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REGULARITY FOR NONLINEAR ELLIPTIC SYSTEMS
OF SECOND ORDER
J. DANECEK

Abstract: There is shown the existence of 'a nonlinear elli-
ptic system of second order whose weak solution has the gradient

locally in 22" space.

Key words: Elliptic systems, regularity, Morrey-Campanato
spaces.

Classification: 35360

1. Notations and definitions. Let £ be a bounded open set
of R", n>2 the points of which we denote by x=(x1,...,xn), N be
a positive integer, (|) and T | denote the scalar product and the
norm in RN. Denote further p= (pl,...,pn) pieiRN, Dju= au/ax
Du=(Dlu,...,Dnu) B(e )=B(x,6 ) is the open ball in R with the
center x and radius 6 and f(x, 6)=B(x,6) NN N . We set d()=
=diam QL , d =dist(x, 8.0.), where 9L is the boundary of L . Let
nl 2(.&'l RN ) 1 2(_0. \R ) be usual Sobolev spaces of vector-va-
lued functions u Q —-—>1RN with the norm :

(1.1) huly ;o= L[ VubZaxs Jf) 10,02 ax] 12

Besmes the well- known spaces Ck(.ﬂ_ RN ), Ck(:Q—. RN ),
ck g, rY) and C°°(,0. RY) we make use of Morrey-Campanato spa-
ces LZ'A(D. RV and ;ﬁz "(a, RN). The definition of Morrey-Cam-
panato .spaces is as follows:

Definition. Let A€ L0,n) and Lc IR" be a bounded domain.
7 .
The space L%\(4Q, \RN) is the subspace of such functigns from
Lz(.Q., RN) for which

1/2
= 1 2

The space ‘éﬁz'n(.ﬂ., IR") is the subsnace of such functions from
- 755 -



Lz(ﬂ., IRN) for which

2. 9 1/2
1, HEQy) - (g gyl Py} < oo,

4
where (f)ﬂ(x,g)ﬂﬂ(x, G)I'lnf(;,a)f\(y)dy, | 2¢x, 6)| is the n-di-

.
= su ——
{ c>o,x2 5 sn m);,s)

mensional Lebesgue measure of the set f(x, 6 ). Define the norm
in the space 382"1(*.0., RrY) by

el = It Lf] .
2N 2t 2220

Remember that L2:"(S, RM)=L® (2, rM) § 22", RV) and

o2, 2r 2
gL cL for each 0 £ A,< A,<n. For the more detail-
ed information about them see e.g. L13,033.

We consider the elliptic system of the second order in the
form :

"M : \
(1.2) - .5 D,a'(x,u,Du) = a%x,u,Du),
151 i

where ai(x,u,p), a°(x,u,p) are Carathéodorian mappings from
2% RN R™ into RN. A function ue H122(9, RN) is called a weak
solution of (1.2) in QL if

(1.3) [ %, aloou, 0010, ¢)=(a%0,u,00(9), Yo e 020, RY.

As it is known, in case of a general -system (1.2) only parti-
al regularity can be expected for n>2 (see e.g. 111). In this
paper we study LZ".A(!)., IRN)-tegu.larity-‘(fAe (0,n)) and
&z’n(_ﬂ., RN) ~regularity of the weak solutions for the system
whose coefficients al(x,u,Du) have the form

. m .
(1.8) ai(x,u,Du) = = Ai.(x)D.u+gl(x,u,Du)
351 M13M0;

and also generalize some results (for the systems of second order)
having been achigved in Campanato’s work 111 pp. 104-115, where
the function of g1 independent of Du only is considered.

Here A;;(x)= {Agg(x)}:,k=l are matrices of continuous (Holder-
continuous) functions, the following condition of strong ellip-
ticity

(1.5) {$4(Ai.(x)§j|§i)g p.g ngilz, »>0 const.,
iy 5 J is 1 Vgie |RN
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holds and gi(x,u,p) are smooth functions with sublinear growth in
p. In what follows, we formulate the conditions on the smoothness
and the growth of the functions Aij(X)’ gi(x,u,p) and a®(x,u,p)
precisely.

2. Main results. Suppose that for all (x,u,p)e fix RV< RnN
the following conditions hold:

(é.i) 1a%(x,u,p)ii = £ (x) + L{uullJo + % lpj\\ﬁog
! ’ - O é=4 ’
. ! - ez .8
2.2)  Hgtx,u,plie 160+ LU w2 0 ) i},

where L is a positive constant and

n+2 n+2
(2.3) l£d <355, lzf <=,
(2.4) 1£d< 2y, 0<[<1.
We set
_n
(2.5) 9% 757

Theorem 2.1. Let ue Hl’z(Sl,IRN) be a weak solution to the
system (1.2). Suppose that the conditions (1.4),(1.5),(2.1),
(2.2),(2.3) and (2.4) hold. Let further A?g(x)e c°(M) for each
i,j=1,...,n, h,k=1,...,N and

2q,,2q
(2.6) g 0el ° ), fet?Ma), 0<acn,

where f  and f; are the functions from the estimates (2.1),(2.2)
and q, is defined by (2.5). Then for:each ball B(6 ) c f)

m 2 a
. . X £c 6
(2.7) 54;) 4%% “Dlu“ dx&c
and therefore Dju €L§52(11, RN) for each i=1,...,n. Here

c=c( v,d(Sl),L,Nl,Nz).

In order to obtain ﬁﬂz'n-regularity for the first derivati-
ves of the weak solution we strengthen the conditions on the co-
efficients g'. Namely suppose that . N
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\

J/
(2.8) ngi(xau,p)'gi(Yt\UQ)léL ;{ |f1(x)-fl(y)|+(ﬂu“ + "V") 1‘*‘
% 1 phoqll Ay

gt(x,0, 0) et? ", RY).

We can now formulate the main result of this paper.

Theorem 2.2. Let u Hl’z(n, IRN) be a weak solution to the
system (1.2) and suppose that the conditions (1.4),(1.5),(2.1),
(2.3),(2.4) and (2.8) hold. Let further A'i‘g(x)e co%(q),

(e« €(0,1)) for each i,j=1,...,n, h,k=1,...,N, and

294,nq
(2.9 fo0el 0 0@, 1,00 e 2N, isl,...,n,

where £ and f; are the functions from the estimates (2.1),(2.8)
and q, is defined by (2.5) Then
(2.10) . Dyu e 2 Ny

,RYY,  i=1,...,n.

loc

3. Auxiliary lemmas. In this section we present the results
needed for the proofs of Theorems 2.1, 2.2. In Lemma 3.1 we consi-
der a linear elliptic system

(3.1) -72‘4 Dl(A (x)Dju) =

with constant coefficients for which (1.5) holds.

Lemma 3.1. Let A in (3.1) be constant matrices. Let
usHl’z(B(e )R ) be a weak solutlon to the system (3.1), Then
for each te (0,1]

oo 2 . .n o <2
G2 L2, 10guifex st o F i uifex,

< 2 n+2 [ - ¥ -
.3 g Z 105u- [0gulg gy Paxéet™? [ i3 105
2
Proof: cf.[1l] pp. 54-55.

Lemma 3.2. Let &(e& ) be a nonnegative function on (0,d]
and let A,B,C,c,[d be nonnegative constants. Suppose that for
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each te(0,1) and all 66 (0,d] hold:

(3.8) B(16)<(At™+B) (e )+cel,

(3.5) $(d) < o0 .

Further let the constant K& (0,1) exist such that

(3.6) €= A< Bk ler.
Then
(3.7) d(e)ccel, ¥6e(o,d],

C (6)
where c=max {my ga[s}%gl,d'] %T b

Proof: cf. 12) pp. 537-538.

Lemma 3.3. Let £ be a bounded convex domain in R",
u eHl’z(SL,IR ) such that Dju eLz’t(Il, RN) with some = ¢ (0,n).

¥ ook
If ¥ < n-2 then ue,L2 v2%/2 cQ,

the estimate

IRN) and for all x e (i, 5 ed(L)

‘

(3.8 [ Wi ax <o u2'e¥2%/2,

A (%,,6) .
holds with 2%¥ =2n/(n-2). If 7 =n-2 then ue Léo(Il,IRN) and

(3.9) Hunw,nész.
Here
ol g+ oE, oyl
(3.10) M= Buly o o+ 2y |Diu\\L2ﬂm))R,\,)

and c;, c, depend only on d(L).
Proof: cf. [1] pp. 23-24.

We set

(3.11) Vg=min {n(1- %5% dh), n(1l- 527 ﬁ°)§1
/

n-2
(3.12) v1=n(1- Td‘l)
Lemma 3.4. Let the assumptions of (2.1),(2.2),(2.6) be

satistied and let ue H'2(0, RY) with Duet? ™2, RD,
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(welo, n)) for each i=1,...,n

2q,,2
(i) Then a®(x,u,Du)el © °n, R") and for each ball B(6)
we have

‘ 2q 2
0y “Ho o
(3.13) ﬁ[(a) ha © axcoin 670,
J, 2q '
Here N,=(llf | M0,uPoy ©, M is defined by (3.10),
1 o LZqo,aq0
Ag=min {Jqo, Vot 1q0§ and c,=c,(d(Q),L).
(ii) For each’ € &(0,1) and all B(& )ec N

iy2 2 2 M,
(3.14) afw) Ngii2ax < 4L eb{,, Z 10 ,udxech, &

’ d.
Here Np=(Ag , A gy™ 1y2, Ap=min £4,v,+ ¢ &} and
6p=6p( ©,d(0),1).
Proof: (i) cf. [1) pp. 106-107.

(i1) Let B(€) < f1 . According to (2.2) it follows that

. 24"
(3.15) B{d)llgl(x,u,nu)llzdxéz .{,(dﬂf |2dx+4|_2{fw)“uﬂ Lax+

o B 10

From (2.6) we have

(3.16) Joel 23 1Pax € cePig I
L

and from Holder inequality and by Mmeans of (2.4) we get

2,2

2 n(1-24) 224
fw)“u“ lixecs n-l [fB( ui2n/(n- Z)d)a 1.

Now by Lemma 3.3 (in case %=0 by Sgppley imbedding theorem) we
have

2 '
(3.17) ‘ fe hud” ldxﬁcn 9 gV1*h
where M is defined by (3.10). By Young inequality

2B -
(3.18) fs(‘)lnjuﬂ lax < ef,m“julzdm ‘_1/({31 l)gn
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for each € €(0,1). From (3.16),(3.17) and (3.18) we obtain
(3.14).

4. Proofs of the theorems. If A?S(x)e c°(8) for each i,j=
=1,...,n, h,k=1,...,N we set

- : 1/2
. 2

(4.1) ©(6): sy ~§- WAg 00-A; () { )
N~ Iy,ll‘G'

hk 2
where 1A; ()| -{,n‘% NEUNEIES

/2

Proof of Theorem 2.1. Let B(® )=B(x0,6')c_Q be an arbitra-

ry ball with the center x, and let we Hé’z(B(xo,G),}RN) be a so-
lution of the following system:

(4.2) fo:q(A ;(xo) D3ul0; @ )dx=

1%
Joer 54 P15 (X027 5 0X0105u-9, (.4, 00 [0 @)k

+ fe@®(x,u,00 1 @)dx, Voo Hir2B(6)RY).

It is known that under the assumption of Theorem 2.1 such a solu-
tion exists and it is unique. From Lemma 3.4 (with T =0) follows
that for each € € (0,1) we have

(4.3) j;w Z o, wiZdx €, [w?(6 )+ ejj;m =z, o, ul2dx+c (5)5 \

where A' =min {9«1, 'J\O/qo}, c1=c1(d(-Q),L) and c, depend on the
constants from Lemma 3.4.
The function v=u—weHl'2(B(5' ),IRN) is the solution of the system

(4.8) S (A, 13(%g0 vlﬂiq,)dx =0, Vge Hé’z(ﬂ(a’),lRN)-

‘/;(‘) 1-}!1
From Lemma 3.1 we have for te (0,11

"
2, 2 n 2.
.5y Lo Z, N0vhaxgest” [ ., 10,v Pox.
By means of (4.3) and (4.5) we obtain for t e (0,11, €< d, and,
e>0 0

- 761 -
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m 2. L 2, .
(4.6) af(w) 3 I\Diull d"'a{m ;§1 ||D.1V+D.1wﬂ dx <

v

'
e feytheog(@i(e)eed)d [ F u0ulfaxsc s’

set §(6)= [ = 10,ul’dx, A=c,, B=cs(w?(&)+€) and C= c.
Further we can choose K  €(0,1) such that AKn <1/2 (n-A'>0).

It is obvious (the coefflcients Ahg(x) are uniformly continuous)
that the constants 6‘ >0, €q >0 ex1st such that BK"”‘]/Z

(Bc (w (6‘ )+e,)) and then AK +BK <1 For a1l te(0,1),
6’$m1n{60 dx 1. the assumptlons of Lemma 3.2 are satisfied and
therefore

(4.7). L :Z410;ulPdx < cy 6 | Ve < min {so,dXO}.

Now let Q  be an arbitrary domain such that .0. cc L (by
the symbol G ¢ c.()_ we mean G 2 and G is a compact subset of
®V) . and 1et d,=dist(d_, 30 ). Since (4.7) holds for every
X, € QD and & < min {Go,dul we get

(4.8) Z ﬁD uli2 dx€cq8 a'-

n‘[.x 8) 4=

If min (60,d0§<d(.§2°) it is easy to check that for
6 :min {do,do}é 6 = d( Q.O) we have

av 2 a2’ . X m 2
(4.9 o f ey i34 10julax o8 Lnin g6 ,d 07 [ T, h0,ullx.
Thus we have

= 1o,u ccy .2 No.ul
(A.lo) . L s 1] Cc . . u .

4 z1 1 Lz’a(jlo,lRN) 9 i=1 1 L2(n,‘RN)

If XN =A , the theorem is proved. If A'< A , the previous
procedure can be repeated with 2=2' in Lemma 3.4. It is clear
that after a finite number of steps (since A' increases in each
step as it follows from Lemma 3.4) we obtain &' =2

Proof of Theorem 2.2. According to Theorem 2.1 we have for
each A€ (0,n) '

' 2,2 N .
(4.11) Djuelige (., rRM, 3=1,...

From (4.11) it follows ueC®?(Q, RM) for each 7 €(0,1). Let
- 762 -



B(2€ )= B(x,, 26 )c 0 be an arbitrary ball and let the function
we.Hl’ (B(x 6 ),IRN) be a solution of the following system:

(12) fo = 5 Ay 4(x)04u 1Dy @ )xs fm‘z (TA;50x) -
- Aij(x)JDjulﬂi?)dx+ Joe .wzﬁ(gi(x,u,ﬂu%(g (x,u,0u))g gy 1056 dx+

0
fB(d)(a (x,u,0u) | @)dx,

for each @€ Hé’z(B(G )JRN). From the assumption of the theorem
it follows that there exists the only solution of the system
(4.12). Using Lemma 3.4, we get

2 2 2
(4.13) fe(w m.z4 1 wifdx<c, { & ~€(s) Z llogul?ax+

+_};w)%§4llg (x,u,Du)-(g (x,u,Du))B(s)n dx+N1 ¢n}.

Further, we estimate the second integral on the right hand side
of (4.13), From the assumption (2.8) we obtain

18) L gt Oou,0u)- (ot 0x,u,0u)) g g 1P =

<g™" facs)dx B(d)ngi(x,u(x),Du(x))—gj (y,uly),DuCy)) 2dy 2

2
20y [, 1100 (gl "dx+ 6 “”“c °((g) Y

2p,
J;w) 21 iD. u(x) (D. U)B(G) lixy =

o
2 n
2c,§ e_{w ;= 10uC0- (00 gyl “axec, 671 5

where € €(0,1) is arbitrary, c3=03(d(il),L) and
20?1
c, =l 0l + llul +cc(€).
41 20 (g) co(8(e) Yy 3
Using the relations (4.11) and (4.14) for the estimation of the
remaining terms on the right hand side of (4.13), we get the es-
timate

(4.15) BwMZ hogwiexco e [ o D u-(0,u)g gk Pdxec, (626",
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which is valid for each & €(0,1).
The function v=u-we H’ 2(B(,:s') RN) is the solution of the
system

b . 1,2 N
(4.16) fam ‘t.’gz_'q(A.lj(xo)Djleig:)dx-O, ' Vg e H ' “(B (6),R)
and by means of Lemma 3.1 we have for each te (0,1)
4.17) = 1D, v-(D;v) Zgx <
: -L(tg)4=z4 00;v-(Dyv B(td)“ dx <
cat? f £ ID,v-(D,v) ﬂzdx
=8 e i i'’B(e) :
8(6)
From (4.15) and (4.17) we obtain by the standard manner

(4.18) Z I D;u-(D “)B(tG')" dx <

J;&d)
i—{c9tn+2+cm E} B(€)£ D, - (D u)B(GI)“ dx+cyy én.

Since the inequality (4.18) holds for all t e (0,13, 6€ecd /2
)
and ¢ €(0,1) we may use Lemma 3.2 from which we obtain

(8.19) [ = 10 LD, ul 12dx ¢,, 8" ‘g < d_ /2
: gy 4571 14T Fitie(e)! X012 € V6 £ Gy /2,

where c12=c12( »,d(Q),L, ﬂfoﬂ hfiH ).

5o ,d
L2uo,nqo’ @2’ Xy
The remaining part of the proof is analogous to the correspond-

ing part of the proof of Theorem 2.1.
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