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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,4 (1986) 

O N THE RÉNYI DIMENSION 
Miroslav KATĚTOV 

Abstract: The concept of dimension (upper, lower and exact) 
is introduced for probability spaces equipped with a measurable 
semimetric, and its relation to A. Renyi's dimension of a vector-
valued random variable is established. Under certain assumptions, 
the exact dimension function behaves like a "specific weight", » 
and the dimension of the product of two spaces is equal to the 
sum of their dimensions. 

Key words: Semimetrized measure space, R6nyi weight, R6nyi 
dimension. 

Classification: 94A17 

In 1956, the dimension d(^) of an Rn-valued random variable 

£ was introduced in a joint paper by 3. Balatoni and A. Rinyi. 

In 1959, A. Rdnyi introduced the upper and lower dimension, d(f ) 

and d(£ ) . Following R6nyi's ideas, we introduce, for any exten­
ded Shannon semientropy y> (see L23), three dimension functions, 
cp-ud, cp-ld and tp-Rd, which we will call, respectively, the upper, 

lower and exact R6nyi 9 -d imension . The dimensions g>-ud(P) and 

<j>-ld(P) are defined for any W-space P, i . e . for any ?=<Q,p1(U,>> 
where fi is a finite measure and p is a measurable semimetric; 

<y-Rd(P) is defined iff q -ud(P)= cp-ld(P), and is equal to their 
common value. 

The case of <p equal to E, the largest extended Shannon ent­
ropy of the form C^(see 121), is considered in some d e t a i l . It 

turns out that, for any Rn-valued random variable P on a probabi­

lity space <Q,fa> , d( £ ) and d( § ) are equal, respectively, to 

E-ud <Rn,tp ,(tc o|"1> and E-ld<Rn, J> .fu^" 1^ if, in addition, | 

is bounded, then E can be r-eplaced by any <p from a certain fairly 
large class of extended entropies. 

In general, the behavior of the dimension functions E-ud, etc., 

is not very nice. If, however, E-Rd(S) exists for all S^P and 

the set of all E-Rd(S), S£P, is bounded, then E-Rd(S) behaves 
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as a "specific weight": there is a function f such that, for any 

S^P, E-Rd(S) is equal to the mean value of f on S. We also show 

that, under certain^not too restrictive, conditions, the exact 

R6nyi E-dimension of P,x P2 is equal to the sum of dimensions of 

Px and P 2 . 1 

1 .1 . We use the terminology and notation of C3J. In particu­

lar, (1) if x = (x k:keK), K * 0 , x kcR +, 2 xk < cx> , then we put 

H(x)= S L(xk)-L( ST x k ) , where L(0)=0, L(a) = -a log a if a>0, 

(2) if P=<Q,^,<u-> is a W-space and e, € R is positive, then 

£ * P denotes the W-space <Q, e * f>, /tt> , where (&*$o)(x,y)=0 if 

^>(x,y) £ £, , ( &* p)(x,y) = l if $t>(x,y) > e, . 

1.2. Recall that P= <Q,s> ,<u> is called a semimetrized measu­

re space or a W-space ("weighted space") if (*, is a measure on Q 

and ro is a i^o x (uj -measurable semimetric. If p is a metric and 

every Borel set is in dom (tl , then P is called a weakly Borel met­

ric W-space. If P= <Q,^> ,/^> is a W-space, we put wP=<t<.Q. - If 

wP=0, then P is called a null space. If P is a W-space, then exp P 

(respectively, exp*P) denotes the collection of all subspaces (all 

pure subspaces) of P, equipped by the order relation "to be a 

subspace". 

1.3. Proposition. If P is a W-space, then exp P is a comp­

lete lattice, exp*P is a complete Boolean algebra and if Jic exp P, 

then there is a countable M' c JK such that sup JVl1 =sup JL . 
We omit the proof, since the proposition is a direct consequ­

ence of well*known analogous propositions concerning e.g. the lat­

tice of jpi-measurable [0,13-valued functions modulo those which 

are equal to zero ja-almost everywhere, etc. 

1.4. The (cartesian) product P=P,x P2 of semimetric spaces 

P i = < Q i , f i > (of W-spaces P ^ < Qt, pi , ^ ^ ) , i = l,2, is, by defi­
nition, the space <Q,x Q2, p> (respectively, <Q, x Q2, p , û, x ^ct2>) , 

where p ( ( x x > x 2 ^ y l ' y 2 ^ = m a x ^ l ^ x l ' y P > *°2^x2,y2^" In P a r t i c u" 
lar, Rn, n=l,2,..., and its subsets are always endowed with the 
metric <p ((x^ , (yi))=max | x^-Vi I 

**5- Notation. If <Q,*u.> is a measure space, T is a set and 
£ :Q — > T is a mapping, then (* © f " denotes the measure •» on T 
defined as follows: dom *P consists of all X c T such that £ X € 
€ dom (u, ; if ^"1X e dom <a , then vX=<tt( | " 1 X ) . 

1-6- Definition. If <Q,<«x> is a probability space, <T,p> 
is a metric space and £:<Q,<u,>—-»-<T,^> is a random variable 
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(i.e. ,B<T, <p>C dom( <u~ * £~ )) > then £ will be called a metric 

random variable (more exactly, a <T, £> > -valued random variable 

on <Q, <a> ) . 

- -1 • Proposition. If £ : < Q, <u > —.> <T,^D> is a metric ran­

dom variable and f ( Q ) C < T , J D > is separable, then <T,JD, (U. U £ ~ > 

is a weakly Borel metric W-space. - This follows easily from L33 , 

1.8. 

1-8- Remarks. A) In 1.7, the assumption that £(Q) is sepa­

rable can be replaced by a far weaker one, and it is consistent 

(relative to current axiomatic set theories) to assume that it 

can be omitted. ~- B) Clearly, if <Q, ̂> , ̂ -c> is a weakly Borel "met­

ric W-space, then the identity mapping £ :<Q,^iZ>—><Q,p> is a 

random v a r i a b l e . 

1 . 9 . In tlj (see also [63, which is, in fact, an abridged 
version of [11), the concept of dimension of an Rn-valued random 

variable has been i n t r o d u c e d . In t41 and [53, A. R6nyi has intro­
duced the upper (lower) dimension of £ . The pertinent definiti­
ons (in a slightly more general form) will be stated below ( 1 . 1 1 ) . 
First, we introduce some notation and c o n v e n t i o n s . 

1 . 1 0 . A) If acR, a > 0 , we put a/0 = oo ; if bcR +, we put 

oo/b= oo ; we put 0/0 = 0. - B) If a random variable £ : <Q,/cc> —> 

—><T,Jl> assumes only countable many values, we put H (£ ) = 

= H((M,( f ""1t):t e £ (Q)). - C) Z will denote the set of all inte­

gers. - D) If x€ R, then Cxle Z, f x3 £ x << CxJ +1. If x = (xx, . . . ,xm)€ 
e Rm, then [x3 -̂ (Cx-̂ 3 , . . . , Ex 1 ) . If £ is an Rm -valued random 

variable on <Q,<u,> , then LJ3 is defined as follows: [£J(q) = 

= i\ (q).l for all q a Q. 
1.11. Let £ : < Q , ^ > —* Rn, n = l , 2 , . . . , be a random variab­

le. Then, by definition, d(f ) , d(f ) and d(f ) are equal, respec­

tively, to the limit (provided it exists), to the upper limit and 

to the lower limit of H (Cm |J )/log m for m —-> oo . - We will 
call d(£ ) , d~( % ) an d d (£ ) , respectively, the (exact) R6nyi di­

mension (upper dimension, lower dimension) of ̂  . 
1-12- Theorem (A. *R<§nyi). Let t = l,2, . . . and let \ : <Q,/tc>-* 

—*> R be a random variable. Assume that AJL O C ~ is absolutely 

continuous with respect to the Lebesgue measure on R and that 

H Q([|3 )<oo . Then d( § ) = t. - See [43, Theorem 4. 

1.13. The following simple facts concerning the functional 

< k j £ 0 
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H are well known. - A) Let x..£ 0 for k€.K, j <= 3 and let 5Hxr.<co. 



Then H(xkj:(k,j)e K*.3)=H(IS: (xkj :k £ K) : j € 3) + 2* (H(xkj:k€ K): . 

: j &3) . - B) Let x k* 0, y ,= 0 for k£ K, jeO and let 2" xk <c <x> , 
Z y ^ " 5 . Then H(xky . :(k, j)€ K.x J)= ^-"xk:H(y. : j c3)+X y^ . 

„H(xk:k e K). 

2 
2-1- D e f i n i t i o n . Let <$> : 32/) — > R+ be an extended (in the 

broad*sense) Shannon semientropy, as defined in 12), 2 .26 . Let P 

be a W-space, We put <^-uw(P) = Um(g (of* p)/ | log oT | ) , g>-lw(P) = 

= llm(9 (<f* P)/|logd* 1). If cp-uw(P)= 9>-lw(P), then we put <£-Rw(P) = 

= (̂ >-uw(P) and we say that cp-Rw(P) exists or that P is g?-dimensi-

on-exact; if not, then cp-Rw(P) is not defined. We call 9«uw(P), 

g-lw(P) and g-Rw(P), respectively, the upper (lower, exact) R=-

nyi g-weight of P. We put g> -ud(P)= g>-uw(P)/wP, 9 -ld(P) = 
= ̂ ~lw(P)/wP and q?-Rd(P) = cp~Rw(P)/wP (provided cp-Rw(P) ex­

ists). We call <f>-ud(P), cp-ld(P) and g>-Rd(P), respectively, 

the upper (lower,exact) R6nyi cp-dimension of P. - If <jp=^ (see 

13J, 1.13), we usually omit the prefix " cp ". 

Remark. It is possible (and sometimes useful) to consider, 

e . g . , the "level 2" upper R6nyi <j -weight of a W-space P, denoted 

by (2,<j> )-uw(P) and defined as lim( <$(<?* P)/ | logV* | 2 ) ; (2, cp)-

-lw(P), (2, <p)-Rw(P), (2,<$>)-ud(P), (5,cp )-uw(P), e t c . , can be de­

fined in a similar way. We will not go, however, into these mat­

ters here. 
2 . 2 . Conventions . A) Recall that if P=<Q,j>,^c>is a W-spa­

ce, then (P, :k£ K), where K=£0 is countable and P k£P, is called 

an co-partition of P whenever Z.Pk = P; a finite o>-partition of P 

is called simply a partition of P; an £ -partition of P, where 

0 < ^<oo, is, by definition (see[33, 1.19), a countable indexed 

collection (Xk:keK) such that X.e dom jCu , diam Xk 4. Z<, X . n X.=0 
for i^-j, ..E<tIX i={UQ. - B) An £-partition (X^keK) of P will be 

called an ( t> ,m)-partition, where mcN, if., for any Yc Q satisfy­
ing diam Y £ <& , there is a set McK such that card H£m and 

^(X kAY) = 0 for all keK\M. - C) A covering of a semimetric spa­

ce <T,rt>> is, by definition, an arbitrary (indexed) collection 

(Xk-.keK) such that UXk=T; a covering (X^kcK) will be called 

(1) disjoint if X.nX.=0 for i,jcK, i^j, (2) an e-covering if 

diam Xk 4 €> for all keK, (3) an ( & ,m)-covering, where meN, if 

diam Xk 4 & for all keK and each set Y c T of diameter <£ e inter-
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sects m sets Xk at most. 

2.3. Proposition. Let P Be a metric W-space. Then, for all 

positive reals & , (D E(e# P)=E*(e* P)= ?£ (£* P) = ^ * ( e * P ) , 

(2) ir2;O>:*P)=E(fc*P) unless both ^ ( e * P ) and E(e* P) are infini­

te for all sufficiently small e . - See [33, 2.18. - For the defi­

nition of E, ̂ i , etc., see [33, 1.9, 1.13 and 1.20. 
2-^* £j_£l* Jr°r any W-space P=<Q,§3,(OC> and any (s,m)-par-

tition (Xk-.k€.K) of P , \(t * P ) ^ H( p0(k:k e K) £ %(l* P)+wP.log m. 

Proof. The first inequality is ev iden t . Assume that <>2(e*P)< 

< co and choose a number b>7r[(&xP). Put v = fZ> . Clearly, there 
is an €-partition ( Y . : j € . 3 ) of P such that diam Y. £ £ for all 
jeJ and H( i> Y. : j e 3)< b. For keK, j e ] , put Vk-,

sXk
nY- By 1.13 

A, we have H( VXk:ke K) 6 H( >>Vk . : (k, j)e Kx 3)=H( V Y . : j 6 3) + 
+ ->I(H('v>Vk.:k£K):j e3). Since (Xk:k € K) is an ( e ,m)-part it ion 

and diam Y. £ b for each j, we get H(«j) V. .;keK)_ >> Xk log m for 

all ;j£3. Hence we obtain H( :P Xk:k € K) _£ H( v> Y . : j €.3)+ ̂ tiQ.log m < b+ 

+ |aQ.log m, which proves the assertion. 

2-5. fjLEl* *~et a > 0 . Let f and g be non-increasing positive 

functions on (0,a). Let ( cf :neN) be a decreasing sequence, 

<fn — > 0 . Let g( cfn)/g( cTn+1) — > 1. Then the upper (lower) limit 

of f ( cTn)/g( or_) for n —> oo is equal to that of f(e)/g(e) for 

2.6. Proposition. Let P=^Q,(p ,̂ o> be a metric W-space. For 

neN let (X_. :keK ) be an ( e _ ,p_)-partition of P. Assume that riK n n n 
log pn/|log e n| —>-0 and |log enl/|log &n+1l - » 1 for n -> co . 

Then the upper (lower) limit of H((ZXnk*.k eK)/|log t | is equal 

to uw(P) (to lw(P), r e s p e c t i v e l y ) . 

Proof. By 2,4, we have ^ ( & n * P) 4 H (ju,Xn(< :k £ KR) _# 

s ^ ( e *P)+wP«log p for each neN. Hence, due to (log P n)/ 

/|log t-nl — * 0, the upper (lower) limit of H((tXX|lk:k e K)/| log en I 

coincides with that of \ ( ̂ n * P)/|log eR|. By 2.3 and 2.5, this 

implies the proposition. 

2.7. Proposit ion . Let<Q,p> be a bounded subspace of Rn, 

n=l,2, . . . , and let P= <Q, f , ̂ > be a W-space. Let x be a normal 

gauge functional (see i"3], 1.10), X £ r, and let <p = C* or 9 = 
= C^. Then <p-ud(P) = E-ud(P), 9-ld(P) = E-ld(P). 

This follows at once from [33, 3.7. - For the definition of 

Cg, etc., see [3.1 , 1.10-1.13. 

2-8- Theorem. Let C : < Q,/o,> — > R , t = l,2, . .., be a random 
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var iab le . Put P= < R*,<p , ^ • § "l>. Then d ( £ ) = ud(P), d( £ ) = ld(P) 

and hence either both d( £ ) and Rd(P) exist (and are equal) or 

neither d(£ ) nor Rd(P) exists. If. in addition, £ is bounded, 

then the assertion holds with ud, Id and Rd replaced, respective­

ly, by cp-ud, <p -Id and 9-Rd, where 9 =C_ or <£ = C* , t: being 

a normal gauge functional, T £ r. 

. Proof. For n = 1,2, ... , z = (zx,... ,z t)e Zt, put Xpz= lx = (x1 , . . . 

. . . , x j e R. :z . £ nx. < z . + l f o r i = l , . . . , t j . Then (Xn i z c Z ^ i s a 
w1 t i l l n z 

(l/n,2 )-partition of P. Hence, by 2.6, the upper (lower) limit 

of H(pX n z:ztZ )/log n is equal to uw(P)=ud(P) (respectively, to 

lw(P)=ld(P)). On the other hand, by the definition of d(f ),d(£ ) 
T " 

and d(£ ), see 1.11, the upper (lower) limit of H(u,X -ZfiZ ) is 

equal to d( £ ) ( respect ive ly , to d(f )). - The second assertion 

follows from 2.7. 

2-9- Theorem. Let P= < R , p ,<-*-> be a W-space and let M be 

absolutely continuous with respect to the Lebesgue measure A ; 

let wP ^0. For any z = ( z , , . . . , z . ) c Z put A=A*x = (x,,...,x.)c R : 

:z.€ x.< zj + l for i = l,2, . . ,t?. If H(fL Az :z £ z"1) < oo , then Rd(P) = 

= t; if H( /SA -z t Z t)=w , then Rd(P)= 00 . 
t Proof. For xeR put £(x)=x. We can assume that wP = l. Cle-

t 

arly, ? : < R , P~ > — * < R , j>> is a metric random v a r i a b l e . By 2.8, 

ud(P) = cK£ ), ld(P)=d(P ). By 1.12, d( | )=d(£ )=t if H(£Az:z€. Z*k 

<- co , and it is easy to see that d( £ )=d(£ )= co if H( Zik^.z & Z ) = 

= 00 . -

3 

•* • *- • f̂ E.1- ** (S,T) is a partition of a W-space P, then 

lw(S)+lw(T).£ lw(P) slw(S)+uw(T)s-uw(P)^ uw(S)+uw(T). 

This follows at once from 2.3 and [31, 2.5. 

3.2. Proposition. Let (S,T) be a partition of a W-space P. 

If both ,S and T are dimension-exact, then P is dimension-exact 

and Rw(P) = Rw(S)+Rw(T). If Rw(P)<oo and both P and S are dimensi­

on-exact, then P-S is dimension-exact, too, and Rw(P-S)=Rw(P)-

-Rw(S). 

Proof. The first assertion follows easily from 3.1. To pro­

ve the assertion concerning P-S, observe that, with T=P-S, we 

have lw(S)+uw(T)£ uw(P), lw(P)£ lw(T)+uw(S), hence Rw(S)+uw(T) § 

* Rw(P)^lw(T)+Rw(S). 

3.3. Definition. A W-space P will be called (1) dimension-
- 746 -



bounded if sup {ud(S):S§Pi< ®o , (2) hereditarily dimension-

exact (abbreviation: h . d . e . ) if every S^P is d imension-exact . 

3 .4 . Proposition. Let P be a dimension-bounded W-space. If 

(Pk:k£ K) is an co-partition of P, then uw(P) 4 2. (uw(Pk) :k <~ K). 

Proof. Since P is dimension-bounded, there is a beR such 

that uw(S)#b.wS for each S^P. We can assume that K = N. For any 

n<=N, put Tn= S l ( P k : k - i n ) . By 3.1, we have uw(P) £ 21(uw(Pk): 

:k^n)+uw(P-Tn), hence uw(P) & 2.(uw(Pk):keN)+b.w(P-Tn), which 

implies the proposition. 

'•^* Example. Let (a :n«N) be a decreasing sequence of re­
als, a„ —> 0. Let b . n 6 N, be positive reals, JE. b < oo . Consi-

' n n' i r , > n 

der the W-space P=<N,p,(u.> , where p(i,j)=a.+a. for i=^j. 

dom (tt =exp N, (a-C i} =b. . It is easy to prove that uw(P) (respec­

tively, lw(P)) is equal to the upper limit of 2: (Lb. :i# n)/ 

/| log aR| (to the lower limit of Z(Lbi : i £n)/ | log a -J). Put Xm= 

= -fie N:i5m}. Clearly, uw(XR.P)=uw(P), lw(Xn»P)=lw(P). - Assume 

that uw(P)>0. Then ud(X»P)—> oo and therefore P is not dimensi­

on-bounded. Since, evidently, uw(-Cn}»P)=0 for each n£N, the con­

clusion of 3.4 does not hold. - It is easy to find a set XcN such 

that, with yn= E d b ^ i l n,ie X), lim(y /|log an|)=uw(P), lim(y / 

/|log a ,|)=0. Hence P is not h.d.e. 

3.6. Proposition. Let P be a dimension-bounded W-space. If 

(Pk:keK) is an co-partition of P and all Pk are dimension-exact, 

then P is dimension-exact and Rw(P)= SI (Rw(Pk):kGK) . 

Proof . We can assume that K = N. Put TR= 2 I ( P k : k ^ n ) . By 3 .2 , 

all T are dimension-exact and Rw(T )= 2! (Rw(Pk):k4 n) . Since 

T i P, we have Rw(TR) =5iiw(P) for all neN, hence 'X (Rw(Pk) :ke N) 4 

^uw (P) . By 3 .4, uw(P) .£ 21 (Rw(Pk):k€N), which proves the propo­

sition. 

3.7. Proposition. Let (Pk:kcK) be an ^-partition of a di­

mension-bounded W-space P. If all Pk are hereditarily dimension-

exact, then so is P. - This is an easy consequence of 3.6. 

3.8. Proposition. Let P be a dimension-bounded W-space. Let 

Jh c exp P. If all S e M are hereditarily dimension-exact, then 

so is sup JL . 

Proof. By 1.3, we can assume that M, is countable . If, JA, = 

= -tS0,S1j, then, clearly, iSQ-S A S 1 $
 S o A Sl , S 1 " S O A S 1 ^ i s s p a r" 

tition of S vS,, consisting of'h.d .e . subspaces and therefore, 

by 3 .7 , SQv Sj. is h.d.e. If JA. = \ SQ ,SX , . . . }, put, for n = 0,l,2, . . . , 
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V V C S ^ i i n ) , Uo=To> U n + 1 = Tn+1-Tn. Then Un are h.d.e., <Uk . 

:kc N) is an <*>-partition of sup M . Hence, again by 3.7, sup JL 
is h.d.e. 

3.9. Proposit ion . Let P be a dimension-bounded W-space. 

Then there exists exactly one maximal hereditarily dimension-exact 

subspace S-iP, The subspace S is pure and no non-null T^P-S is 

hereditarily dimension-exact. 

Proof. Let M be the collection of all h.d.e. subspaces U£P. 

Put S=sup Ji . By 3.8, S is h.d.e. Clearly, if T^P-S is h.d.e., 

then, by 3.7, S+T is h.d.e., hence S+T-£S, wT = 0. To prove that S 

is pure, let S = f.P, let 0 ^ e < 1/2 and let X= {qeQ: e^f(q)<^l-

- E, ] . Then fc.(X S) is h.d.e., hence S+ e.(X S) is h.d.e. and 

therefore w(X.S)=0. This implies L̂XX = 0. 

3.10. We present an example of a dimension-bounded W-space 

P such that no non-null S^P is dimension-exact. The example is 

closely related to A. R6nyi s example (see t4j) of a real-valued 

random variable f such that "&(§ )*d(£ ) . 

Let (a :nfcN) be a decreasing sequence of positive reals, 

a — * -Q . Let<Q,v> be the product of co copies, of <{ 0,1$, ->>>, 
where *>>0{Ot = ->>0Ul=l/2 . Put <u = >* . For (xi),(yi)cQ put 

p ((xi),(yi)) = sup(ai|xi-yi| :ie N ) . Clearly, P= <Q,(o , /"*> is a W-

space . 

We are going to give an outline of the proof of (1) ud(X*P)= 

= lim(n/|log a | ) , ld(X P) = lim(n/| log a |) for each Xedom^ of 

positive measure. The following simple fact will be used: (2) if 

meN, m&l, a>0, b>0, maSb , O^x.iia, 5~x.=b, then H ( x , , . . . 

...,x )£b log(b/a). The proof of this fact is easy and can be 

omitted. - Let niN; a > cf& ^ n +i. It is easy to see that 

E(or* (X.P ) )=H ( ra (X rs B(uQ,. . . ,uR)): (uQ,.. . ,un) e i0,1} n + 1 ) , where 

B(u ,...,u ) consists of all (x.)& Q such th&t x.=u. for i=0,... 

...,n. This implies that (3) E(cf* (X.P)) -6 (n+1). <"X. On the other 

hand, by (2), we have (4) E(tf*(X P)) S. *ftX.log( <aX . 2n+1) = (n+D* 

• ("•X-L((-tX). - For any positive oT< aQ, let f(cf) be the largest 

n such that a* > oT . Then, by (3) and (4), we have |£(ef* (X.P))-

- <aX.(f(oO + l)|/|logd"| — > 0 for oT-~>0, and therefore ud(X.P) = 

= iim(f(oT)/|log oT|), ld(X.P)=lim(f(cf )/|log QT|). It is easy to 

see that the upper (lower) limit of f (cO/| log cf| for of—*-0 is 

equal to that of n/|log a | for n — > co . This proves the asser­
tion (1). 
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Clearly, it is possible to choose a sequence (a :n€N) such 

that the upper (lower) limit of n/|log a | is equal to 1 (to Q). 

Then, by (1), we have ud(S)=l, ld(S)=0 for each pure non-null 

S:#P . If $£ P is not pure, wS>0, then there exists a non-null 

pure T.£S, hence ud(S)> 0 (in fact, it is easy to see that ud(S) = 

= 1) / Clearly, ld(S) = 0. Hence, no non-null S^P is dimension-exact. 

5.11' Theorem. Let P be a dimension-bounded W-space and 

let S be its maximal hereditarily dimension-exact subspace. Then 

X V-> Rw(X«S), defined for X £dom £L , is a measure on Q, absolute­
ly continuous with respect to (tZ . 

Proof. If X c dom juu , n 6 N, are mutually disjoint, X=UX , 

then (X »S:n€.N) is an a>-partition of X.S and therefore, by 3.6, 

Rw(X.S)= 5-Rw(XR.S). Hence X H > RW(X.S) is a measure on Q, which 

is abvolutely continuous, since there is a number b such that, 

for any X edom fii , uw(X.P)£ b-w(X.P)=b . ft* X. 

3.12. D e f i n i t i o n . Let P= <Q,<o,(t̂ > be a W-space. A (u.-measu-

rable function f:Q—.»• R+ will be called an Rw-density function 

(or simply an Rw-density) for P if, for any S=g.P~#P, Rw(S)= . 

= J fgd^u. (hence Rd(S)= / fgd jtc /wS). 

3:13. Theorem. If a W-space P=<Q,£>,(U,> is dimension-boun­

ded and hereditarily dimension-exact, then (1) there exists an 

Rw-density function for P, (2) if both f, and f2 are Rw-density 

functions for P, then f, and F2 coincide ^-almost everywhere. 

Proof. I. Let v denote the measure X *—> Rw(X.P), see 3.11. 

Since, by 3.11, ->> is absolutely continuous with respect to <tZ , 

there exists a function f:Q — > R such that L fd^t= p(X) for any 

Xc dom (I . It is easy to prove that J fgd /tt. =Rw(g-P) whenever 
g.P=P. - II. If both f, and f2 are Rw-density functions, then 

J f,d̂ ut= /xf2d(a for all X e dom <<Z , hence f, and f2 coincide 

/u,-almost everywhere . 

4 

*•*> £!£!* ^or any non-null W-spaces P, and P«, d(P,xP 9) = 

=max(d(P1),d(P2)). 

Proof. Put P ^ ^Q^^^y, pi>cP2= ^ Q ^ * ^ ^ • For any u €- R
+» 

put B(u)= ^ xi» x2^'^yi»y2^ € ® * Q: -°^ xl' x2^ ,^ yl , y2^ > u^> Bi^ u^ = 

= -?(xi,yi)€ Q.x Q i : p . C x i , y i ) > u?, i = l,2. If X c Q ^ Q ^ put 
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M(X)« 4.((x1,x2),(y1,y2))e QxQ:(x 1,y 1)eX} ; if Y c Q 2 x Q 2 , put 

M(Y)= A,((x1,x2),(y1,y2)) eQx Q:(x2,y2)e Y?. It is easy to see 

that (1) if u1,u2eR+, u=max(u1 ,u 2), then B(u)cH(B1(u.))u 

cM (B2(u2)), (2) if ueR +, then B (u ) .3M(B 1 (u ) )uM(B 2 (u ) ) . Put 
A= 4u: C/u-~(*3(B(u)).-0*, A.= {u: j£. (B . (u) )=0} , i = l,2. By (1), we 
have (3) if u-eA-, u 2eA 2, then max(u1 ,u2) e. A; by (2), we get 

(4) if U G A , then u e A ^ A ^ Clearly, (3) and (4) imply the asser­

tion. 

^•2- Fact. If P., i = l,2, are non-null W-spaces, then 

E(o"^(P1x P2))^E(<2T.* Px).wP2+E(cr* P2).wP1} for all positive re­

als cf« 

Proof. We can assume that E(or* p ) <c oo . Let b > EicTyrP^). 
.wP2+E(cT* p ),wP1. Choose b1 and b2 such that E(oT#r P . ) < b. , 
b1. wP2+b2.wP1 < b. Put P.= <Q.,p. , <u.> . By 2.3, there are pure 

G> -partitions (X...P.:keK.) of P., i = l,2, such that'd(X4.) ̂  cT 
1K 1 1 1 IK 

and H(^.X.k:kf-K.)<b.. Put K ^ x K2 and, for any (k,j)eK, put 
V k r X l k n X 2 V Clearly, (V^ .. P : (k, j) e K) is a pure cj-partition 

of P=PxxP2. By 4.1, d(Vk..P) £ </ for all (k,j)eK. Since #V -. 

= (aixlkM^2
X2j' w e 9 e t' b y L 1 3 B ' 'H(,rtVkj:(k,j) eK)=H(,vl1Xlk: 

:k£K1).wP2+H(^2X2.:je K2).wP1< b1»wP2+b2-wP1< b. Hence, by 2.3, 

E(<^*P)<b, which proves the assertion. 
4-3- F a c t • L e t Pi = <Qi»Pi> ĉ î » i = 1»2, be W-spaces. Let 

P = P1xP2=<Q,(p, <u- > . Let A £ dom p> . For xeQ. let f(x) be equal 

to the ££2-measure of 3yeQ2:(x,y)e A} if this set is ^-measu­

rable, and to zero if not. Then f is ^a..-measurable, w(A.P) = 

=w(f.P1) and d(f.P1) id(A.P). 

Proof. The first two assertions follow at once from well-

known theorems. Put.B= \ xeQ1:f(x)> 01, A' = A n (Bx Q 2). Clearly, 

|£(A^A') = 0, hence A'.P = A.P. Put a = d(A.P). Let U consist of all 

((Xj,x2) ,(y-,y2)) € Ax A' such that ^
)
1(x1 ,y1) > a. Clearly, 

[ (tt x <a3(u) = 0. Let T consist of all (x1,y1)eBxB such that 

?(x1,y1)>a. For any (x^y^eT, the set of all (x2,y2)
 6 $ 2*

 Q2 

such that ((x1,x2),(y1,y2))s U is equal to -£(x2, y 2)eQ 2xQ . 

:((x1,x2),(y1,y2)) «. A'x Al= {Z a Q? : (xx ,z) e. A ' } x fz e Q2: (y^ j z) e 

&A'J, and therefore its I i u
2
x (a2^""measure *s positive. Together 

with CftX(a](U) = 0, this implies, by well-known theorems, 

I p x (tc13(T) = 0, which proves d(B » Px) ̂ a, hence d(f1«P)^ a. 

4-4- Fact. Let P. = ̂ Q^.p*. M*> . i=l,2, be W-spaces. Let 
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P = P 1xP 2, P=<Q,tp,<u,> . Then, for any 6 > 0, E(cf* p) > WP 2 . 

.E(oT* P x). 

Proof. By 2.3, it suffices to show that ofKcT* P)&wP 2 • 

. ̂ (if^P.). We can assume that wP 2>0 and *>Y* (</* P) < co . Choose 
a number b>02*(cf*P) and choose a pure co-partition (Ak»P:keK) 

of P such that H( ft Ak :k e K) < b, d(Ak«P)£ cT . By 4.3, there are 

^-measurable functions fk, keK, such that d(fk« ?^)£ d(Ak* P)£ 8 
and w(fk»P1)=w(A|<.P). Clearly, ((f k/wP1).P-.:k € K) is a partition 

of P r Since d U ^ P ^ * cf for all k, we get ^(cr* P-,) A 

£H(w(fk.P1)/wP2:keK)=H(w(Ak.P)/wP2:k eK)< b/wP2. This proves 

-yj*(er*P)S WP2-^(oT^ P 1). 

4-5- Proposition. Let P]L and P2 be non-null W-spaces. Let 
P = P 1 * P 2 ' T h e n max^ut-(pi))ud(P2))1iud(P)^ ud(P1)+ud(P2), 

max(ld(P1),ld(P2) ̂ ld(P) iud(P1)+ld(P2). If ?x and P2 are dimehsi-

on exact, then max(Rd(P]L) ,Rd(P2)) £ ld(P) £ ud(P)^ Rd(P^)+Rd(P2) . 

This is an immediate consequence of 4.2 and 4.4. 

4-6- Definition. Let P be a W-space or a metric space. If 

there exists a function f:R*~~^N such that (log f(^))/|log e, |-—> 

— ^ 0 for e —> 0 and, for all sufficiently small € > 0, there 

is an (e ,f(e))-partition of P (respectively, an- (e,f(^-cover­

ing of P consisting of Borel sets), then we will say that P sa­

tisfies SGC ("slow growth condition"). 

Remark. There are countable topologically discrete metric 

spaces which do not satisfy SGC. On the other hand, there exist 

infinite-dimensional compact metric spaces satisfying SGC. 

* - 1 - Fact. If a W-space or a metric space satisfies SGC, 

then so does each of its subspaces. The metric space R ', n = l,2, 

. . . , satisfies SGC. 

4.8. Proposit ion . Let P= <Q,f>,^/ be a weakly Borel metric 

W-space and let<Q,p> be separable. If <Q>,f>> satisfies SGC, 

then so does P. 

Proof. Let f:R*—> N be a function possessing (with res­

pect to<Q,<p> ) the properties described in 4.6. For each 

t € R* , let (X k:k£K £) be an (e,f(e))-covering of <Q,p> con-

sinting of Borel sets. Clearly, all K6 are countable, hence we 

can assume K£=N. For ne.N, put Y^ n
= ^ n \ U ( X k : k < n ) . It is ea­

sy to see that (Yg|<:keN) is an (k,f(s))-partition of P. 
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4.9. Proposition. Let P. and P2 be W-spaces (respectively, 

metric spaces). If both P« and P2 satisfy SGC, then so does 

P=P-* P2. 

Proof. Let P. be W-spaces (the other case is analogous). 

Let f|.R*—"> N possess, with respect to P., the properties des­

cribed in 4.6. It is easy to see that f=f,f2 possesses these pro­

perties with respect to P, since if (X i k:k£K.)
 i s a n (t,fi(&))-

partition of P^ i = l,2, then (Xlk* X2-: (k,j) G. K X * K2) is an 

(e,f(e))-partition of P." 

4-10- Theorem. Let P1 and P2 be W-spaces satisfying SGC. 

If both P., and P2 are dimension-exact, then so is PsP-^Po*
 a n d 

Rd(P1x P2)=Rd(P1)+Rd(P2). 

Proof. Let P ^ <Qi,^i, (U.̂ ), P= <Q,<p, (tt> . For i = l,2, let f. 

possess, with respect to P., the properties described in 4.6. For 

neN, put e n = 2-
n, p ^ ^ f ^ e . , ) , Pn=p

(1)p(?)For i = l,2, neN, let 

(X ( i ):keK ( i )) be an (£,n,p
(i))-partition of Pi. By 2.6, 

lim H(?l.X(i):kcK(i))=Rw(P.). Put KR=K
(1)x K(2); for (k,j)6Kn, 

P u t W ^ M j ^ Clearly, (Ypkj: (k, j) e KR) is an Un,pn)-par-

tition^of P. Since fi Ynkj= ^ X
( 1 ) . ^2

Xnf» w e 9et> b* 1-13B» 

lim H(^Ynk^:(k,j)€, Kn)=wP2.Rw(P1)+wP1.Rw(P2), hence, by 2.6, 

Rw(P)=wP2.Rw(P1)+wP1,Rw(P2), which proves the theorem. 
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