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RANDOM SEMINORMED SPACES 
J. MICHALEK 

Abstract; This article deals with a very important case of 
statistical linear space. Properties of this special case lead*to 
the definition.of a random seminormed space. 

Key words; Statistical metric space, statistical linear space, 
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Classification: 60B99 

Basic properties of statistical linear spaces in the sense of 

Menger (SLM-spaces) are given in [l], [2}. These spaces are special 

cases of statistical metric spaces introduced by Sklar and Schwei-

zer in [3].For simplicity we present the definition of a statistical 

linear space (SLM-space) here too. First we need the notion of a 

t-norm. A function T: <0,1> x <0,1> - <0,1> satisfying 

(a) T(a,b) - T(b,a); T(a,l) = a for a > 0 

(b) T(a,b) £ T(c,d) for a £ c, b £ d 

(c) T(T(a,b),c) = T(a,tf(b,c)) 

(d) T(0,0) - 0 

will be called a t-norm. 

Definition 1. Let S be a real linear space, let F be the set 

of all probability distribution functions defined on the real line 

R Let G: S •* F be a given mapping. For every xc S let us denote 

G(x) =- F € F and we demand that G satisfies: 

1. x = 0 <=> Fx -= H where H(u) = 0 u £ 0; H(u) « 1 u > 0 

2. F
Xx*u > " F

x (u / JXl ) for every x£ S and every X ^ 0 . 
3 . F (u) = o for every u £ 0 and every x c s . 
4. T(F x (u) ,F (v)) £ F

x+v* u + v* fo^ievery u, v f R^and every p a i r 
x , y e s where T i s a t-norm s a t i s f y i n g ( a ) , (b) , ( c ) , ( d ) . 
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Under these conditions the triple (S,G,T) is called a linear statis­

tical space in the Menger sense (SLM-space). We shall start with 

construction of a special SLM-space. Let S be a linear space of all 

real sequences x = {x.}. , where linear operations of addition and 

scalar multiplication are defined coordinatewise. « , let a ^^i}?-.! 

be a sequence of positive reals such that J a , * 1. Let F be the 
set of all probability distribution functions on reals. Let us defi­

ne a mapping Vt S •* F in the following way: 

if x = *xi}jL=i tften w e P u t 

yx(u) = 0 for u <; |X1 | 

yx(u) m ai for jx.! | < u £ lx-,1 + |xal 

V u ) - £-1 ai for ^ l , x i , < u * I±-i l*±«-
In case I^lx.l < « we must distinguish two possibilities: • 

a) It-i ' xi' contains infinitely many non-zero elements then 
yv(u) - 1 for u -iplx. I 

roo
 X 1 J-

b) li-i ' xi' contains finitely many non-zero elements only then 

yx(u) - 1 for u> J"lxil. ' 

Theorem 1. The triple (S,y,min) is SLM-space with the t-norm 

T(a,b) = min(a,b). 

Proof. See [l]. 

Now, using the mapping V and the norm min we can introduce a linear 
topology into S, the e-n-topology, and as it is shown in [1], [2] 

(S,y,min) is a locally convex metrizable linear topological space 

with the base of neighborhoods of the null element 

{0(e,n) - {XCS: yx(n) > 1 - e}, 0<e.Sl, n>0) . 

Theorem 2. InSLM-space (S,y,min) the e-n-topology i s equiva­
l en t to the coordinatewise convergence. 

Proof. Let x n -> 0 in the e-n-topology, xn - { x
n i } i = T/ i t means 

(Vec(0,l>Vn>0 3n 0 e W*n^n0) =>(xn€0(e,n)) <**> (yv (n) > 1 - e ) . 
xn 

As 1°°^^ » 1 then for every n-, € M there exists 0 < e < 1 such that 
1 " e >Ii-li ai a n d h e n c e y x n

( n ) > Iniai* Tt follows from the con­
struction of y that 

-1-1 lxnll « * 
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for every n >. n0. But this inequality says that 

xni n+~ ° f o r e v e r* i € W -

Conversely, let xn -* 0 coordinatewise , i. e. lim x . = 0 for 
n-H» ni 

every i€ W. Let fix i0 € hi and let choose for arbitrarily chosen 

e > 0 sue! 

and hence 

e > 0 such a number n0(i0)C W that for every n ;> n0(i0) |x J < e 

L-i 'x«4 I < e io for every n ;> max {n0(i)}. 
1" x n l l._i«Si0 

According to the construction of */ we obtain that 

Vxn(i0e) > 7̂1-, a. for n ;> max {n0(l)}. 
1 - 1 x l<.i<;i0 

With respect to the arbitrariness of e and i0 it implies that 

xn -* 0 in the e-n-topology. Q.E.D. 

Further,we can remind without proofs that SLM-space .(S,V,min) is a 

complete topological space and the subset S*c S formed by all se­

quences with finite length, i. e. 

S* -. {x£S: x = {xn ,xarx3,... ,XnrO,0,Q,....}} , 

can be identified with the topological dual space. The construction 

of the mapping y is based on choice of a sequence {an}*..-! • The equi­

valence between the e-n-topology and the coordinatewise convergence 

yields that the choice of {an}" , is not so important because all 

e-n-topologies generated by all possible sequences a • {an}* are mu­

tually equivalent. 

Let x = {xn}" , be an arbitrary point of S, let n€ H, we can write 

x = IU x i e i + x<
n> 

where e. = (0,0,...,0,1,0,...)€ S. Unfortunately, we cannot write 

r«PO 

x " -, xiei 

because we do not know in which sense the convergence of this series 

could be understood. So, we can understand this convergence in a 

probabilistic sense, namely, instead of the basic vectors {e_}jLi 

we shall consider random variables {Ci}^3sl such that for every x € S 

the series l°° €_x. will be absolutely convergent in the sense almost 

surely. 

Theorem 3. Let SLM-space (S,/,min)v be given. We can construct 

a sequence {C }i=sl of random variables such that for every x = 

= *x_}i--l€ s t h e series _ 777 



is absolutely convergent a. s. and, 

yx(u) - P{u»: I"lx1l5i(«) < u} 

for every real u. 

Proof. Let us consider the sequence of vectors {e.}., where 

ei * (1,0,0,...), ea « (0,1,0,...), e3 = (0,0,1,0,...),... 

The mapping y assigns to en the probability distribution function 

Fn of the form 

for n * 1 FT (U) = 0 for u <. 1 

F-,(u) = 1 for u > 1 

for n ;> 2 Fn(u) =- 0 for u £ 0 

Fn(u) = £
n~* aj for 0 < u < 1 

Fn(u) = 1 for u > 1. 

Further, for every k-tuple (e_ ,e_ ,...,e ) we shall define the 
ni na nĵ  

Common probability distribution function by 
F- n n (ui,u2,...,u, ) = min {F (u.)}. 
ni ,na,... ,n^ K i£j<k J 3 

This system of probability distribution functions satisfies Kolmogo-

rov's consistence conditions and hence we can construct a sequence 

(Cnl" i of random variables which satisfy (for every n 6 W) 

P { w : f ) i s i *w : Z±M < u ± } } = F 1 2 ^ n ( u 1 , u a , . . . , u n ) = min F ± ( u i ) . 
o. t -—-".-.n 

Let x -= { x i } i s a i 6 S ke q u i t e a r b i t r a r y and l e t u s c o n s i d e r random v a ­
r i a b l e s 

I i--1 Xi« i<»)» li- .-! l x i U ± ( u i ) . 

We s h a l l prove t h a t t h e sequence { Z ? B 1 I -< iUi ( « ) } % ! i s fundamental 
i n p r o b a b i l i t y . S u r e l y , 

P ^ H I i « n l ^ i U i ( W ) - I i a s B l l x i U i ( a , ) | < n } - P{u>: E i = n + l , x i ^ i < T t } * 

2- P{»s Cn4 . i<»)"0r i = - l , 2 , . . . , k } • P{(D: C n + i (w) < 1 , i = l , 2 , . . . , k } -

=- min {Fn.. (1)} = Vn a, / 1 if n ^ . for every k€ W. 
l<J.<Jt n + 1 JsI J 

A random variable S,„,(w) » p - lint Tn . |xl £. (u>) must exist. I x i n**--0 ** x ^ x i x 
As for every n e w 

^i-1 , xi , ei ( w ) * ^i=l 'xi^i(u> a-s-

then S|xj(
w) * limn-».«»Ii«il

xiUi(w) a. s. and we can write 
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£jX|(w) » ^ s r l lxiUi(w)f too. 

We have proved that for every x€ S there exists a sum Cx(w) * 

* I°9xi-Ci(w) satisfying 

U x(«) I -* C|x| (w) a. s.. 

The common probability distribution function F, -, «, „ (u1,ua,... 

...,un) gives the probability distribution function Gn for the ran­

dom variable 

It can be easily shown that 

P{(D: Ci(w) * p±, i • 1,2,...,n} =- 0 (pi = 0 or 1) 

for every n-tuple (PI ,Pa#•«•,Pn) if P* < Pi+k
 a t --east for one pair. 

In other words, * 

P{w: £.(w) » p., i=-l,2,.. .,n} > 0 only for the combinations: 

p1 ~ lf pi * ° i = 2'3'--»'n 

Pi » lr Pa • 1# P-ĵ  * 0 i • 3,4,...,n 

Pi ** l* Pa - 1"**'P n-i
 s -f Pn a 0 

Pi — 1# Pa !S lf • * •'Pn-1 * *-» Pn a !• 

Prom this fact we can easily derive that (under assumption |x.| > 0 

for simplicity) 

P{u>: I jXjICjCt t ) - Ejs - i .Xj l } -

* P{w:Si U ) * S a U ) * • • • = ^ i * ^ * * ' * i + l ^ " • • • * Sn(u>) = 0} =- &±. 

So Gn(u) « ^ a j for I^ -Jx . . ! <; u < J^+J Jx..!. 

A s ^i*l * x
iU i(a»)^ Ii»l

,xi,5i^w^ a* s " (»n(u) n^ w G(u) weakly. Where 

6 is the probability distribution function belonging to jpjx.U.. 

We obtain that 

p { w s £i«l lxjLUi(«) < u} - yx(w). Q.E.D. 

T 
We constructed a mapping x •* £ which to every x €(S,y,min) assigns 

a random variable £ • I x
i C i . At the first sight we see the mapping 

T is a linear^ and one-to-one mapping because 

«Xx+vy " C ( U l + W i ) E i * <Xih + <yi6i = H x + "«y 
and the equality Jpx.E. (<a) • I*ViSi(w) a. s. implies that x. * y± 

for every i€ W thanks to that fact that 

P{w: Ci(w) - O, £ i + i A w ) «• 1} - O 
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for every i€ W and every k£ N* 
All random variables £ for xc (S,y*,min) form a linear set which is 

closed with respect to convergence a. s. That follows from the de­

composition P(U i s : 1 A.) = 1 if we define 

Ai - {w: £i(tt) - ... - ^(tt) = 1, 5i+1(w) = 0 f k 6 W } ; 

then P(A.) «• a.. Now, we can easily prove that the mapping T is to­

pological mapping because convergence x n •* O in the e-n-topology 

implies convergence E «* 0 a. s. and vice versa. Further, the con-
Xn 

vergence in probability of a sequence {£ } implies convergence in 
x.n 

the sense a. s. 

We proved in Theorem 3 the absolute convergence of l^^l xi^i a* s*' 
i. e. for every x€ (S,y,min) 

5|x|(w) = ^i=l ' x i ^ i ( w ) exists a. s.. 

This random variable will be called a random seminorm defined on S. 

We are motivated by the following properties of €,vl: 
I x I 

1. S|X|(w) -£ 0 a. s., C,Xj(w) = 0 a. s. if and* only if x = 0 in S 
2. £ | X x | (tt) - l

x^|Xj («)
 a* s-

3- hx+y\M * *\x\M + ?|yl ( w ) a- s' 
Let * denote all real functions defined on S, i. e. 

* = {f; f: S -.Ri}. To every measurable cylinder set 

C - {fC*? [f (xO,f (xa) ,...,f(xn)] €Bnr x ^ S, Bn € Bnl 
we can assign a nonnegative number 

y(C) =- P{tt:[£|Xi| (tt), 5 j x |(«)r...r5|X , (»)] € B n } . 

In this way we define a set function y on the algebra of all mea­

surable cylinder sets in * that can be under certain conditions 

enlarged on Kolmogorov's a-algebra in * "into a probability measure. 

It is clear that in the construction of the set function y we are 

not limited by a special case of the linear space S. Let L be any 

real linear set and let *T be the function space defined on L, 

i. e. *L • {f; f: L •* Ri}. Let K. be the smallest a-algebra of sub­

sets in *L with respect to which every x f -» f(x) becomes measurab­

le. If y is a probability measure defined on K. then the triple 
(*L'iK*'p) forms the underlying probability space. 

Definition 2. Let L be any real linear set, let (*L,K*i»u) be 

the probability space derived from L, let N be the subset of all 

saminorms on X. The triple (*L.»K##y) is said to be a random semi-
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normed space if there exists a probability measure v on the a-al-

gebra {Nn A: A < K$} such that 

v (NnA) * p (A) for every A£K.. 

It is clear that (*L,K$,p) is a random seminormed space if and 

only if p*(N) = 1 where p* is the outer measure derived from p. 

Similarly, as it is done in [4] in case of a random metric space we 

can give very simple necessary and sufficient conditions for the 

existence of a random seminormed space. 

Theorem 4. Necessary and sufficient conditions for (*L,K ,p) 

to be a random seminormed space in a linear set L are 

(1) p{f € *L : f(x) ;> 0} = 1 for every xCL 
(2) p{f€ *L : f(Xx) = |X| f (x)} = 1 for every x € L and every X c K, 
(3) p { f £ * L : f(x+y) £ f (x) + f(y)} = 1 for every x, y € W 

Proof .v The proof of Theorem 4 can b e omitted because that is 

a simple application of Theorem 1 in [5] by aid of an obvious fact 

that the property of real valued functions on L to b e a seminorm is 

extensible, hereditary and measurable with respect to the a-direct-

ed covering class of all finite or countable--dimensional linear 

subspaces in L. Q.E.D. 

At this situation, it is necessary to verify that a special case of 

a random seminormed space considered in (S,*/,min) is in accordance 

with Definition 2. It is sufficient to verify demands (1), (2), (3) 

in Theorem 4. Every random variable £, . derived from (S,«/,min) in 
I x j 

S takes a. s. at most countably many values forming the series |x1^ 

Ix-tH-lxal,...,][!? -Jx. I,.'.. (if x = {X-jlT-.^)- A 1 1 members of-this se­

ries are seminorms on S and this fact implies validity of (1), 

(2) , (3) in this special case. 

As it was remembered before,the topological dual space to (S,y,min) 

is the subset of all vectors in S with a finite length. Now, our 

aim is a construction of a random seminorm in this dual space S*. 

On the basis of an analogy With Banach spaces we shall consider 

for f CS*, f (x) - l*ml f±x±, 

sup {'f^L)} = sup {|£ f X |}. 
{x€S:C|x|(u))--l}

 C|x|((o; {x€S:S(x|(u>)--l} * A 1 I 
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Theorem 5. For every f€ S* there exists a random variable nj f. 

defined on the same probability space as all random variables {^1-'1.-sl 

such that 

P{U):TI.-. M » sup {if(x)|}} = 1 
and m {x€S:5|x!(.)=!} 

P { « « n , £ | U ) - m a x { | f 1 | , | f a | , . . . , | f M l } } - Jtj .M » j 

P{w:rij .(w) » • } « l^Zl &j 
if f (x) - j £ я l f ^ , fм * 0. 

Proof. Let (fi,0,P) be a probability space where all random 

variables {S-i}?--̂
 a r e

 defined. We can easily derive from the pro­

perties of common probability distribution function of {Ci}?-^ that 

ft can be decomposed into " f 

A
 =
U

l s s l
 A ^ 8

0
 u {0}u A 

where A^ * {u> € fl:£i (u)) = . . . ^ . ^ ( w ) * ! , 5i+k*w* * ° f o r e v e r v k -* ** 

Go « { U J € Q : 3 j f c N such t h a t f.. (u>)--0,£ . + j l (<tf)-«-l f or some £ € N} 

{0} « {w€ fl: ^ ( w ) = 0 f o r every i € W} 

A * {w€ Q: ^ ( w ) = 1 , ¥ i } . 

A l l t h e s e s e t s are a-measurable and P{A.} = a i # P{ft0} = P{{0}} * 

« P{A} » 0 . Now, l e t a>€ A . , then for every x € S, x « { x . } ! ^ , , 

Clx|(o)) » Ij^lXjl and hence 

sup {|f(x) |} - , sup Uf(x) | } . 
{X€S:5 ( X |( W)=1 {xsZj.! 1x^-1} 

At this situation we must consider two possibilities: a) i<M, 
b) i;>M. In case a) it is easy to see that 

c x . 1 5 . ^ 1 - i , { , f ( x ) , } - + - -
In case b) we obtain 

, sup {|f(x)J} « max {|fkl}. 
^••Ej.itXjl*!} Uk^M 

We can consider a random variable nJf defined on R by the follow­
ing relation * 

n J f J M » max {I f. I} for 'a c U T - M A^ 
l-*k-*M 1 IM-1 

njfj(w) « « for w€ U? a, 1 A. 
nlf J (w) » 0 for w€ «o w {0} M A * 

This construction yields immediately that the corresponding proba­

bility distribution function F- is equal to 
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F f r(u) « O f o r u -S max {If. 1} 
T
 m l«3c.5M K 

F_(u) * L a . f o r u > max { l f v l } 
f i ~ M D l<3c£M k 

and, further, we have 

P{u: nlfl(w) - sup {|f (x) I}} - 1, 
{x:£|x|U)=-l} 

which completes the proof. Q.E.D. 

Theorem 5 enables to define a mapping y*: S* -*• F* V|(u) » Ff(u) 

where F* denotes all nondecreasing left continuous real functions 

defined on reals with variation less or equal to 1. We shall.study 

properties of the mapping y*. If f is the null functional on S, 

i. e. f (x) =- 0 for every x€ S then for every wcU-T.-.! A. 

11 in 1 (w> ~ „4 S UP t°1 m °* 101 CxtlJ^IXjl- 1} 
which means i)|0.(w) = 0 for every u>£fl. The corresponding probabi­

lity distribution is y$ = F0 = H where H(u) = 0 for u £ 0, H(u) • 1 

otherwise. If X 5* o is any real number then 

Xf(x) « XJ5L fixi = Zi-i <xfi>xi -'tXf)(x) and hence 

n 1 xf .(to) - 1 X In |f . ((u) for every w c «. It follows that for every 

u € Rf and every X 7- 0 

„. x f ( u ) = „.<_»->. 
When X =- 0 it is reasonable to put y|(§) " 1 for every u > 0 and 

every f£S*. Further, let f, g€S*, f(x) =- J^^ *±xi* 9(x) » 

* Ej«l g j x j ? t h e n 

(f+g)(x) - Im*i (M'm ( f i ^ i ) x i 
and y|+g(u+v) - 0 for u + v £ m a x ^ ^ ^ ^ {lfk+9kl}. As for 

every k Jf
k+9k* -- >

f
k
J + l9kl

 w e n a v e u + v -* maxi^k^M *'fk '*+ 

+ max1<k<N{l9|e 1}
 ar-d hence at least one member of u, v must satisfy 

u £ maxi«c;k£M*'fk'* o r v * raaxl^k^N{,9k,J a n d tnerefore. Yf(u) -= 0 or 

y.(v) - 0. If ! t | + g ( u + v ) - I ^ a x ( M f N ) ak, i. e. u + v > 

> maxlSkSmax(M,N){lfk+gk,}' t h e n Ek=max(M,N) ak S "^^k-MV-JUlV 

and this inequality proves the generalized triangular inequality 

y*. (u+v) * min(y*(u) ,y*(v)) . This result leads us to the following 
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Definition 3. Let F* be the set of all real-valued left con­

tinuous nondecreasing nonnegative functions defined on reals with 

values less or equal to 1. Let L be a linear space and y* be a mapp­

ing y*i L -* F* satisfying the following conditions: 

1. V*(u) - H(u) if and only if x * O in L 

2- Vlx{u) = Vx{JT\) f o r e v e r y u € **' x * ° 
3 . y*. (u+v) -i T(!/*(u) , y* (v ) ) f o r every x , y € L and every 

x-i-y x y 
u , v € Rjwnere T i s a t-norra. 

Then the triple (L,y"*,T) is called a generalized statistical li­

near space in the sense of Menger (GSLM-space). 

We shall introduce a topology into (L,y*,T) under assumption that 

the t-norm T is continuous. Let U = {0(e,n) - {y€L: y*(n) > 1 - e), 

0 < e £ 1, n > 0}. As it is proved in [ljthis system U of neighbour­

hoods forms a base for topology in (L,y*,T). -We shall call this to­

pology the e-n-topology, too. 

Theorem 6. The e-n-topology in GSLM-space (S*,y*,min) is 

stronger than the $-topology in S*. 

Proof. Let Cfn) be a sequence in S* convergent to 0 in the 

e-n-topology, i. e. 

(Ye > 0 ¥ u > 0 3n0 ¥n. .> n0) => (/? (u) > 1 - e-) <=> ( H M a.>l-e)# 

t n ^ % ] 

if fn(x) =- L^i f?-^i- Since {a.} are positive numbers then for every 

e£ (0,1> a natural number M must exist such that J»!LM
 a^ *> 1 - e *> 

£ I-* >M 4.1 ai an<* hence for every n *> n0 Mn -S M. It means that all 

functionals fn€ 0(e,n) have a uniformly bounded length. In other 

words, using the mapping y"* we can state that for every n £ nc 

max(|f?lr...f|f{^|) < u. 

We have proved that 11m ^ f j = 0 for every i 6 W and Mn £ M < » for 

every n£N, too. This convergence in the dual space S* is the 

so-called {3-topology. Now, let us consider a sequence {fn} of 

functionals in S defined by 

fn(x) = %ml ^ 

where M is fixed and M > 1. It is clear.that fn -* 0 in the $-topo-

logy but fn 7 O in the e-n-topology. Surely, 
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y* (i + 5) s Y? a . < 1 for every n€ W and every 6 >0. 
fn n ^3=M 3 

If we choose e* in such a way that [. .. a. £ 1 - e* then 

fn £0(e*,| + 6n) where 6n + 0. 

This example proves that the e-n-topology is stronger than the 

B-topology in the dual space S*• Q.E.D. 

Theorem 7. A sequence {fn} C(S*,y*,min) tends to the null 

element in the e-n-topology if and only if 

1. lim^jcj = o for every i € N, 

2. lim TOMn = 1 where Mn denotes the length of fn, 

fn( Mn *> - X E i - J -±. 
Proof. The proof can be omitted because it is an easy conclu­

sion of Theorem 6 and the construction of y*. 

It is remarkable that the e-n-topology in the dual space (S*,y*,min) 

is not a linear topology because for some f €S*, f / 0 and 

{*n}n=Bl# Xn - 0 Xn f / O in the e-n-topology. One can simply prove 

that the e-n-topology in a GSLM-space (S*,y*,T) is linear if and 

only if for every x f 0 lim wy*(u) = 1 . 

Now, we shall return to the SLM-space (S,y,min) again. We proved 

that for every x -= Cx.}^, the sum Î X-iC.! (w) is a. s. absolutely 

convergent and hence for every pair x ?- C-«-j, 1 T=rr v ~ *yi*i=l ^ r o m s 

the sum 

Ei-1 xi y i ZtM 
is absolutely convergent.a. s., too. As P{u>: CJ(W) - 0} + 

+ 1?{a»: 5.$U) = 1} • 1 for every i € W then ^(w) = €?(w) a. s. and 

we can write 

Ei«l xi yi 5i(to)) = ^i=l Xi yi C i ( w ) a" s* 
In this way we constructed a mapping which is defined on S x S and 

takes its values among random variables defined on the underlying 

probability space (fi,cr,P) where all £,(.) are defined. This mapping 

satisfies the following properties. If we shall denote by 

*<x,y>(w) " Ji xi yi *l ( w ) t h e n 
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U C<x,y> U ) + «<„*><•> - S < x + 2 f y >U) a. s. 

2* 5<ax,y>(w) = <*£<x,y>(w) a« s«' «€Ri 

3* *<x,x>(w) i O a. a. 

4* *<x,y>U) - *<y,x>U) a- *• 

These properties lead us to call this mapping a random scalar pro­

duct defined on S. This random scalar product defines a random 

seminorm on s by the relation 

(c<x,x>(w))* " S|x|2(w)-

The inequality Hnx.y. | £ (J1^?)* (JV 3)* holding for every n e N 
i l l 1 X <\ X 

yields the inequality 

l?<x,y>(tt)l * 5|x|2(<*> 5|y|2(">> a- s' 

We can introduce a notion of orthogonality by aid of the random 

scalar product in S. We shall say that x, y € S are orthogonal if 

£<x V > U ) =- 0 a. s. We immediately see that two vectors x,yeS 

are orthogonal if and only if 

x. • y a o for every i€ W. 

Under orthogonality the Pythagorean theorem holds in the usual 

form 

?lx+y|2
(<»> = «fx|2(u) + «|y|2(a) a' s' 

Now, we need the probability distribution function; of a random 

variable Eixj2
(w)' x € S - According to the definition of the random 

scalar product on S we see that (X ;> 0) 

P{w.£Jx|2U)<X} - P{(o:(I"x!^U))*<X} m 

- PUt^xJeJUXA-*} « Ijl^a. where M(X) - max{ncW:jJ^x^X3} -

= max{n€W: (I^xf )*<A} • 

We obtain a mapping ya: S - F 

ya(x)(X) - P{ui: Cjx|2(w) < X}. 

Theorem 8. The triple (S,Y^,mln) is a SLM-space and the cor­

responding e-n-topology in S is equivalent to the coordinatewise 

convergence in S. 
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Proof. When x « 0 in S then 5| x J 2
( w ) "* ° a' s* a n d h e n c e 

ya(x)(u) - H(u) for every ufcR-,. On the contrary, if S | X | 2 U ) * ° 
a. s. then P {w: p x ^ ^ C w X u } * 1 for every u > 0 and it implies 
x - 0 in S. Let X ? 0 then M A x ) (u) -

- P{cn (J00(Axi)25|(a>))^<u} * P{u)5 | A | ( J " x | 5 . f ( w ) ) , l < t t } * 

=-P{U: (iyiq)h <^j) - y,"(x) (-rfj). 

It lasts to prove the generalized triangular inequality with the 

t-nornumin. Let x, y€S? u, v € Ri (we can consider u > o, v > 0 

only because other cases are quite trivial). We know that 

/a(x+y)(u+v) - *{«! (I"(xi+yi)-»Ci(w))^ < u+v} * Z
M
j
(JJJv> a., where 

M(u+v) «max{n€W: ( l " . ^ ^ - ^ ) a>* < u+v}. Using (j'Nx.j+y^ a)* <; 

* {li**ixl)h + (d yf }^ "we see that u+v * (Iiii + v ) + 1 ( xi + yi ) 2 )^ * 
^ (^u+v)+lx?) + (£M(u+v)+lyf)* a n d h e n c e e ± t h e r (IM(u+v)+lxf)^ H 

or (][M(U+V) y|)*2vj in every case either P {w: (I^xjK. (u>) )^<u} £ 

* Ijil+V>aj o r PCu):(I*y}q(a»))^<v} * ^ + v ) a j . Summarizing these 

facts we obtain 

Yz (x+y) (u+v) ;> min [y3 (x) (u), Va (y) (v) ] . 

We have, further, thanks to the inequality.Jn|x.| :> (£ \ ? ) ^ 

*|x|(w) * *|x|2 ( w ) a- s-

for every x £ S . That implies that the E-n-topology induced by the 

random seminorm 5J XI is stronger than the e-n-topology derived 

from CiX|2*
 B u t i f xn * 0 in S in the e-n-topology induced by Klxl2 

then (f e>ofn>0 3n0fn2rn0) *> (xn€0(e,n)) <=> ( M ^ n ) (n)>l-e) <*> 

<«> (J-isi a,>l-e). As {I a.} is increasing then for every n £ n0 

m n ^ me + 1 where J ? ^ a. ;> 1 - e; at the same moment (^-.(x?)
 a)*<n 

must hold for every n ;> n0. With respect to arbitrariness of e, n 

we can state that lim wx5 = 0 for every j € W. We proved the equi­

valence between the topology generated by the coordinatewise con­

vergence and the £-n-topology induced by the mapping ya. Q.E.D. 

The system {£<x >f x,y€S} of random variables enables to intro­

duce a probability measure into the measurable space ($,K) where 

* is the set of all real-valued functions defined on S x S and 
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K is the smallest 0-algebra generated by all measurable cylinder 

sets 

{f£*: [f (X! ,y^ ,f (xa,ya) ,...,f (xn,yn)] €Bn} , x±, Y i € S , 

Bn is a Borel subset in n-dimensional Euclidean space. In the 

o-algebra K can be defined a probability measure y by 

M(C) - P { . . [C<Xlfyi>(->. «<Xa,ya><-> ?<Xn,yn>(")]€B„}. 

If we denote by TT c * the subset of all semiscalar products defined 

on S then one can affirm that 

y*(ir) = 1 

(y* is the outer measure corresponding to the measure y ) . In this 

way we constructed a probability space (TT,K ,V) where TT is the set 

of all semiscalar products on S, K = K A TT and 

V(AOTT) -« y (A) , A€ K. 

This example enables a generalization. Let L be any vector space, 

let $_ _ be the set of all real-valued functions defined on L x L 
LxL 

and let K be the smallest a-algebra generated by all cylinder sets 

of the form 

(f £ * L X L
: -f (x*"Yi* '•••'f (xn,yn)] € Bn) , 

where x., y.,£ L and B . is an n-dimensional Borel subset. 

Definition 4. A triple (*j_xL'̂ ,p^ wi---- be called a random semi-

unitary (unitary resp.) space if there exists a probability measure 

v on the 0-algebra TT_riK such that v(AAir . . ) » y (A) for every A £ K 

where TTL is the subset of all semiscalar (scalar resp.) products 

on L. 

Without any proof we assert that the property "to be & semiscalar 

(scalar resp*) product on L" is extensible, hereditary and K-mea-

surable with respect to the measurable space (#L w K ) . Using 

Theorem 1 in [5] again we can formulate Theorem 9. 

Theorem 9. Necessary and sufficient conditions for the exis­

tence of1 a random semiunitary (unitary resp.) space (•ĵ j/KfV ) i n 

a vector space L are 

. 1. y {f ̂ •j^L-f (x,x)i>C| »» l for every x £ L 

2. y(f€* ] > Lsf (ax-^y,2) *= a f (x,z) 4$ f (y ,z)} - 1 for every 

x,y,z£.L and every a,3€Ri 
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3. y* f €*L*L ! f* x' v ) = f(yrx)} « 1 for every x, y * L 

(1. y{f€ * L x L: f(x,x) > 0} = 1 for every x f 0 in L 

2. y{f£* L x L: f(ax+8y,z) =- af (x,z)+0f (x,z) } -» 1 for every 

x,y,z€L and every a,3£fy 

3. ^^f€-*LxL
: f*x'v> ~ f(y*x)} - -« f o r every x,y£L resp.). 

Proof. The proof of Theorem 9 can be omitted. 
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