(- e_}pt).

The number of edges of T is equal to the size of the set

ViV ...uV, and therefore u is almost surely at least (1- e)pt.
It

uz(1- e)pt 2(1- e)p(u-1U, 1)(1- €dn

then /
lu, |z uC1- —-2-—1 yap l/4 g2l
(1 - €)%n P (2

if ¢ is chosen so that (1- a)zpn Z(1+c)/2.

Lemma 3.2. Let c>1 be a constant. If cép< n"1/2 then the
random graph Q(n,p) contains almost surely an induced tree of
-12 -



the size at least %f% prl/8

Proof. Let i be the largest number such that V1=0. It fol-
lows from Lemma 3.1 that the set U=Ui4/... uUk together with the
edges of ((n,p), which are elements of Tiu ...uT,_, is almost
surely a tree of the size at least g:l p- /4. Without loss of ge-
nerality, we can suppose that |U|£ p~ /°, otherwise we would use
a sufficiently small set of the form Uiu e uUk_l;,U, where
UcUk, instead of U.

If no pair {x,y} such that x,y €U, {x,y}1 ¢ T is an edge of -
G(n,p) then the set U is an induced subtree of G (n,p). The pro-

bability of this event is at least
gh 1/2
1-(1-p) 2 T fa

=p1/2——> 0.

2
Z l-exp(-p 'Lgl ) — 1 because plulzép P

_ The problem of existence of large trees in G (n,p) for p fi-
xed was solved by P. Erdos and Z. Palka [3] who proved that al-
most every graph G ¢ G(n,p) contains a tree of size

(2-¢) 129—21— , where & > 0 is arbitrarily small positive Eeal.

log m
In [3) they also raised the question what is the largest

tree in G (n,p) if p~c/n. The following theorem gives a linear
(in n) lower bound.

Theorem 3.3. Let c>1 and J°> 0 be fixed real numbers. If
n is a natural number and m, &,p sre real numbers such that
c/n€p, 0 < €< -1 and log np> mlog log(nep) then the size k
of the largest induced subtree satisfies almost surely the 1hequ-
ality Min(k k.)€ kéz(—lﬂg—(—"ﬁg)—) + (1ve) d +3

log T:-6
where k, and k, are defined by (5) and (6) of Theorem 2.1.

og n
og (nep

Proof: The theorem follows immediately from Theorem 2.1 and
Lemma 3.2, as one can easily verify that

ﬂ3+sz)ig L g%% p'l/A for any n sufficiently large.

Corollary 3.5. Suppose that p=o(n) and pn —» @ as n—» 0o
then the size of the largest induced subtree of G{n,p) satis-
fies almost surely the inequality

- 13 -
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