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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,1 (1987) 

ON WEAKLY UNIFORMLY ROTUND SPACES 
J. HAMHALTER 

Abstract: If X is a Banach space whose dual is weakly uni-
formly rotund and (V„)̂ f , is a sequence of subspaces of X* whose n n — x QG 
characters tend to one, then ,£\V ={0}. A weakly sequentially 

complete Banach space whose dual is weakly uniformly rotund is 
reflexive. * 

Key words: Weakly uniformly rotund spaces, character of 
subspace. y 

Classification: 46B20, 46B10 

1. In t roduct ion . We shall consider weakly uniformly rotund 

spaces (in symbol WUR), I. Singer proved in f51 that if X** is 

not smooth, then X* contains ho closed proper subspace of the 

character one. We obtain an analogous result (Theorem 2.1) for 

a space X whose dual is WUR. We shall also deal with the refle-

xivity of the WUR space. 

Let us recall some notions and basic results. We consider 

only real Banach spaces.. Let X be a Banach space. Its topologi

cal dual and its second topological dual are denoted by X and 

X** respectively. The symbols B(X), S(X) mean the closed unit 

ball and the unit sphere around the origin in X. The canonical 

embedding of X into X** is denoted by Q. The value of x* <s X* at 

xiX i.s denoted by <x*,x>. Let feS(X*). The function t/(X,f): 

:<0,2) -* <0,1) defined by 

(f(X,fK&) = inf U - i-^-i; ilxli -a.liyll =1, |f(x-y)|ael 

is called the modulus of weak convexity in the direction f. A 

Banach space X, respectively its dual X#, is said to be weakly 

uniformly rotund (in short WUR), respectively weakly* uniformly 

rotund (in short W*UR) if for every «,s(0,2) the following 

*holds: 
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«?tX f f ) (e )>CS for every f &S(X*)» 

respect ively #<X* ,Q(x ) ) ( % )>Q for every. x € S ( X ) . 

Given a y * X , the function j©(X,y) :<0, <*?>—>< 0,00> defined by 

p < X , y ) ( c ) = s u p ^ l ^ l • I S j £ l - l ; x f i S ( X ) , z = r y j 

is called the modulus of smoothness in the direction y . A Banach 
space X is said to be uniformly Gateaux smooth if 

Urn •/**!!><*> =o for every y s S ( X ) . 

Let us recall the following well known r e s u l t s . 

Theorem 1.1. If X is WUR, then every x**€. X** is a sequ

ential weat^ limit of elements of Q(X). 

Theorem 1.2 (12}). Let X be a Banach space. The following 

conditions are equivalent: 

(i) X is WUR 

(ii) X* is uniformly G&teaux smooth 

(iii) X** is W*UR 

Theorem 1.3 (£23). Let X be a Banach space. The following 

conditions are equivalent: 

(i) X is uniformly Gateaux smooth 

(ii) X* is W*UR 

2. Banach spaces whose dual is WUR. We introduce the fol

lowing notions (see e.g. t4}). Let X be a Banach space and let 

V be a linear subspace of X*. The number r(V)=*sup <[«*£0;B(V) is 

weakly* dense in ot8(X)l is called the character of V. Let us 

suppose that V is weakly* dense in X and let f be the projection 
on Q W + V 1 defined by P(z+y)=z for every 2 * Q ( X ) , y i V 1 , Then 

(143) r(V)= j - ^ . 

The following theorem has been motivated by a result of Sin

ger (see £53). 

Theorem 2.1. Let X be a Banach space whose dual is WUR. 

Let (V )fjl| be a sequence of subspaces of X* such that 

lim r(V )*1, Then t \ vi;*€0K 
«*.-и» 

Proof: Let us assume that' the converse holds. We shall 
i 
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derive a contradiction. Let us suppose that there is a sequence 

of subspaces ( V p ^ i °* ** satisfying the following conditions: 

lim r(V„) = l and there is J « L A 4 V £ ) A S ( X * * K 
€ W - > « o O * 4%. • T ft 

For each n«N we find f n«S(X*), x n«S(X), such that#(fn)>|, 

fn(xn)>l * i, ! n c X * W n . As r(Vn) converges to one, we shall 

suppose that r(Vn)>0 for all n€N. It means that V is weakly* 

dense in X* for any neN and we can put W -*Q(X) © V£. let P : 

:W — > W be the projection defined by 

Pn(z+y)=z for every z«Q(X), y s Vn . 

Denote the canonical embedding of X* into x*** by Qx# and put 

9n=Qx,(fn) hn=r(Vn)(Q-
1Pn)* fn n-^2,..-

Let h denote the norm preserving extension of TT- front W on the 
whole X**. 

We have HgnR = lfn* =1, because Qx* is an isometry and 

ilhnl4r(Vn)ll(Q-
1)*B -IP* l-8fnfi=l, because 

r ( vn>= TOT = TTP*T " e ° b t a i n t h 8 t 

<Q(xn),9n>= <Q(x n ) ,Q x , ( f n )> =< f n ,Q(x n )> - < x n > f n > > l - i 

and <Q(xn),hn> -r(Vn) KQixJ,lqrhnVtn> =r(Vn)<(Q-1PnQ)(xn),fn> = 

=r(Vn> < V V •-<Vn)(l- i ) -
These inequal i t ies imply that %Qn+bn§ ^~^£> Obviously, 

<$,9n> = < - V * > > | and <$,hn> = r ( V n X ( i - 1 P n $ t f n > = 

=r(Vn) <0,fn> =0. 
Therefore Cg n-h n)($)>| for all n£N. Hence X*** is not W*UR 
and by Theorem 1.2 X* is not WUR. This is a contradiction. 

The assumption of the just proved theorem can be weakened 

a little. Namely, it suffices for X to be a subspace of another 

Banach space Y whose dual is WUR. Indeed, it is a routine mat

ter that in this case X* has a dual WUR normt too. Further, X
1** 

is linearly isometric with (Y*/Xx)* and Y*/Xx with X*. Therefore 

X** is linearly isometric with X 1 1 . Consequently X is uniform

ly Glteaux smooth and so X* is WUR. 

By the* end of this note we shall deal with reflexivity of 

WUR spaces. 
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Lemma 2.2. Let X be a Banach space whose dual is WUR. Then 

X has no subspace which is isomorphic to A* . 

Proof: Assuming the converse,,we derive a contradiction. 

Let Y be a subspace of X which is isomorphic to Jt*. Then Y* is 

isomorphic to <4QQ and thus it has no equivalent WUR norm (see 
12 p.1203). Hence there are <fn)*ai cS(Y*),(gn)* xc S(Y*), F* Y** 

and S > 0 so that lim l!f+gn 1=2, |F(frt-gn)|> & for all n€N. 
, )ft%, —Jk. QQ Mil MM 

Let f , gn be norm-preserving extensions of the functionals f , 

g from Y on the whole X and let I denote the embedding of Y in

to X. Then 

<Vln,I**(F)> - <i*(fn-gn),F> . <fn-on.F> 

for all n€ N. 

Since X* is WUR lim F(f -g )=0, which is a contradiction. 
i 

Theorem 2.3. Let X be a weakly sequentially complete Banach 

space. Then X is refLexive if either X or X* is WUR. 

Proof: Let X be WUR and let x**cS(X**). Using Theorem 1.1 

we can find a sequence (xn)*,c)( such that lim Q(xrt)=-*** in 

the weak* topology. Then (x^^-i is a weak Cauchy sequence and 

hence it converges weakly in X. Therefore x**«Q(X) and so X is 

reflexive. Let X* be WUR. Since the reflexivity of Banach spaces 

is separably determined we can assume that X is separable. Accor

ding to Lemma 2.1 X has no subspace which is isomorphic to <£* . 
By 133, for every x*** X** there is a sequence (x

n)n*Lx
cX s ucn 

that lim Q(x )»x** in the weak* topology. Then, again, by the 

weak sequential completeness of X, x**eQ(X), which completes the 

proof. 
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